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Shape-invariant wave packets for three-dimensional harmonic oscillators
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It is shown that for a three-dimensional harmonic oscillator there exist families of Gaussian wave

packets that retain their shape during the time evolution, i.e., the wave packet rotates around its
center without spreading or deforming. This generalizes the concept of coherent vibrational motion
to coherent rotational motion.

I. INTRODUCTION

The time propagation of wave packets has been a
favorite topic ever since the early days of quantum
mechanics when the relation to classical mechanics was
an obvious concern. ' In the 1960s, after Glauber's con-
tribution to quantum optics, wave packets as coherent
states became an important subject. Again recently,
quantum wave packets in the wider context of general-
ized coherent states have attracted much attention. This
may be due to the imminence of time resolved experi-
ments in various fields of physics. Already today, a num-
ber of experiments in atomic physics have shown that
wave packets can be experimentally prepared and various
aspects of their evolution in time can be studied. "

It is well known in quantum mechanics that wave
packets propagating in free space disperse completely.
When bounded by potential walls, wave packets tend to
become ' flexible": the dispersion and the collision with
the walls counteract each other and the result is a wave
packet whose shape changes, increasing and decreasing in
size, as it moves about. This is true even for Gaussian
wave packets in harmonic oscillator potentials. In one
dimension the width of such a wave packet oscillates
periodically unless the initial width is matched exactly to
the harmonic oscillator potential. In the latter case the
shape (here the width) of the wave packet remains rigid
while its center moves along a classical trajectory
(Glauber state). In three dimensions, the shape of the
wave packet is defined as the spatial form of the probabil-
ity density distribution, and in general it will deform in a
complicated way when the wave packet evolves in time.

In this paper we are interested in finding the generali-
zation of conditions for a wave packet to have rigid shape
for three dimensions. This is motivated by the fact that if
the shape of the wave packet is fixed, the motion can only
consist of a translation and a change of orientation, i.e.,
rotation. It is well known that rotations occur in a great
variety of physical systems. Molecular rotations are the
best established examples. In nuclear physics, many ro-
tational spectra are observed and recently also in atomic
physics collective electron motion is found to exhibit ro-
tations. In actual fact such rotation will never be perfect
because of the coupling with other forms of motion.
However, as a first approximation, the idealization of a

perfectly rotating wave packet may be useful. As the
study of a single particle in a mean field is the basis of all
microscopic models of many-body systems, we investigate
in this paper the possibility of wave packets with a rigid
shape for one particle in an oscillator potential in three
dimensions.

In a previous paper we have considered the two-
dimensional case. It was found that there exists a one-
parameter family of Gaussian wave packets whose shape
remains rigid during propagation in a harmonic oscillator
potential. The shape of these wave packets, as deter-
mined from the equidensity lines of their density distribu-
tion, is an ellipse. The parameter can be taken to define
the deformation or elongation of that ellipse. Then if the
wave packet is started with the appropriate angular
momentum, the density distribution will at all times re-
tain the same deformation. Its orientation, however, will
change and the wave packet will rotate uniformly around
its center. Our family of rigid wave packets contains the
two-dimensional analogs of the Glauber state as the spe-
cial case with no deformation, i.e., the ellipse is a circle.
Unlike these Glauber states, a generic member of the
one-parameter family is not a minimum uncertainty wave
packet. However, its uncertainty products, taken along
the principal axes of the density distribution, are equal
and constant in time.

In this paper we investigate the existence of rigid
Gaussian wave packets in a three-dimensional harmonic
oscillator potential. In Sec. II we present the equations
of motion for a general Gaussian wave packet. In Sec.
III we establish the necessary and sufficient conditions for
constant shape. It turns out that the conditions are much
more difficult to analyze than in the two-dimensional
case. In Sec. IV we present the solutions in the form of
two families of rotating wave packets. In Sec. V we look
into the properties particular to the wave packets in these
two families.

