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Effect of positive-energy orbitals on the configuration-interaction calculation of the H atom
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We present the theoretical energy eigenvalues of the 'S ground state and the (pp)'P' state of H

calculated in a simple configuration-interaction procedure, using a finite set of L -basis functions

constructed from one-electron hydrogenic orbitals. The energy corrections, due to the electron-
electron interaction between configurations with various combinations of bound (negative-energy)

and continuum (positive-energy) orbitals, are examined in detail. In particular, our calculation has

shown that the continuum-continuum type of configurations contribute approximately 15% and

13%, respectively, to the electron affinity of the 'S ground state and the (pp)'P' state of H . In ad-

dition, our calculation has shown that the calculated oscillator strength for the transition from the
'S ground state of H to the lowest 'P Feshbach resonance below the n =2 threshold is significantly

reduced (nearly 30%%uo) by the presence of the continuum-continuum type of configurations in the

ground-state wave function.

I. INTRODUCTION

A reliable estimate of multielectron interaction in any
atomic structure study critically relies on the analytic
structure of the electronic orbitals employed in the calcu-
lation of the two-electron Coulomb matrix. For a strong-
ly correlated system, such as the H atom in its ground
state, the wave function is often expanded in terms of
variational basis functions with explicit r, 2 dependence,
which describes correctly the exact electronic probability
density. Among the most accurate wave functions is the
one employed by Frankowski and Pekeris' and Freund,
Huxtable, and Morgan III, and expressed in terms of the
Hylleraas coordinate with the logarithmic terms suggest-
ed by Bartlett and Fock. In addition, Thakkar and
Smith have employed a more compact integral-
transform wave function for the ground and low-lying ex-
cited states of the two-electron atoms with comparable
quantitative accuracy. Applications of the high-order
1/Z-expansion variational perturbation approach with
Hylleraas-type basis functions have also led to accurate
energy eigenvalues of the- ground and lower-lying states
of two-electron atoms. Other variational wave functions
including simple r j2 terms have been tested with success
in the study of the (pp) P' bound state of H by Bhatia
and Drake. 8.

Macek and Lin, ' in their attempts to understand the
earlier + and —series classification of Cooper, Fano and
Prats, " have explored the use of hyperspherical coordi-
nates to describe qualitatively the radial and angular
correlation for a two-electron atom. In particular, the
doubly excited states are classified in terms of a set of
quantum numbers K, T, and 3 in addition to the usual L,
5, and ~. ' ' Starting from a group-theoretical ap-
proach, an equivalent physical interpretation of the elec-
tron correlation for two-electron atoms has also been
demonstrated independently by Her rick and co-
workers. ' More recently, Feagin and Briggs' have
shown that the quantum numbers K, T, and A are related

to the gerade-ungerade symmetry of the molecular-orbital
description of a diatomic molecule. In particular, the po-
tential curves for H derived from the adiabatic hyper-
spherical approximation by Lin' can be obtained by a
simple scaling from the corresponding potential curves
for H2+. '

A less elaborate but more convenient quantitative ap-
proach is the application of the central field approxima-
tion with basis functions constructed from a linear com-
bination of antisymmetrized products of one-electron or-
bital functions u;(r). The convergence of such an ap-
proach is generally slower due to the absence of the r &2

term in the basis functions, but its extension to more
complex atoms is relatively straightforward. The
effectiveness of the central field approximation is deter-
mined largely by the ability of the product of one-
electron orbital functions, employed in the calculation of
the two-particle Coulomb matrix, to take into account
the interaction represented by the interelectronic separa-
tion r, 2. Within this approximation, the most commonly
employed basis functions are of the Slater type with the
nonlinear exponential parameters determined variational-
ly by an appropriate optimum procedure. Such theoreti-
cal procedures, e.g. , the multiconfiguration Hartree-Fock
approach' (MCHF) and the method of superposition of
configuration' (SOC), are often capable of leading to nu-
merical data only slightly less accurate than the most ela-
borate Hylleraas-type calculations for the two-electron
systems.

