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Analytic solution of a two-dimensional hydrogen atom. I. Nonrelativistic theory
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The two-dimensional hydrogen problem is solved analytically. In the nonrelativistic case, exact
formulas for energy eigenvalues and eigenfunctions for both the discrete and continuous parts of the
spectrum, dipole matrix elements, dc Stark eff'ect, single- and two-photon transition rates, and fine

and hyperfine structures are obtained. Comparison is made between the two- and the three-
dimensional cases. Some interesting aspects of the solution unique to the two-dimensional case are
discussed.

I. INTRODUCTION
TO TWO-DIMENSIONAL HYDROGEN ATOM

plications to other branches of physics are pointed out.
Atomic units will be used unless otherwise stated.

The hydrogen atom is the name given to the system
composed of an electron with mass m, and charge —e
and a positively charged nucleus (Ze) located at the ori-
gin of the coordinate system. The central force between
the electron and the nucleus is determined by the attrac-
tive Coulomb potential function,

II. NONRELATIVISTIC THEORY

The eigenstates of a 2D hydrogen atom are described
by the Schrodinger equation, in polar coordinates,

Z 2
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2w By'2 y By" y"
2

Ze

=Eg( r, &p) . (2. 1)

The three-dimensional (3D) hydrogen atom played a
central role in the early formulation and development of
quantum mechanics and is now part of the standard cur-
riculum in modern undergraduate physics.

If the motion of the electron around the nucleus is con-
strained in a plane by certain boundary conditions, then
such a system is called the two-dimensional hydrogen
atom. We would like to point out that "20" in the name
"2D hydrogen atom" only emphasizes that the motion of
the electron around a positive point charge (not a line
charge) is constrained in a plane. This system is not 2D
in a strict sense that all fields including electromagnetic
fields, photon emission, angular momentum, and spin are
not confined to a plane.

The quantum-mechanical properties of the 2D hydro-
gen atom are the subject of this investigation. In this pa-
per, paper I, we give a full account of the nonrelativistic
description of a two-dimensional hydrogen atom. A de-
tailed presentation' of the complete theory including the
relativistic case and the Chem-Simons term will appear
in paper II (we will refer to it as II) of this series. In the
following section, we will present the solutions to the
nonrelativistic case while in Sec. III some concluding re-
marks are made. Possible implications and potential ap-

Using separation of variables

P(r, tp) =R (r)c'(y),
we obtain

&P((p)=, e'~, l =0, +1,+2, . . .
1
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(2.3)
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R (r) =0 . (2.4)

r 2

L, = —iA
Bg

(2.5)

which commutes with the Hamiltonian. Hence I is a
good quantum number.

Equation (2.4) is the 2D radial Schrodinger equation; its
solution R (r), depends only on ~l~. Solution (2.3) is also
the eigenfunction of the angular momentum along the z
direction
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A. Solutions of the radial Schrodinger equation

The Schrodinger equation contains both bound
discrete states and unbound continuous states. Let us
consider these separately.

2Z
n

2

(2.16)

For the purpose of future reference, we give the first few
functions R„I explicitly:

1. Discrete spectrum (E &0)

Let us define

Z2

2%

and

NA 12X= X
2m, Ze' P~

(2.6)

(2.7)

&2O =(p2/3' )(1—p2r )e

—(p2/61/2) i 2"

&3O=[p, /2(5)'/2](2 —4p, r+p2r2)& """,
R3l =(p3/30' )r (3 p3r )e-

—[p3/(5l)1/2] 2

(2.17)

and

R (x)=x i'~e "/ G(x) (2.8)

The average values of various powers of r are useful in
many di6'erent physical problems to be discussed later
and can be calculated from the formula

The solution of Eq. (2.9), which is regular at x =0, is the
conAuent hypergeometric function

G(x) = g l( —&+ I/I+-,', »I+ l,x) . (2.10)

Equation (2.4) then becomes

x +[(2lll+1)—x] —
( —%+ill+ —')6 =0 .

d G dG
dx GX 2

(2.9)

(p) —f k+1(g )2d
0

(2.18)