II. GAUSSIAN WAVE-PACKET DYNAMiCS

The most general Gaussian wave packet describing a
particle in three dimensions can be written, up to a phase
and normalization factor,
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%(x)=exp —
—,
' [(x—q) U '(x —q)

—i(x —q) V(x —q) —2ip x)

p(x)=exp[ —(x—q)U '(x —q)] . (2)

The surfaces of constant probability density are ellip-
soids. The lengths of their axes (squared) and their orien-
tation are determined by the eigenvalues and eigenvectors
of the matrix U. The probability current density (in units
fi/mb ) is given by

We shall assume all lengths to be expressed in units of b,
the oscillator length, and all momenta in units of A/b.
The particle coordinate is x whereas q, p, U, and V are
parameters. The position and momentum of the center of
the wave packet are given by q and p; the probability
density p =%*% is determined by the symmetric, positive
matrix U. Up to normalization we have

equations in the classical mechanics of rotating frames.
Equations (7) and (8) constitute the dynamical system
that we need to investigate.

The U- and V-dependent parts of the angular rnomen-
tum and energy are conserved quantities with respect to
the equations of motion above. - The internal angular
momentum (cf. Appendix) is connected with the matrix V

by

L =
—,'(U V —V U)

or, using components with respect to the body frame in

which U is diagonal U;. = U;5;, we obtain

(10)

The energy F. separates (cf. Appendix) in U-dependent
terms and a V-dependent kinetic term that can be written
as

j(x)=p(x)[p+ V(x —q)] . (3) T=(to/4)Tr( V U V)

The symmetric matrix V is the "rate of strain" tensor
( V; =BU, /Bx ) pertaining to the velocity field v =j /p.

When the wave packet (1) is considered as the initial
state and the particle is moving in an isotropic harmonic
oscillator potential —,'coax, then it is well known that the
time-dependent wave function will remain of the form (1)
at all times. The time dependence of the parameters q
and p is determined by Ehrenfest's equations and hence
by the formulas of a classical oscillator. This indicates
that the center of the wave packet follows a classical tra-
jectory. The shape dynamics of the wave packet is
governed by the equations of motion of the matrices U
and V:

dU =co(U V+ V U),
dt

(4)

(U2V21)
dt

(5)

dV z=co( U —V —1)+[Q, V] .
dt

Here, and henceforth, the symbol d/dt stands for the rate
of change with respect to the body fixed axes. These equa-
tions are the matrix analogs for the traditional vectorial

These can be obtained as generalized Ehrenfest's equa-
tions bearing in mind that the elements of the matrices U
and V are expectation values of bilinear expressions in the
particle coordinates and momenta. The derivation is
rather straightforward and is outlined in the Appendix.

Obviously, the rigid shape conditions are most easily
expressed when the equations of motion are referred to
the body-fixed frame, i.e., the frame with coordinate axes
along the principal axes of U. If we introduce the instan-
taneous angu1ar velocity Q of the body-fixed frame with
respect to the space-fixed frame,

Q, =e;.krak,

Eqs. (4) and (5), in the body-fixed frame, read

dU =co(U V+ V U)+[A, U],

or expressed in components referring to the body frame:
3 3

T=o3 —,
' g U, V„.+ g Lk /2Ik
i=1 k=1

(12)

We distinguish a vibrational and rotational part. The
first term is called vibrational because the equation of
motion (7) reveals that V;,. is proportional to dU, /dt, i.e.,

the rate of change of the length of the ellipsoid. Thus V;;
controls the shape vibration along the i axis. The second
term is proportional to angular momentum squared and
clearly rotational. It contains the "dynamical moments
of inertia"

(U2 —U3)

2(U2+ U3)

(U3 —U, )

2(U3+ U, )

(U, —U2)

2(U, + U2)

(13)

=[Q,L] .

By using (14), we can obtain the relations

d(I, Q, ) = (I2 I3 )fl203, —
dt

d (I202)
=(I3 I] )03Qi

dt

d (I303) =(I, I2)Q, Q2, —
dt

which extend Euler's equations to a deformable body.