Within the central field approximation, a less sophisti-
cated approach is the truncated diagonalization method'
(TDM). This simple configuration-interaction (CI) pro-
cedure is usually carried out without the optimization re-
quirement due to its use of predetermined one-particle or-
bital functions. Its applications have been extended to
more complex atoms with variable degrees of suc-
cess. ' ' The main drawback of this approach in quanti-
tative calculation is the difficulty in including the
positive-energy orbitals in the basis functions for the
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two-electron matrix

(u, (r,. )u2(r )~1/r, . ~u3(r;)u~(r ))

due to the long-range behavior of the Coulomb interac-
tion. In most of the earlier applications of this CI pro-
cedure, the basis functions are limited to the products of
two bound (negative-energy) one-electron orbitals (i.e.,
BB-type). The combinations involving continuum
(positive-energy) orbitals, including products of bound-
continuum (BC-type) and continuum-continuum (CC-
type) orbitals, are often excluded from the basis functions
due to the numerical consideration. As a result, for some
of the highly correlated systems, the use of a set of
incomplete-bound-only basis functions is not necessarily
sufficient to achieve the desirable quantitative accuracy,
even when the simplicity of this approach allows for a
very large number of configurations to be included in an
otherwise numerically converged calculation with the
help of fast modern computers.

This difficulty can be circumvented if one replaces the
incomplete set of bound-only basis functions with a nearly
complete set of finite (L ) basis functions, which includes
both bound and continuum one-electron orbitals confined
in a finite radius R. The value of R should be sufficiently
large to cover the estimated size of the atomic states of
our interest. ' In a series of recent applications, ' we
have constructed the radial part of the one-electron orbit-
al wave function g, subject to a frozen-core Hartree-Fock
potential, ' ' ' from a set of B splines ' ' of order k and
total number X defined between two end points r;„=0
and r „=R. With the continuum contribution
(represented by the positive-energy orbitals) effectively
taken into account, the applications of this simple CI
procedure have led to excellent results in the calculations
of energy levels, the oscillator strengths, and the radiative
lifetimes of divalent, atoms. ' ' Application has also
been carried out with excellent agreement with the exper-
imentally observed photoelectron angular distribution
following a four-photon ionization of Mg from its ground
state.

A detailed examination of our recent calculations has
shown that the CI contribution due to the continuum-
continuum (CC-type) configurations is generally negligi-
ble in comparison with the contribution from the bound-
bound (BB-type) and bound-continuum (BC-type)
configurations for most of the lower-lying atomic states
in complex atoms. In order to examine quantitatively the
CI contribution from continuum-continuum config-
urations, we have extended our calculation to the strong-
ly correlated but loosely bound lowest (ss)'S' and (pp) P'
states of H . In Sec. II, we summarize brieAy the simple
CI procedure in the central field approximation for a
two-electron atom. Detailed breakdown of the individual
contribution from various BB, BC, and CC
configurations will be presented in Sec. III. The accuracy
of our calculated wave functions is tested by examining
the variation of the dipole length and dipole velocity os-
cillator strengths as well as the difference between them
for transition from the 'S ground state of H to the
lowest narrow 'P Feshbach resonance below the n =2

threshold as we increase the number of configurations in
the CI calculation.

II. SIMPLE CONFIGURATION-INTERACTION
PROCEDURE

The computational procedure employed in the simple
CI calculation has been presented in detail earlier. ' ' '
For simplicity, we have chosen the hydrogenic one-
electron orbitals for our H calculation. The set of finite
one-electron radial functions y„& corresponding to an or-
bital angular momentum I satisfy the equation

~1+@1 ~pl +pl

where

The function g„l corresponding to either negative or pos-
itive energy c„I is constructed from a set of B splines of
order k and total number X confined between r =0 and
r =R following the procedure outlined earlier. '

