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Derivation of the geometrical phase
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The geometric (Berry) phase is shown to have its origin in the nontrivial geometry of the fiber
bundle: Hilbert space —+space of states. The nontrivial geometry comes simply from the scalar
product in Hilbert space. A comprehensive treatment of the geometrical phase is presented, bring-
ing together the various ideas in the literature.

I. INTRODUCTION

The mathematical language of fiber bundles' provides
a powerful tool for the study of geometric phases. We
want to discuss the geometric phase using these tools.
The following points will be stressed.

(a) The splitting of the total phase into geometrical and
dynamical parts is determined by a choice of connection.

(b) A natural connection is provided by the scalar
product. This connection produces the standard geome-
trical (Berry) phase.

(c) The geometrical phase is independent of the choice
of gauge. For cyclic evolution, gauge transformations are
given by ~P(t)) ~e' "~P(t) ), where 0(T)=0(0)+2nn.

We want to consider unitary time evolution of a quan-
tum system undergoing cyclic evolution. A state vector
will be denoted by ~g(t)) which is an element of an
(N +1)-dimensional or infinite-dimensional complex vec-
tor space denoted by C +' —[Oj or &—[Oj (we have
subtracted out the null vector). We can denote this vec-
tor by ~P(t)) =(Zo(t), Z&(t), . . . , Z&(t)) where
Z;(t)EC'. This vector space is endowed with the usual
scalar product or Herrnitian metric. We also want to
consider normalized state vectors, namely all
~g) HC +' —[Oj or &—[Oj such that (l((t)~g(t)) =1
for all time. Written in terms of components this is

This equation defines the sphere S +' or S as a sub-
manifold of C +' —[Oj or &—[Oj. Unitary evolution
preserves the scalar product, therefore normalized state
vectors remain normalized and motion is restricted to the
sphere S ' or S

In quantum mechanics a physical state is not
represented by a normalized state vector
~g(t) ) H& —[Oj but by a ray. A ray is the one-
dimensional subspace to which this vector belongs. Two
normalized vectors are equivalent ~g)'- ~g) if they be-
long to the same ray, i.e., if ~g)'=e' ~f) where
e' E U(1). This equivalence relation forms equivalence
classes on S + ' or S . The set of all equivalence
classes S /U(1) forms the space of physical states (rays)
which we denote by

P(~)=S-ZU(1) =
C —[Oj

or by CP (N-dimensional projective space) when N is
finite. P(&) or CP can be interpreted as the space of
one-dimensional complex subspaces of & with the zero
vectors removed. It can also be understood as the space
of the one-dimensional projection operators

~ p) ( lij~

which project onto these one-dimensional subspaces.
P (&) is not only a linear space but also a complex analyt-
ic manifold.

We can express the above ideas in terms of fiber bun-
dles. A fiber bundle consists of a topological space E
called the total space, a topological space M called the
base space, a fiber space F, a group G acting on the fibers
(called the structure group) and a projection map vr

which projects the fibers above M to points in M. In our
case the fiber bundle consists of a total space E which is
the normalized state vectors in C +' —[Oj or &—Oj,
the base space M is the complex projective space CP or
P(&) whose elements are the rays (one-dimensional sub-
spaces of &—[Oj), a fiber consists of all unit vectors from
the same ray, the group G is U(1), and the association of
the unit vector P(t)) to the operator ~g(t))(g(t)~ is the
projection map m. This fiber bundle is a particular type
of fiber bundle called a principal fiber bundle over CP or
P(&) with group U(1).

The time evolution of a state vector is determined by
the Hamiltonian via the Schrodinger equation. This evo-
lution produces a path in the total space E. The corre-
sponding path in the space of physical states [M =P(&)
or CP j is found by projecting the path in E down onto a
path in M. We will consider cyclic evolution, i.e., evolu-
tion in which the physical state returns to the original
state. Cyclic evolutions are thus represented by closed
paths in M. Closed paths in M do not only correspond to
closed paths in E but also to paths which are open in E.
This means that a state vector for a cyclic evolution re-
turns to the same fiber, but in general to another state
vector which divers from the original state vector by an
overall phase.