(15)

In general these moments of inertia depend on time via
the shape parameters of the wave packet. From the non-
diagonal elements of (7), we deduce the relation between
0;, L; andI;, namely,

L; =I,-Q; . (14)

The conservation of angular momentum can be expressed
as
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III. MOTION WITH CONSTANT SHAPE

The equations of motion of the preceding section de-
scribe how the shape of the wave packet will evolve. In
general the orientation and the size and deformation of
the density ellipsoids will change as nonharmonic period-
ic functions.

A numerical solution of the equations of motion [Eqs.
(4) and (8)] can be obtained straightforwardly by solving
the system of simultaneous first-order differential equa-
tions by one of the standard methods, starting from given
initial conditions. This solution yields in particular the
time evolution of the matrix U (i.e., of its matrix ele-
ments) which characterizes the shape and orientation of
the density ellipsoids. By diagonalizing the matrix U one
obtains eigenvalues and eigenvectors. The former define
the size and deformation (or shape), the latter the orienta-
tion of the density ellipsoid as the eigenvectors indeed
define the rotation matrix diagonalizing U. By consider-
ing the general form for a rotation matrix'
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FIG. 1. Time evolution of the shape and orientation parame-
ters of the U matrix in a general case (for initial conditions see
text). Eigenvalues are shown in the upper panel, orientation an-
gles in the lower panel (solid line, a; dotted line 0; dashed line,
P). Time in units 2'/co.

R = 1+%sina+X (1—cosa) (17)

where

n n=l,
j 6p'jk Ok

2=
NI~

—nr "g

and using n=(n „nz, n3) with

n, =sin8 cosP,

n 2
= sin8 sing,

n3 =COSO,

(18)

(19) dUi

dt

dU2

dt

dU3 =0
dt

(20)

V33 0.04, for the V matrix with the time evolution of U
shown in Fig. 2. Again we notice the nonharmonic be-
havior of the deformation and the near uniformity of the
rotation for this set of initial conditions, now of course
around a fixed axis (all couplings between direction 1 and
the other two are zero in the initial condition matrices).

We now wish to look for special initial conditions for
which the shape of the wave packet remains constant and
hence the probability density evolves as if it were a rigid
body. The necessary and sufficient conditions for rigidity
of the wave packet are

one easily deduces expressions for the orientation angles
8, P, and a; 8 (measured with respect to the 3-axis in the
laboratory frame) and P (measured with respect to the 1-
axis in the laboratory frame) fix the rotation axis, whereas
a yields the rotation angle.

We have calculated the time evolution with initial con-
ditions for the U matrix equal to U» =1

~ 2 U&p=0. 1,
U22 =0.6 U&3 =0.18 U23 =0, and U33 1 8 and for the
V matrix equal to V» =0.04, V&2

= 1.0, V22 =0.06,
V» =0.4, V23 =0.01, and V33 =0.04, the results of which
are shown in Fig. 1. From this figure one notices the
nonharmonic behavior in time of the deformation of the
wave packet, as well as a rather wild rotational motion.
A closer look at the lower panel shows, however, that
with these initial conditions the rotation is not too far
from a uniform one, around an axis that is reasonably
stable. The discontinuities in 8 and P defining the axis of
rotation, as well as the change of slope in the rotation an-
gle u only indicate that the direction of the axis and the
angle of rotation are not uniquely defined.

We have also restricted the initial conditions to planar
dy~~~i~~ by the choice U» =1.0, U»=0, U»=0. 7,
U&3=0, Uz3=0. 2, and U33 1o8 for the U matrix and
V» =0 V]2 =0 V22 =0.06 V&3 =0 Vp3 =0.5, and

at all times. These conditions must be substituted in Eqs.
(7) and (8) in order to ascertain that such special orbits
can exist. Let us first look at Eq. (7). Its diagonal ele-
ments reduce to