The general expression for (r )„& can be obtained by
means of formula (f7) of Ref. 2. Here, we shall give the
first few values of (r )„&

(r)„&=
—,
' [3n (n —1)—ill +1](ao/Z),

(r )„&
= ,' (2n ——1)[n ( 10n —15n + 11 )

~—1 3 5
V 2) 2) 2)4 0 0 ~ (2.11)

A solution which satisfies the condition at infinity is ob-
tained only for negative integral (or zero) values of—X+ ill+ —,', then the function (2.10) reduces to a finite
polynomial. Otherwise it diverges at r ~~. Thus we ar-
rive at the condition

3l/l (2n 1) 3](ao/Z)

(r ')„i=,(Z/a, ),
(n —

—,
' )'

(r )„l= 3 (Z/ao) for l&0,
(n ——') /2

most probable )n, l =n —1 (n
2 ) ( O/

(2.19)

n =X+—'=1,2, 3, . . . , (2.12)

ill=0, 1,2, . . . , n —1 . (2.13)

Recalling the definitions (2.6) and (2.12), we obtain the
2D energy eigenvalue

Alee

2(n ——') A'
2

The normalized radial eigenfunction is given by

(2.14)

1/2(n+ l/l —1)!
(2n —1)« —

I/I
—1)l

X (P„r)"exp( P„r/2)—
x pl( —n+ Ill+1, 21/I+ l,p„r), (2.15)

where

where n, an integer, is called the principal quantum num-
ber. For a given n, I/I can take the values

where a 0
= h' /( m, e ) is the Bohr radius.

Following Kohn and Luttinger, the 2D hydrogen
ground-state energy, E& = —2 a.u. , is four times that of
the 3D counterpart. More general and detailed analysis
was carried out by Alliluev in momentum space, by
Zaslow and Zandler in polar coordinates, and by
Cisneros and McIntosh in parabolic coordinates. In par-
ticular, the eigenfunction R„I in terms of associated
Laguerre polynomials was given in Ref. 5 (there are a few
misprints in Table I of that work). We would like to
point out that by expressing the eigenfunctions in terms
of conAuent hypergeometric functions we can treat the
discrete and continuous, nonrelativistic and relativistic
cases all on the same footing. In addition, the computa-
tion and derivation involving conOuent hypergeometric
functions are simple and well known.

It is interesting to observe tkat by replacing n —
—,
' by n

(n is the principle quantum number), we retrieve many
relevant formulas of the 3D hydrogenic atom [such as
formula (2.14) and the last one of formula (2.19)]. Since
the 3D energy spectrum was first derived from the Bohr



1188 YANG, GUO, CHAN, WONG, AND CHING 43

quantization condition, a few words on such a "replace-
ment" are now in order. In contrast to the 3D case, the
two linearly independent solutions of the 2D relativistic
Dirac equation are disjoint to each other (see paper II).
And, in the nonrelativistic limit, one represents spin up,
the other spin down, such that both have a definite z-
component angular momentum. Mathematically, this
means a ket for an electron state is a tensor product of a
ket in spin space, ls, &, and one in orbital space, li, &.

Now consider a rotation by a finite angle P about the z
axis. If the ket before rotation is given by la&, the ket
after rotation, la &~, is given by

1
2

1
2

FIG. 1. Contour of the complex integral (2.29).

la& =ls, &~8 ll, &~la&~ =exp( rs, y/—A) s, &

exp( il,—P/A)ll, & . (2.20)
Rki(y) = Cki(2kPy) I exp( —ikPy )

2(2my)=(2n —1)A,, n =1,2, 3, . . . (2.21)

A rotation of / =2m (one round), gives la &~
= —a & (the

minus sign comes from the spin part). Thus we need a
/=4m (two rounds) rotation to get back to the same ket
with a plus sign. In the intuitive language of de Broglie,
the condition for standing wave implies f "R„,(y)Rk, i(y)ydy=g(k —k'),

0

and the result gives

(2.27)

x g i(i /k + lil+ —,', 2lil+1, i2k py) (2.26)