As we will show below, part of this phase depends only
on the geometry of the fiber bundle. The geometry is
given once a connection is chosen. Intuitively a connec-
tion provides a way to compare fibers at difterent points
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on the space M. Mathematically a connection is specified
by defining a horizontal subspace H of the tangent space
TE to E. Complementary to the horizontal subspace is a
vertical subspace V such that TE =H V. Consider a
point u in E; the vertical subspace at u is defined to con-
sist of those tangent vectors in TE which are tangent to
the fiber passing through u, i.e., whose projections to the
tangent space on M are zero. While the vertical subspace
is defined by the fibers, the horizontal subspace (connec-
tion) is a matter of choice. Once a connection is
specified, the notion of a horizontal lift can be intro-
duced. A horizontal lift is defined by lifting the tangent
vectors of a curve in M to tangent vectors of a curve in E
such that they are horizontal. The horizontal lift of a
closed curve is in general open. Starting at a given point
in the fiber, the horizontal lift will return to a different
point on the same fiber. This difference is called holono-
my, and in our case it is a phase. In this way, the hor-
izontal lift will respect to a given connection defines the
geometrical phase. The total phase of a state vector can
then be decomposed into a geometrical part and a
remaining part called dynamical.

II. THE CONNECTION, HORIZONTAL LIFT,
AND HOLONOMY

Before choosing a horizontal subspace (connection) we
will identify the vertical subspace (or vertical direction).
The action of the group U(1) on S +' or S" generates
the fibers. Each element of a fiber points in the same
direction (they just diff'er by a phase). This direction gen-
erated by the U(1) action is called the vertical direction.

The scalar product provides a natural choice for the
horizontal subspace. To see this consider ~P(t) &, the
tangent vectors to the curve ~P(t) & in E. These tangent
vectors are in TE and can be decomposed into vertical
and horizontal parts via the scalar product,

lg(t) &
= (P(t) I j(t) & Iy(t) &+ Ih~(t) & .

From the above discussion we know that ~P(t) & points in
the vertical direction [so does ~p'(t) &

=e' ~p(t) & ]. Thus
(P(t)~P(t) & is the vertical part of ~P(t) &. We note that
the above decomposition is independent of the particular
fiber element we choose to represent the vertical direc-
tion.

The horizontal component satisfies

(P(t)lh&(t) & =0 .

This equation defines the horizontal subspace as being or-
thogonal to the vertical subspace providing a natural con-
nection on the fiber bundle. Vertical tangent vectors are
proportional to P(t) &, and horizontal tangent vectors are
proportional to h&(t) &.

In order to evaluate the connection explicitly, we will
consider a local patch U on M and the region of E over
U. Tangent vectors in TE are produced by the operator
d/dt. In the usual way this operator is expressed in
terms of vertical and horizontal operators as

d
d~ BO

where A = A dX& and XECP or P(&). The one-form
A is the connection form.

Applying the operator of Eq. (3) to ~P(t) &= ~P(O, X) & EE we find

ly(t)&=~ lp&+&"D, ly& . (4)

By comparing the vertical and horizontal parts of Eq. (1)
with those of Eq. (4), we see

~h~&=B"D„lg& .

From Eq. (6) we write

and from Eq. (2) we see

(y~a~D„~y& =o .

Since B"is arbitrary we have

(6)

+ ~&ae y)=o,

~„(~,', ~)=-(~,'„~)
By considering an infinitesimal U(1) action

IN &e+se= IN &e +t OWN &e

and a Taylor-series expansion

~4' & e,+se= ~4 & e,+~O
a)y&

we find (Oo arbitrary)

a(y&
BO &0

Therefore the above expression for 3„becomes

where we have used (P~P & =1. We have seen explicitly
how the scalar product on Hilbert space defines the con-
nection form A.

In mathematical terminology, ~P& is a local section of
the fiber bundle. A local section is a continuous mapping
of a patch U in M into the fibers above U. A change to a

where the operator 3/BO is called the vertical basis and
D„ the horizontal basis. The coefficients a and B"
represent the components in each direction. The hor-
izontal basis D„ is called the covariant derivative and is
given by

a aD„= + 3„
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different patch U' on M corresponds to a change in the
section lP) ~ lP'). The change in section is given by the
structure group and, in our case,

where 0(x) is a real function of the coordinates X" on M.
This transformation is called a gauge transformation.
The connection form transforms in the usual way:

(9)

A local section maps a closed path in M [X"(T)=X"(0),
0~t & Tj into a closed path in E. We will denote the
closed path in E as lP(t) ) [lg(T) ) = lg(0) ) ]. A gauge
transformation gives a different closed path in E,

(10)

In order for
l
P'( t ) ) to be closed, the function 6( t ) must

satisfy

8( T)=0(0)+2vrn

where n is an integer.
We will now evaluate the holonomy produced by the

horizontal lift of a closed curve in M with respect to the
connection given above. We will denote the horizontal
lift by l P( t ) ) . By definition, the tangent vectors to the
curve

l g(t) ) must be horizontal. From Eq. (1) this means

FIG. 1. Horizontal lift of the path c =m.(t).