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ oo ~ ~ ~ ~ ~ oooo ~ ~ o$ oo ~ ~ ~ ~ ~ ~ o ~ o ~ ~ ~ ~ ~ oo ~ ~ o ~ oo ~ ~ ~ ~ ~ ~ ~ ~ oooo ~ ~ oo ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ol o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
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FIG. 2. Time evolution of the shape and orientation parame-
ters of the U matrix in an axial case (for initial conditions see
text). Same caption as for Fig. 1.
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2U;V;;=0 (21) U( = U2= U3=1 . (28)

while the off-diagonal elements yield

( U, —U~ )Q3 = co( U, + Ui ) V,2,
U3 )~I i ~( U2 + U3 ) V23 i

( U3 —Ui )02=co( U3 + Ui ) Vi3

From the former it follows immediately that

(22)

(23)

B. Case 2

Let us suppose

Q, WO; Q2=A3=0 . (29)

The solution is nothing but the three-dimensional
Glauber state with matched width. It has a spherically
symmetric shape and no rotational dynamics.

This was to be expected for we had noticed that the V;,
define the rate of change of the U; and we have required
these to be constant. Let us now rewrite (8), taking into
account that the d V;; /dt must be zero and substituting
for the elements V;- their expression in terms of Qk from
(22). We obtain from the diagonal elements of (8) that

gi3(g', 3
—2)02+ g, 2(g, 2

—2)Bi=co ( U, —1 )

(23(f23 2)+1+f12(f12+2)+3 ~ ( U2

f23(/$3+2)Ai+gi3(gi3+2)Qz —co ( U3 —1 )

where we have set

U; —U.
J

U, +U.

(24)

(25)

The set of Eq. (24) expresses the components Ak in terms
of the shape parameters U;. Therefore if U; are constant
in time, the Ak also are and hence also the V; . This re-
sult already tells us that the instantaneous angular veloci-
ty is constant, so the wave packet will rotate uniformly
about a fixed axis. Furthermore due to dV/dt being zero,
the off-diagonal elements of (8) simplify to

((13423 (13 f23 )+1+2

((12423+(12 423)+1+3

( (12413+f12+ (13 )+2+3

(26)

IV. RIGID WAVE PACKETS

Let us analyze systematically the conditions (26) and
(24). Equations (26) can be satisfied by setting respective-
ly, all, two, one, or none of the Q components equal to
zero. This produces four different situations that we will
investigate separately.

A. Case 1

Conditions (24) and (26) constitute six equations for the
six unknowns U; and Qk, while Eqs. (23) and (22) define
the corresponding V,". The equations are highly non-
linear. In the next section we shall attempt to find and
classify their solutions.

Equations (26) are automatically satisfied. From the first
equation in (24) we see that U, = 1. Now either $2~ =0 or
$2i&0. In the former case the other two equations (24)
again imply U2= U3=1 and we are back in case 1. In
the latter case the equations (24) can be transformed by
straightforward substitution to the conditions

Q~=co2 and U2 '+ U3
' =2 . (30)

C. Case 3

Let us suppose

0,=0, A~NO, Qi&0 .

Equations (26) are satisfied if (and only if)

12(13+(12+pi 3
=0

(31)

(32)

If now g, i or g, 3 were to be zero, relation (32) would im-

pose that they be both zero and again we would be re-
duced to case 1. So we take both g, z and g» to be
nonzero and because of (32) they must also be difFerent
from one another. Again we have triaxial wave packets.
Equations (24) can be viewed as three linear equations for
two unknowns (Qz and Q3). The existence of a solution
implies a compatibility relation between the parameters

Together with (32) these relations can be put in a
simple form in terms of the parameters U;:

U '+U, '+U, '=3,
U) = U2U3 .

(33)

(34)

These operations of nonlinear equations are almost in-
tractable but can easily be performed using a symbolic
manipulation package such as MATHEMATICA.

The solutions of (24) can be written in the form

Since gz&%0 we know that U2% U& and the above rela-
tion te11s us that U2 and U3 both are different from 1 and
hence from U&. In this case the wave packet has a triaxi-
al deformation. This type of solution constitutes a one-
parameter family of wave packets, rotating uniformly
with angular velocity cu around a fixed axis along the
principal 1-axis. In fact we have here six different fami-
lies corresponding to the three different choices of
nonzero 0 component and its sign (+co).