The constant C&1 is determined from the 5-function nor-
malization condition

Note that even-number multiples of wavelength on the
right-hand side of Eq. (2.21) are excluded; otherwise
2(2vry ) =(2n )A, means that one round rotation is possible.
Relation (2.21) leads to the following condition:

2k
—2'/k

/1/
—

y

[(s+ '
) +1/k ]'

(2.28)

rp =(n —
—,')iyi, n =1,2, . . . . (2.22)

We may refer to (2.22) as the 2D Bohr quantization con-
dition, which together with the Coulomb law leads to the
2D energy spectrum (2.14). For the 3D case, instead of
Eq. (2.20), we have

liz&~lu&z =exp( il, p/A—)la& . (2.23)

for l =0, the product is replaced by unity. Expression
(2.28) appears in a recent paper without derivation. Our
derivation will be presented elsewhere. '

Using the integral representation of F(a, y, z), " the
continuous eigenfunction R&1 can be represented as a
complex integral:

[Since spin can change direction in 3D case, it no longer
appear»n Eq. (2.23).] Therefore we only need a /=2m
(one round) rotation to get la &z = la &, which gives the
usual Bohr quantization condition. Thus the loss of a
single space dimension has a profound effect on a quan-
tum system.

2. Continuous spectrum (E & 0)

Let us define

( 2kP„)
—

I I

k1 k1
27Tl

X tt) exp(i2kpyt)(t +
X (r 1

)
—i/k —

~l~
—i/2dt

2

which is taken along the contour as shown in Fig. 1.

(2.29)

2E
Z m, e

1 /2

B. Dipole matrix elements

m, e:—Z

X'= —i /k,
x =i 2k/3y,

then Eq. (2.4) becomes

(2.24)

d R + — +[(—
—,'+X'/x ) —i /x ]R (x)=0,

X dX

The analytic expressions of the dipole matrix elements
are useful in evaluating optical transition rates, Stark
shift, light shift, oscillator strength, etc. The following
two matrix elements involving the ground state are the
most important ones:

(RiolylR„i&= f Rio(y)yR„i(y)ydy
0

1)5/2( 1)n —5/2

4 n n+3/2

and its regular solution is

(2.25) 1

3 /2 for large n3/2 (2.30)
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=16 2k
—2m. /k

(g)olrlg„, &= f "Z)0(r)rZk((r)r« the infinite sums extended to the whole atomic spectrum.
The Green-function method is designed to handle such
exact calculations.

We define the partial-wave Coulomb Green function
via

x exp[ —(2/k)tan '(k/2)]
(k +4)

(2.31) &„((r)&„((r')
+,(E;r,r') =

n (&I(I) E„E— (2.34)

In deriving formulas (2.30) and (2.31), we have utilized
formula (fl) of Ref. 2. We would like to mention that the
matrix elements (R,olrl1(!„)) and (R,olrlRk, ) in a 3D H
atom are given in Refs. 12 and 13 and have the form

where E is a parameter and S runs over all radial wave
functions, including both bound and continuous states.
An analytic expression for ~& was derived by Hostler' in
1970:

24( 1 )n
—5/2 7/2

(R )lOrlz„&)=
(n +1)"+

~1(E;r,r')=, „,I (-,'+ lil —v) ~., I(I(» i)i/2

1

3/2 (2.32)
2r

V

2p' &
(2.35)

1/2

X—exp[( —2 tan 'k)/k]
(k 2+ 1 )5/2

(Z „lrlZ„, ) =16 k

1 e

(2.33)

where E = —[1/(2v )]. In expression (2.35), r& (r& ) is
the smaller (larger) of r and r', and W and M are the
Whit taker functions. '

We now consider an integral involving gl.