The first integral in Eq. (14) yields

f Odt =8(T)—(9(0)=2m.n .
0

This contribution to the phase represents the gauge free-
dom as discussed above [see Eqs. (9), (10), and (11)].
From Eqs. (9) and (15) we see that Eq. (14) is simply

P= f, A„'dX" .

The holonomy (or geometric phase) e'~ is independent of
the choice of gauge:

(q(t)l j(t) & =0 (12)

(i.e., their vertical component is zero). We can express
the open path lg(t) ) in E terms of a closed path

l P(t) ) in e'~=exp i f, A e

q(t) &
=e' '"ly(t) & (13) e'~=exp i f,7

where lg(T)) =e' ' ' ' ' lait(0)) and lg(T)) =lg(0)).
Defining p=f (T)—f(0), substituting Eq. (13) into (12),
and integrating yields

p=i f (p(t)lp(t))dt .

The tangent vector
l P ) is given by

ly&+x~

With this understanding we can effectively drop the
prime (choose a gauge) and write

The phase angle P is the standard geometric phase angle.
Equation (16) expresses p as a line integral of the connec-
tion form A over a closed path C in M (see Fig. 1).

Contracting this equation with i (Pl from the left and in-
tegrating yields

d=t f 8(d d dt+i f Xr(d dt)dt .

III. THE DYNAMICAL PHASE

i—le(t)) =H(t)lifj(t)) .. a
at

(17)

The time evolution of a state vector is given by the
Schrodinger equation

We now use Eq. (7) and (Pl/) =1 to find

P= —f ttdt+t f (d tt)X "dt . (14)

The path in the space of physical states M is represented
by the operator

~(t)=lp(t))(p(t)l .

From Eq. (8), we can express the second integral in Eq.
(14) as

For cyclic evolution the path in M is closed,

rr(T) =~(0) .

if (d d)X "dt=tiI, d (15) Now consider a second system which is related to the
above by a unitary transformation,
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lq(t) &
= U(t) Ig(t) &,

Ig(t) & =H(t)lg(t) &,
Bt

where

er
ce

H(t)= U(t)H(t)U '(t)+i U(t) U '(t),8
at

rr(t)= U(t)ir(t)U '(t) .

(19)

(20) system
te

space system

Equation (20) implies that the path in M can in general
change under a unitary transformation. We wish to con-
sider all systems which produce the same path in M.
Namely, all transformations which satisfy

FIG. 2. System independence of the geometric phase /3.

rr(t) =rr(t) (21a) & y(t)lq(t) &
= —i &((('j(t)IH(t)ly(t) & =o . (24)

or

[U(t), rr(t) ]=0 . (21b)

This equation means according to (19) that the transfor-
mation U(t) must satisfy

For cyclic evolution, the initial and final state vectors will
differ by an overall phase which is defined as

(4(()IFI(()lgi()) ((4(() U='(() g(t) =0 .

Ip(t) & =. ' Ip(t) &,

lp(t) &=e ' lp(t) &,

(22a)

(22b)

where f, (t) and fz(t) are real continuous functions of t
which satisfy f, ( T) f, (0)=a, and—f2 ( T)—f2 (0) =a2.

By substituting Eqs. (22a) and (22b) into Eqs. (17) and
(18) we find

~i =i' f & PIP &dt —f & g(t)IH(t)lg(t) &dt,
0 0

~2=i' f &&I&&dt —f &p(t)IH(t)lg(t)&« .
0 0

(23a)

(23b)

The first term in Eq. (23a) is the same as the first term in
Eq. (23b). We recognize this term as being P, the geome-
trical phase angle. Since the state vector lg(t) & was not
horizontal, its total phase angle a, has an additional term
which is called dynamical. The dynamical phase angle is
the second term in Eq. (23a), and we see that it depends
explicitly on the Hamiltonian. The second term in Eq.
(23b) is the dynamical phase angle for system two. We
see that the dynamical phase for system one is in general
different from that of system two (see Fig. 2).