Representing each two-electron configuration (pl, p'l')
is a configuration wave function 'l'„~ „,&.(r„r2) expressed
in the LS coupling in terms of Slater determinant wave
functions constructed from the one-electron hydrogenic
orbitals

The Hamiltonian matrix element

corresponding to a pair of configurations (n„l, n l ) and
(nsis, n~lr) is given in terms of the one-particle orbital
energy eigenvalues c„I and the Coulomb matrix elements
by an expression similar to Eq. (6) of Ref. 19. A straight-
forward diagonalization of the Hamiltonian matrix will
then lead to the energy eigenvalue and the state wave
function of an energy eigenstate. The theoretical oscilla-
tor strength is calculated with the procedure presented
elsewhere.

Similar to our earlier calculations, the basis set consists
of a number of two-electron configuration series pl/'.
Each plh' series consists of a set of configuration wave
functions %'„& „& corresponding to one electron in a fixed
orbit pl and the other electron with orbital angular
momentum /' but variable energy, both negative and pos-
itive, over an entire finite set of eigenfunctions of h& given
by Eq. (2). When the orbital pl is bound, a configuration
series pII' includes only the BB and BC types of
configurations. Such a configuration series is in effect
equivalent to an open channel in the close-coupling calcu-
lation. The CC type of configuration is included in the
pll' series when pI represents a positive energy orbital.
In Sec. III, we present in detail the CI contribution due
to the continuum-continuum configurations. The numer-
ical accuracy of our calculation is assured by varying the
values of N from 35 to 50, k from 7 to 9, and R from
170ao to 230a o for those B splines sets included in our



1220 T. N. CHANG AND RONG-QI WANG 43

III. RESULTS AND DISCUSSIQN

The energy eigenvalues for the 'S ground state of H
calculated with various combinations of configurations,
are listed in Fig. 1. The calculated electron amenity (EA)
is 0.0226 Ry, or approximately 41 /o of its expected value,
when we include only the BB-type 1sns configurations. It
increases to about 48% when the entire lss configuration
series is included. A total of 0.0111 Ry in energy correc-
tion resulting from the BB-type 2pnp configurations (i.e. ,
from —1.0266 to —1.0377 Ry) dominates the correlation
energy. When the entire 2pp series is added to the 1ss
series, EA increases to 0.0438 Ry or approximately 79%
of its exact value. Contribution from a large number of
BB-type configurations yields an energy of —1.0332 Ry
(all BB). In theory, this result (approximately 60% of
the expected value) represents the converged value from a
TDM calculation such as the one carried out by Lipsky
and co-workers. ' By expanding our basis set to include

Configurations Energy Levels

isns -1.0226 Ry

1ss -1.0266 Ry

convergence test. The convergence of our numerical re-
sult as a function of increasing R confirms the
effectiveness of the present procedure in circumventing
the numerical difficulty discussed in Sec. I due to the use
of analytic Coulomb functions for the positive-energy or-
bitals in a CI calculation. For an energy convergence of
10 Ry or better, up to 90 configuration series (or ap-
proximately 1000 configurations) are included in our cal-
culation. The present calculation is carried out on a SUN
4/260 work station.

more configuration series nil' with bound nl orbitals (all
BB+BC) until a convergence of 10 Ry is reached, we
are able to account for approximately 85%%uo of the elec-
tron affinity. Finally, by including the continuum-
continuum basis functions with I = I' = 1 t'all

BB+BC+CC (p wave only)], our calculation has shown
that over 9% of the electron affinity can be attributed to
the CC-type configurations from p wave alone. The nu-
merical convergence is fairly slow as we include more
CC-type configurations corresponding to larger I in our
calculation. Eventually, with approximately 1000
configurations (about 90 configuration series, including
some with l up to 5) and with the help of an extrapolating
procedure, employed in our earlier fine-structure calcula-
tion for the He Is4f states, we obtain an EA value of
0.055 40 Ry. This is very close to the most accurate value
of 0.055 502 Ry from the calculations with Hylleraas-type
variational wave functions. In Table I, we compare some
of the existing theoretical EA values. The result of the
present calculation actually agrees slightly better with the
exact value than the results from more elaborate MCHF
(Ref. 14) and SOC (Ref. 15) calculations. The results
from a few selected, numerically more convenient but
quantitatively less accurate, calculations are also
listed for comparison. Similar to earlier calculations, no
other 'S bound excited state is found in the present study.