C. Coulomb Green function

In the second-order perturbation theory, one has to
deal with a difFicult problem of how to evaluate exactly

Xe —(1/v)(Pr+P'r') (E.r r )

(2.36)
(The closed-form expression for J( is given in Ref. 10).
The result is rather simple:

J, (v, P,P') =
(ill —v+-')[(p+1)(p+1)]"I+' ' ' ' ' ' ' ' (p+1)(p'+1) (2.37)

where 2F, is the usual hypergeometric function. Since integrals involving powers of r (or r ) can be obtained from J( by
the proper differentiation with respect to p (or p ), formula (2.36) has many computational applications (see Secs. II D
and II E). Note that the corresponding 3D formula for J( was first derived by Rapoport and Zon' and has been applied
to the calculation of the two-photon transition rates' ' and the dynamic multipole polarizability.

For completeness, we will also briefly discuss an alternate representation of the Coulomb Green function involving a
sum over a discrete set of states only. ""' In the 3D coordinate space, such a representation' ' is referred to as
"Sturmian" since it makes use of the so-called Coulomb "Sturmian" functions introduced by Rotenberg in 1962. The
advantage of using this representation has been demonstrated by Maquet in his work on light shift of hydrogenic
(highly excited) states. We have studied the 2D Coulomb "Sturmian" functions and derived a corresponding 2D repre-
sentation for the Coulomb Green function. Again we refer the reader to Ref. 10 for the details and only quote the final
result

22III+ &~
—2III —()/v)(r+r')( ri)III

[(21Il )) ]2

[(n —
—,') —v] ' ',F, (ill+ I —n, 2lll+1, 2r/v), F, (III+1—n, 2lil+1, 2r'/v) . (2.3g)( (n+ lil —1)'

D. dc Stark effect
In the Stark efFect, the 2D hydrogen atom is perturbed

by a uniform external electric field E=Eox. Since the
fields applied in laboratory experiments are usually weak
in comparison with atomic fields, the perturbation in the
Hamiltonian is (in a.u. )

1. Stark shift in the ground state energy-

E,=D,+6,+8,+ (2.40)

The perturbation expansion for the nondegenerate
ground-state energy is given as a series

H'= —r-(qE)=Eox . (2.39) where 6'0= —2 (unperturbed energy), and
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- =0 due to the odd parity of H'. We rewrite
expansion (2.40) as

It is instructive to describe an alternative solution to
Eq. (2.47), which avoids solving the equation totally. We
note that if we define the Laplace transform of u (r):

u(p)= f u (r)e ~"dr,
E = —aE —aE —aE —aE0 2 4 6

0 0 2 0 4 0 6 0 (2.41)
(2.50)

with a0=2.
(i) Eualuation of a2. Standard second-order perturba-

tion theory gives

then

a — 22 2
P p=2

(2.51)

EO EO
(2.42)

Now we find the Laplace transform of Eq. (2.47) is

where we have used x = r cosy and evaluated the angular
part. We shall show the evaluation of az via three in
dependent methods.

(a) Coulomb Green funct-ion method. With E i= —2= —1/(2v ), i.e., v= —,', in terms of the definitions

(2.34) and (2.36), we can rewrite expression (2.42) as

(p —4) +(3p —2)z d U dU 48

dp dp (p +2)
If we set p =2 in Eq. (2.52), we find

dU 3

dp

(2.52)

(2.53}

a2 = 16 v, J, (v, t3, P')
v= 1/2, P=P'= 1

DifFerentiating Eq (2.5. 2) with respect to p, then setting
p =2, and using Eq. (2.53) gives

21
28

U

2
P p=2

21
29

(2.54)

a2=4 g n
n =2

I"(4)
2F, (2 —n, 4;3;1)

43
(2.44)

Using formula 9.122.1 of Ref. 15, only the first two terms
in the sum contribute, which again leads to result (2.43).

(b) Implicit technique The m. ain point of the implicit
technique introduced by Dalgarno and Lewis in 1955
is to replace the evaluation of the infinite summations in
the second-order matrix elements by the solution of an
inhomogeneous differential equation. This procedure is
much simpler.

Let us define an auxiliary function

R„,(r)f R„i(r')r'R, &(r')dr'
u(r}= S

n =2 EO EO
1 n

(2.45)

a2= —
—,
' f Rio(r)ru(r)r dr= 2f e—'r u(r)dr .