Let us suppose
Uq U) U, U3Q~=(4'),Q3=(4' )

U3 UP U3
(35)

0)=Qq=Q3=0

then (24) immediately requires

(27)
from which it follows that A=+2m. Notice that the
right-hand side in the above equations is always positive
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because (33) and (34) tell us that either U2 & U& ) U3 or
U3 & U, ) U2. In fact here we have 12 different families
corresponding to the three possible choices of nonzero A
components and to the four different sign combinations
for Q2 and Q3 obtained from (35).

D. Case 4

V. RESULTS AN DISCUSSION

Aside from the trivial "spherical" Glauber states, we
have found two distinct classes of rigid wave packets.
The first is defined by the relations

U( =1,
0, ) =+co,

U, '+U, '=2,
0~=03=0 .

(36)

The wave packet has a triaxial shape because either
U2 & U, & U3 or U3 & U, & U2. The angular momentum
is given by

L& =+I&co, L2=L3=0 . (37)

It is parallel to the rotation axis, which is the 1-axis, i.e.,
the middle axis of the density ellipsoid. Thus we have a
rigid wave packet that rotates uniformly with angular ve-
locity co around a fixed axis.

The second family of solutions is defined by the rela-
tions

Ui '+ U2 + U3
'

3y Ui UPU3

U —U
Q)=0, +2 +26)

U2 —U3

U —U
1 3

Q3 —+2co
Uq —U3

(38)

Let us finally suppose all 0; to be different from zero.
Then (26) immediately requires all g; to be zero and we
are back to case 1.

In this section we have shown that the conditions for
shape conservation of the Gaussian wave packet can be
solved and that the solutions, apart from the trivial
spherical Glauber state, come in two classes. One family
of solutions has angular velocity co and another 2'. This
is not surprising. Indeed, the shape parameters, being ex-
pectation values of bilinear products of coordinates and
momenta, will contain time-dependent terms with fre-
quency at most equal to 2~.

packets rotating uniformly with angular velocity 2'
around a fixed axis in the (2,3)-principal plane, i.e., the
plane that is orthogonal to the middle axis of the density
ellipsoid.

The two sets of wave packets described above are the
only possible geometries, in oscillator dynamics, for rota-
tional motion with a rigid shape. It is noteworthy that
none of these geometries corresponds to an axial shape.
This may be traced back to the fact that the wave packet
is indeed not a rigid body. To have a rigid shape, the
force of the oscillator field must counteract the centrifu-
gal forces due to the rotation. At an axially symmetric
configuration, the former forces also act symmetrically
while the latter do not. Hence axial symmetry cannot be
an equilibrium configuration in the shape dynamics.

%'hereas the traditional spherical Glauber states are
minimum uncertainty wave packets, our more general
shape-conserving states are not. However, their uncer-
tainty relations are simple. If we consider the matrices
hx;~=(x;x~) and ~h;~=(P;P~. ) then we can introduce
the "uncertainty determinant" 6 by the relation

6 =detox detach (4O)

From the arguments exposed in the Appendix it can easi-
ly be derived that 6 is constant in time and has the value

6=—,
' U) U2U3 . (41)

In order to illustrate the dynamics of shape-conserving
wave packets we have performed numerical calculations
using initial conditions constrained by the conditions
(36), respectively (38). In Fig. 3 we show an example of
the former (case 2) and in Fig. 4 an example of the latter
(case 3). All the features described above are clearly
displayed in these figures: the fixed rotation axis, the
constant angular velocity either equal to co or to 2'.