Detailed breakdown of the energy contributions to the
lowest (pp) P' state of H from various combinations of
configurations is presented in Fig. 2 Our calculation has
shown that this state is not bound if we only include the
BB-type 2pnp configurations. A nearly identical energy
eigenvalue is found when we include the entire 2'
configuration series. The BB-type 3dnd configurations or
the complete 3dd configuration series are responsible for
the largest energy corrections at 5.87 X 10 or
8.00X10 Ry, respectively. The calculated EA includ-
ing contributions from a large number of BB-type
configurations is 2.29 X 10 Ry, which is approximately
32% of the expected value at 7.094 X 10 Ry from the
variational calculation by Bhatia. By including three
dominant configuration series, i.e., 2pp, 3pp, and 3dd, the
calculated EA increases to about 73% of its expected

All BB -1.0332 Ry

1ss+2pnp -1.0377 Ry

BC contribution

TABLE I. Comparison of the electron affinity (in 10 Ry)
for the 'S ground state of H from selected theoretical calcula-
tions.

1ss+2pp

AIIBB+BC

-1.043S Ry

-1.0470 Ry

All BB+BC+CC p-wave only
All BB+BC+CC sly p waves

AII BB+Bc+cc

-1.0521 Ry
-1.0533 Ry

-1.0554 Ry

C C contribution

FIG. 1. The calculated energy eigenvalues for the 'S ground
state of H with various combinations of configurations includ-
ed in the basis functions. A detailed discussion is given in the
text.

Theory

Present
Frankowski and Pekeris (Ref. 1)
Freund, Huxtable, and Morgan III (Ref. 2)
Thakkar and Smith, Jr. (Ref. 5)
Midtdal, Lyslo, and Aashamar (Ref. 6)
Froese Fischer (Ref. 14)
Weiss (Ref. 15)
Hawk and Hardcastle (Ref. 29)
Neto and Ferreira (Ref. 30)
Crance and Aymar (Ref. 31)
Wu and Tsai (Ref. 32)

Electron affinity
(10 Ry)

5.540
5.5502
5.5502
5.5502
5.550
5.502
5.502
5.492
5.490
5.46
5.326
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Configurations Energy Levels 3.5