0 0

(2.46)

Using the radial Schrodinger equation and the closure re-
lation for R„i(r) gives us the ditFerential equation satisfied
by u (r):

d2
r +r +( 4r +2r —1)u =—8r e ". (2.47)

dr dr

Its solution is easy to find via the series expansion
method; thus

u(r)= —[(3r!4)+r ]e

If we feed this back into expression (2.46), we have

a, =—' e '" 3r'+4r' dr ==21

(2.48)

(2.49)

This result is exact. Alternatively, we may employ the
Sturmian representation (2.38); thus

'2

which yields az as expected. We would like to remark
that for more general problems (such as the two-photon
decay problem of Sec. II E), the ditferential equation for
u (r) which replaces Eq. (2.47) may be less tractable than
in the present problems, while the Laplace transformed
Eq. (2.52), as a first order equa-tion in dv/dp, is always
solvable.

(c) Direct numerical summation method. Using the an-
alytic expression for the dipole matrix elements (2.30) and
(2.31), one has

7
2n

1 (2n —1) n —1az=
28 + 4( 1)6 n

k exp[ —(4/k)tan '(k/2)]
( 1 +e

—2 srlk
) ( k 2 +4 )

5

The sum (which needs sufficient terms to converge) and
the integral (its integrand is regular enough that a 20-
point Gaussian quadrature is adequate) are calculated on
an IBM XT personal computer with little effort. The nu-
merical values are

az =4.241 698 X 10 +3.961 374 X 10

=0.082 031, (2.56)

which is very close to the exact result 21/(28) with an er-
ror —10

From all the above methods, we see clearly that the
continuous part contributes a fair share and must be tak-
en into account in calculations involving the second-
order matrix elements.

In summary, we have used three independent methods
to evaluate az. There is one method that has not yet been
discussed which requires no calculation at all. Using
proper substitution, Tanaka et aI. recently obtained az
from the expression for az and treated it as a model of
an impurity state localized in a thin layer. However, one
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must be cautious since there is no guarantee that such a
substituting procedure will always work. Surprise and
exception are sometimes possible.

Before proceeding to study higher-order Stark effects,
we remark that second-order matrix elements involving
summation over intermediate states appear in various
physical problems: Stark effect, Rayleigh scattering,
Compton scattering, two-photon transitions, second Born
approximation, dynamic polarizability, long-range in-
teraction of atoms, logarithmic mean excitation energies,
etc. In the past 30 or so years, methods based on (a), (b),
and (c) and their variants have been employed to study all
these problems. We believe the calculations on a2 de-
scribed here make these methods more transparent.

(ii) Evaluation of a4 and a6. For 84, @6, . . . , direct
evaluations on expressions involving multiple sums over
intermediate states are no longer practical. Here we use
an iteration method ' ' to obtain the exact results for a4
and a6.

Standard perturbation expansion

Furthermore, by means of the second and the fourth
equations in (2.58), we have an alternative expression for
4. .

e,=&q, H Iq, & e,—(q, lq, &, (2.61)

or

48 653 931
a 6 231

(2.63)

which again gives the same result [(2.60)]. This in turn
gives us confidence in $2 and itj3, which are needed to
evaluate 6„
@,= (+H'lq, &

=&@2IH'I@3&—@2(&gilq3&+&@21@2&)—@4&@,ly, &,
48 653 931

(2.62)

Hg =E
H =Hp+H',

E =@p+82+ 64+ 86+
0 2 4 6

0 0 2 0 4 0 6 0
= —apE —aE —aE —aE

0,=&P+ 0i+ 02+6+

(2.57)

Therefore the ground-state energy of a 2D hydrogen
atom correct to sixth order in Ep is

2D = 21 2 22 947 4 48 653 931 E6
28 0 22p 0 23 I p

(2.64)

For a 3D hydrogen atom, the corresponding result
1S30' 31,33—38

gives the following equations:

(Ho —@oWo=0

(Ho —@oW i
= H'Po-

(Ho —@o)A = —H'Wi+ @A'o

(Hp Np)$3 H f2+ 627//]