The transformation U(t) represents a change in system
[or effective Hamiltonian, Eq. (19)] which can alter the
dynamical phase. The geometric phase does not change
since the path in M does not change.

The transformation U(t) can be used to eliminate the
dynamical phase. This corresponds to transforming the
state vectors Ip(t) & into vectors lit(t) & which are hor-
izontal [i.e., satisfy Eq. (12)]:

Il/( T) & =e"'Iy(0) &

and for the second system as

l(bij(T) & =e'"Iy(o) & .

We can express lg(t) & and lg(t) & in terms of a section

In addition, as the two systems are to produce the same
path in M, U(t) must satisfy Eq. (21b). It is straightfor-
ward to check that a solution to these two equations is

U(t)=exp i f &P(t') IH(t') g(t') &dt'
0

According to Eq. (24), Eq. (23b) now becomes

a, =P=i f &P(t)IP(t) &dt .

IV. SUMMARY

«& ti'(t)
I y(t) & =0

which implies that Eq. (8) can be written as

(25)

(26)

where d is the exterior derivative with respect to the
coordinates X"on M. The curvature two-form of M is

F=dA
(27)

F= —Im( d & 4'
I

) h (d I P & ),

We have seen that the equivalence of state vectors
which differ by a phase, along with the scalar product,
define the geometry of Hilbert space (i.e., the fiber bundle
and connection). The geometry is nontrivial. It induces
a U(1) holonomy in a normalized state vector which un-
dergoes cyclic evolution. This induced phase is called the
geometric phase. It depends only on the path in the
space of physical states, not on the Hamiltonian which
generates this path. The total phase accumulated by a
state vector undergoing cyclic evolution consists of a
geometrical phase and a dynamical phase. The dynami-
cal phase is system dependent, it depends explicitly on
the Hamiltonian.

We have expressed the geometric phase in terms of a
connection form A. We note that for unitary evolution
[where H (t) is Hermitian] Eq. (24) yields



1210 ARNO BOHM, LUIS J. BOYA, AND BRIAN KENDRICK 43

and by using Stokes's theorem we can express P as

(28)

ly(T)) =-p ~t, ~ lq(o)),
(29)

(yl(d iy) )
exp y, A =exp —f,Re

(yl(d y))
(ply)

where S is the two-dimensional surface enclosed by the
path C in M. It can be shown directly from Eqs. (26) and
(27) that J and F are the standard connection one-form
and curvature two-form for a complex projective space
(coming from the natural Fubini-Study metric on com-
plex projective space).

We note that for nonunitary evolution the holonomy is
C* (a nonzero complex constant) not U(1). The connec-
tion is still given by the scalar product, Eq. (2). However,
Eq. (25) no longer holds and the connection form A has
both real and imaginary parts. The real part of A gives
the phase holonomy and the imaginary part of 3 gives
the magnitude holonomy. A straightforward calculation
shows

, (yl(dip) )

V. HISTORICAL REMARKS

The appearance of a phase factor in addition to the
usual dynamical phase factor for Hamiltonians that de-
pend upon time has been well known since the early days
of the adiabatic approximations. This phase factor was
always omitted because it was believed that it could be
absorbed into the state vector by a phase transformation.
The Born-Oppenheimer procedure of molecular physics
was based on this belief. That something may be wrong
with this procedure was first noticed in 1963 as sign am-
biguities of electronic wave functions. Mead and Truh-
lar showed that these problems could be solved by the
introduction of a vector potential and called this the
"molecular Bohm-Aharanov e6'ect. '-' Berry indepen-
dently derived the same formula for the vector potential,
now called the Berry connection, considering a general
quantum system undergoing adiabatic evolution. Simon
presented the geometrical aspects in terms of a connec-
tion on a line bundle. The generalization to nonadiabatic
evolution was deve&. oped by Aharonov and Anandan,
and its geometrical picture advanced by Page. More
geometrical ideas were presented by Samuel and Bhan-
dari' for noncyclic evolution, and non-Abelian generali-
zations were discussed by Wilczek and Zee" and Anan-
dan. ' A multitude of applications are collected in the re-
print book by Shapere and Wilczek. '
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