2pnp (2pp) -0.249632 Ry

3.0-

2.5 - x

~ Length Approximation

x Velocity Approximation

2.0 - ~

2pnp+3dnd -0.250119 Ry

i.5-

All BB -0.250229 Ry
1.0-

2pp+3dd

2p p+3p p+3d d

-0.250432 Ry

-0.250518 Ry

BC contribution
0.5

1 2 3 4 5 6 7 8 9

Configuration Combination

~~~ BB+BC
All BB+BC+CC(d-wave only)

AII BB+BC+CC

-0.250615 Ry
-0.250658 Ry C C contribution
-0.2507075 Ry

FIG. 2. The calculated energy eigenvalues for the (pp) P'
state of H with various combinations of configurations includ-
ed in the basis functions. A detailed discussion is given in the
text.

FIG. 3. The change of the calculated dipole oscillator
strengths f (in 10 ') in length (~) and velocity ( X) approxi-
mately for the transition from the 'S ground state of H to the
lowest 'P Feshbach resonance below the n =2 threshold with
various configuration combinations included in the initial and
final states. The configuration combinations are described in

Table III.

value. Additional BB- and BC-type configurations (all
BB+BC) will increase the EA to about 87% of its ex-
pected value. Finally, with many CC-type configurations
included, our calculation converges to a value of
7.075X10 Ry. The theoretical EA values from a few
selected earlier calculations are listed in Table II for com-
parison. Our result agrees very well with the results from
the variational calculations by Bhatia, Drake, and
Holdien. While the result of the variational perturba-
tion calculation of Aashamar ' appears to have underes-
timated the electron affinity, the approximate value of
7.5 X 10 Ry from the adiabatic hyperspherical approxi-
mation' is about 5.7%%uo larger than the value of Bhatia.

In addition to the energy, we have examined the oscil-
lator strength f of the dipole transition from the 'S
ground state to the lowest 'I' Feshbach resonance below

the n =2 threshold. The width of this Feshbach reso-
nance is of the order of 10 a.u. , which suggests a weak
coupling between the bound component of the state wave
function and the 1scp autoionization background chan-
nel. The change of the calculated oscillator
strengths in length and velocity approximations is shown
in Fig. 3 as we vary the configuration combinations in-
cluded in the initial and final states listed in Table III.
The f values range from 0.002 to 0.003 when the initial
and final states of the transition are both limited to the
BB-type configurations (e.g., combinations No. l and No.

TABLE III. The configuration combinations included in the
initial and final states of the transition from the 'S ground state
of H to the lowest 'P Feshbach resonance below the n =2
threshold. The variation of the calculated oscillator strengths is
shown in Fig. 3.

Theory

Present
Bhatia (Ref. 7)
Drake (Ref. 8)
Holgfien (Ref. 33)
Aashamar (Ref. 34)
Lin (Ref. 10)

Electron affinity (10 Ry)

7.075
7.094
7.008
7.020
6.536
7.5

TABLE II. Comparison of the electron affinity (in 10 Ry)
for the (pp)'P' state of H from selected theoretical calcula-
tions.

Configuration
combination 'S ground state

1sns + 2pnp
All BB
1$$ +2pp
All 88+BC
All BB+BC+CC( l = 1)
All BB+BC+CC(l=0—1)
All BB+BC+CC(l=0—2)
All BB+BC+CC(l=0—3)
All BB+BC+CC

'P final state

2snp +2pns +2pnd
All BB
2sp +2ps +2pd
All BB+BC
All BB+BC
All BB+BC
All BB+BC
All BB+BC
All BB+BC+CC
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2). Combination No. 3 shows that the f values decrease
substantially when contributions from the BC-type
configurations are included. The agreement becomes
nearly perfect between the length and velocity results at
approximately 1.53X10 when we exhaust the BB and
BC-type configurations (combination No. 4) both in the
initial and final states of the transition. The effect of the
continuum-continuum type of configurations is clearly il-
lustrated by the further decrease of the f values (e.g.,
combinations Nos. 5 —8) when the CC-type
configurations are gradually added to the initial state.
The effect due to the CC-type configurations to the final
state is very small. Our converged f value of approxi-
mately 1.08 X 10 is smaller than the previously report-
ed value of 0.0013 from the complex-coordinate calcula-
tion by Wendoloski and Reinhardt, which should con-
verge to the present value if an enlarged basis is included.
Our calculated energy of —0.252099 Ry for the lowest
'I' Feshbach resonance below the n =2 threshold is in
close agreement with the theoretical value of —0.252096
Ry by Wendoloski and Reinhardt and the experimental
excitation energy between 10.92 and 10.93 eV observed

by Bryant et al.
In summary, the present calculation has shown that

the simple CI procedure with finite L -basis set is capable
of taking into account effectively the CI contribution
from the CC-type configurations for a bound state. Ap-
plications of this approach to the bound excited states of
more complex atomic systems have already been demon-
strated in many of our recent structure calcula-
tions. ' ' ' The use of the complete set of the two-
electron state wave functions generated from this simple
CI procedure as the complete set of intermediate virtual
states in a perturbation expansion has led also to recent
successful theoretical calculation of the multiphoton ion-
ization of Mg from its ground state. Extension to the
autoionization state embedded in the continuum is
currently in progress.
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