(2.58)

4e
—2r/(2~)1/2

Ep( ,'r +r )e —'cosyl—(2')'

f2= Ep [fp(r)+ f2(r)cos2y]e '/(2m)'

$3=Eo[fi(r)cosy+f3(r)cos3cp]e "/(2n)'

where

f (r) 1
( 149+ 21r2+ 7r3+r4)

16 64 8 3

(2.59)

f2(r)= —,'( —,'r +r + —,'r ),

From Eq. (2.58) and expression (2.59), we find

@4=&@olH'lq3&= —(22947/2 )E4

a 4
=22 947/2

(2.60)

Solutions of g, are obtained by solving equations in (2.58)
successively; thus

3D 1 9 2 3555 4 2512779 E6
22 26 29

(2.65)

The evaluation of a 2
=

—,
' was the first quantum-

mechanical problem to be treated by perturbation
theory in 1926; the results for a 4 and a 6 were obtained
rather recently in 1965 and 1976, respectively; and for a
a„(n & 8), only numerical results has been report-
ed. Both 2D and 3D a„are depicted in Fig. 2.

Several comments are now in order. We note that both
series (2.64) and (2.65) are expected to be asymptotic,
i.e., both are divergent even as Ep —+O. The physics un-
derlying the breakdown of the perturbation expansion is
the quantum-mechanical tunneling effect, by which an
electron starting from a stable ground state has some
probability of reaching a position far away from the ori-
gin. The divergence of the 3D series is quite obvious as
seen in Fig. 2. Since the ground-state binding energy of a
2D hydrogen atom is four times larger, it has a smaller
response to an external field than does a 3D atom. As a
result, the first few a„do not grow as fast. Neverthe-
less, the 2D series eventually also diverges. Therefore it
is natural to ask whether the series expansion represent-
ing enormous efforts from many physicists over the
period of more than half a century makes any sense. In a
series of papers, ' Simon and his associates proposed new
techniques other than the perturbation approach. They
showed that if one begins with a complex electric field E,
sums the series via Sorel summations, and then lets
Im(E) tend to zero, the complex energy for the ground
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10

Eigenstates

(ly, &
—lq &)»'"

(ly, , , &+2'"ly,.&+ ly„&)»
02, —1)+2 P2p& )21) )»

Energy correction

9E0
9E

10

10

(2.68)

The degeneracy of the n =2 level is thus completely re-
moved, whereas the degeneracy of the n =2 level of a 3D
atom is only partially removed.

E. Optical transitions

10
0

w 20
o
I I

4 6
I

10

Due to the confinement of the electron motion in a
plane, only planar polarizations are possible. Thus in the
computation of the optical transition rate, one must take
this into consideration.

1. Single-photon transition

FIG. 2. Ground-state energy of a hydrogen atom in external
electric field intensity Eo, Eg = —aoEo —a2Eo —a4E0

Q6E0 ' ' ' . , 3D hydrogen atom; ———,2D hydro-
gen atom.

2. Stark eQect on the n =2 level

The n =2 level is threefold degenerate: I IIt2, ),
lgz p), I/2, ) ). The matrix elements between these de-
generate states are

9E0
~ 4p, —] IH'

I @2p &
=

& gp~ IH'
I @pp ) =—

4(2)1/2
(2.66)

The energy shift A, may be found immediately via pertur-
bation theory for a degenerate state,

a =0. (2.67)

From Eq. (2.67) we can deduce the energy shift to first or-
der in E0 and the eigenstates to zeroth order:

state can be found exactly. Furthermore, if the field is
not too large, then the time taken for the tunneling is so
long that the eAect can be neglected in any conceivable
experiment. For a given electric field intensity E0, there
is an optimum number of terms in the series (2.65) which
gives the best approximation to the actual energy shift.
Thus perturbation expansion still provides useful infor-
mation and the expressions for a„(n ~ 8) are needed.
However, analytic solution to a„with n ~ 8 is very tedi-
ous and a numerical approach involving recurrence for-
mulas may be more practical. We are presently carrying
out such an investigation.