In this paper we have been concerned with the propa-
gation of three-dimensional Gaussian wave packets under
the action of a harmonic force field. It is well known that
the center of the wave packet moves along a classical tra-
jectory and in the special case where the wave packet has
spherical shape we can speak of "coherent vibrational

Again the wave packet has a triaxial shape because either
U2 & Ui & U3 or U3 & U& & U2. However, one can also
easily derive that the dynamical moments of inertia I2
and I3 are equal. Although the probability distribution
of the wave packet is triaxial the ellipsoid defined by the
dynamical moments of inertia is axially symmetric and
the usual relations

(L25
I

08
1

0.75
I

L =IA, T=—' IA (39)
0'

I

for the axial rotor apply. We conclude that in this case
also we obtain a one-parameter family of rigid wave

FIG. 3. Time evolution for the U matrix for initial conditions
corresponding to "case 2" ( U33 2). Same caption as for Fig. 1.
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&4 x;p~ ~'Il &=q;p + —,'(U V); +—5,J 2 ——J 2 'J (A6)

& 4 p, x
~

4 & =p;q +—,'( U V); ——5;j,J ——J 2 J

& e ~p;pJ ~%' &
=p;pf + —,

'
( V U V); + —,

' U;

(A7)

(A8)

0.75
I

FIG. 4. Time evolution for the U matrix for initial conditions
corresponding to "case 3" ( U33 2). Same caption as for Fig. 1.

motion. " Here, on the contrary, we have been mainly in-
terested in the evolution of a deformed wave packet rela-
tive to its center. In general this deformation changes in-
coherently and erratically. It is shown in this paper how
one can prepare the wave packet in a state such that its
relative motion is a "coherent rotation. " We have ob-
tained two rotational modes, one for which the angular
velocity is equal to the basic oscillator frequency and
another for which it is double the basic frequency. We
conclude that the analogy between classical pictures of
motion and quantal behavior of wave packets can be gen-
eralized from translational to rotational degrees of free-
dom.

1 dU;."=i&+ [H, x, x ]i@& .
2 dt 7 J (A9)

For the oscillator Hamiltonian H =(co/2)(p +x ) we get
immediately [using (A6) and (A7)]

dU =~( U V+ V U) .
dt

From (A6) we obtain

1 d(U V))" =i&+~[H, x,P ]~+ & .
2 dt J

(A 10)

(Al 1)

Working out the commutator and using (A8) we obtain
easily

From these formulas one can immediately derive the ex-
pressions for energy and angular momentum referred to
in the main text. They each separate into a (q, p)-
dependent or orbital contribution and a ( U, V)-dependent
or internal contribution. Equations of motion for the q
and p parameters in the Gaussian wave packet are deter-
mined through Ehrenfest's theorem. A similar approach
can be used for U and V. Let us therefore refer the coor-
dinates to the center of the wave packet. Then we can set
q, =0 and p, =0 in formulas (A5) —(A8). We wish to
derive equations of motion for U and V, i.e., expressions
for U and V. From (A6) we immediately obtain
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APPENDIX

The structure of Gaussian wave packets and their pa-
rametrization is intimately connected to the set of opera-
tors (i,j stand for x,y, z directions)

+i ~ pi~

Using (A10) to eliminate U (A12) becomes

U- =co(U ' —UV —U) .—dt
(A13)

Multiplying by U ' from the left we get (5), the equation
of motion for V. Finally, it may be remarked that Eqs.
(A5) and (A8) show that the matrices U and
W=(U '+ V U V) can be transformed into each other
by interchanging x and p. In the oscillator dynamics this
interchange corresponds to a time translation over m/2',
therefore we can conclude

7 J~ 7PJ~ P7 J~ P7PJ

Together they constitute the so-called inhomogeneous
symplectic algebra ISp(6, IR) that is a semidirect sum of
the Weyl algebra and the symplectic algebra. The param-
eters of the Gaussian wave packet %' may be identified
through expectation values with respect to these opera-
tors:

2'W'(t)=U r+

For shape-conserving wave packets we know that

U(r) =R (r) U(0)R '(t)

(where R is the rotation operator) and hence

(A14)

(A 15)

&mix, ie&=q, ,

& e~x, x, ie & =q, q,'+-,' U;, ,

(A3)

(A4)

(A5)

W(r) =R r+ U(0)R ' t+2' 2' (A16)

Thus, in particular, U and 8'have the same eigenvalues.
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