In the dipole approximation, the transition rate Ak
(and the spontaneous lifetime t, ,„) is similar to the 3D
case given by Ref. 43 with the proper modification of the
prefactor from —,

' to —,':

spon
, l(k Irlk&l', (2.69)

with the usual dipole selection rule,

El=+1 . (2.70)

For transition to the ground state, we have, via the dipole
matrix elements (2.30),

g 20 1
np 1s

np~ ls

32Z (n —1) "

c n "(2n —1)
(2.71)

In particular, tz „-——0.93X10 ' sec, which indicates
that the 2D transition rate is faster by a factor of 6 than
that of a 3D atom, tz &,

=—1.6X10 sec.

2. Two-photon decay

The possibility of a two-photon process, which
proceeds via intermediate states, was first pointed out by
Geoppert-Mayer dating as far back as the early days of
quantum mechanics. In 1940, Breit and Teller' applied
this theory to the case of 2s ~1s transition, which is the
most probable radiative decay mode. Later, more de-
tailed calculations predicted the total transition rate
3 2, „ for a 3D hydrogenlike atom, to be
(8.226 —8.228)Z sec

Let us consider the 2s ~1s two-photon transition of a
2D hydrogen atom. The formula for the transition prob-
ability per second of spontaneous two-photon emission
with one photon in the frequency range dv' at v' (with
unit polarization vector e ' and photon momentum lt') in
the dipole approximation is
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210 6 i3 «3

A~, i, (v')dv'=
c

x S
n ()2)

&Piol~" rl@.i) &P.ile' r1020)
E„(E—q

E—. )
+ —(E —E „)

2

dv
av

(2.72)

where v" is the frequency (with e",k") of the second pho-
ton which is, in turn related to v' by

v"+v' =
277

8

9~
(2.73)

In expression (2.72), E (E ) is the photon energy and
"av" is the average of relative angle of e' and e" over all
orientations if the polarization is not detected. The total
transition rate is

where Az, „(x)is the spectral distribution function,

228 6

A2, „(x)= x (1—x) [Pio(E, 1)+Pio(E ., Ij2s ~1s 314 10 v' &

(2.77)

In expression Q.77), a=e /A'c is the fine-structure con-
stant, and P,o(E, 1) is

Let

( E2 E ] ) /477„=I A2, „(v')dv' .
0

(2.74) &Riolrlz„, )&R„, r R20)
P,o(E„1)= (2.78)()2) E„—E2 E, —

8
V = X

9m

8v"= (1 —x),
9m.

(2.75)

where x is a scaled variable with 0 x ( 1. After carrying
out the angular and "av" parts, we find

A2, „=f A2, „(x)dx (2.76)
0

Expression (2.78) is very similar to the second-order
Stark effect (2.42). Thus the methods of Coulomb Green
function, the implicit technique, and the direct summa-
tion can all be employed to evaluate expression (2.78)
without much further effort. We have used all three of
these methods to evaluate P,o(E, 1) and hence
A2, „(x). For comparison we present both 2D and 3D
Az, „(x)in Fig. 3. We have also calculated Az, „via
numerical integration (2.76) with the following results:

A T
2s~ ls

Coulomb Green
function

1149.84 sec

Implicit
technique

1149.87 sec

Direct
summation

1149.78 sec

Although the agreement is excellent, we believe that the
Coulomb Green-function method is the most accurate
one. Note that A2,' 1, is about two orders of magnitude
faster than those of a 3D atom. Because A2,' 1, is also
proportional to Z, we find that 2D hydrogen transition
rate for Z =1 is the same order as the 3D helium ion,
Z =2 transition rate which is experimentally detectable.

A(x)

10-

2D

F. The Ane structure of the n =2 level

In Sec. II of paper II, we shall give a full account of the
exact solution of the Dirac equation for a 2D hydrogen
atom. But for the purpose of discussing the fine-structure
problem here, it is sufficient to isolate the a term from
the expansion formula (2.32) of II for the exact energy ei-
genvalue in powers of n, we get the fine-structure term

10-

10.

(E„i, )f =— n ——'
2

2(n —
—,')' ll+s, l

f71 C CX
2 4

e (2.79)
0 0.$ 0.2 0.3 04 0 5 X

If we let k =I +s„ the quantum number of the total an-
gular momentum along the z axis, then (E„i, )f becomes

FIG. 3. 2D and 3D two-photon spectral distribution function
A (x).
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(E„k )&. Under the e6'ect of the fine-structure correction,
the n =2 level splits into three fine levels written as 2s&&2,

2p&&2, and 2p3/2 The shifts are the same for the 2s, zz
and 2p&&2 with n =2, k =

—,'. For the 2p&&2 state, the shift
via formula (2.79) is

(2.80)

Now let us consider the fine-structure Hamiltonian

(a) 3 D hydrogen atom

n = 2

5 2 4+ —mca128 e

1 z 4+ —mca128 e

2 P
3/2

128 m c a — 4. 57 x 10 eV — 10969.1 MHz
2 4 -5

e

8'~= 8', +8', , +Ra . (2.81)

The first term, 8' „is due to the relativistic variation of
the mass with velocity,

25, 2P1/2 |/2

W, =— p
Sm, c

(V')',
8m, c

(2.82) (b) 2 D hydrogen atom

which contributes for all states. The second term, 8'...
is the usual spin-orbit coupling

1 1 dV( e 1 ~ —~1 —~
1, s, = j,—1,—2 2 r dr z 4 2 2 3 z z 4e e

(2.83)

2 2 4+ —m c a9 e

2P
3/2

2 2 4+ —mca81 e

—m c a = 2. 89 x 10 eV -=69335.55 MHz
16 z4 -4
81

which is zero for s electrons. The last term in expression
(2.81) IVD, is the Darwin term due to the nonlocalized in-
teraction between the electron and the field,

Q2
8'D = V V=-

8m, c
e A 1

8mc re

(2.84)

For the 3D case, since 7 V~ 5(r), the Darwin term is
nonzero only for the s electron. However, this is no
longer true for the 2D hydrogen atom, the Darwin term

sects all the electrons.
As an illustration, we consider the 2p«z state again.

With the nonrelativistic wave function (2.17), simple per-
turbation calculation yields

2S, 2P1/2 1/2

FIG. 4. Fine structure of the n =2 level of the hydrogen
atom. (a) 3D hydrogen atom, (b) 2D hydrogen atom. Note the
scale in (a) and (b) is not the same. In fact, the 2D splitting is
larger by a factor of 6 than that of a 3D atom.

For comparison, the fine structure of the n =2 level of
the 2D and 3D hydrogen atoms is presented in Fig. 4.

G. The hyperfine structure of the n = 1 level

The fine-structure correction merely shifts the 1s level
as a whole by a quantity equal to

1

Sm, c (Ei, )&
= —2m, c a (2.90)

and

= ——' —"m c a
8 27

(2.85)

(2.86)

(2.87)

where we utilize formula (2.79) with n =1, l =0, and
s =+—'.

z 2'
For the n =1 level, only the Fermi contact term con-

tributes to the hyperfine splitting,

Grouping these results together, we find

(t/l, ~(8' „+W, , + IV )~ttj, ) = —
—,'m, c a (2.88)

16m
IVhr= C aV». s.bio(0) .

3
(2.91)

which is exactly the same as predicted from the Dirac
solution (2.80). Note that in arriving at result (2.85), we

employ ' p =2m, (HO —V) in p gz, to facilitate compu-
tation.

According to formula (2.79), the fine structure of the
n =2 level is

(E —E ) =( ——'+ —')m c a = —"m, c a
2p3/p 2p

& j& f 81 9

(2.89)

In expression (2.91) p~ is the Bohr magneton, p is the
proton magnetic moment, and i, is the proton spin along
the z axis. With g, o(0) =16/2m and

21 s =F 1z sz (2.92)

where F, is the total spin along the z axis, perturbation
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(a) 3D hydrogen atom

n = 1
1 2 4

m c a
8 e

F=1

F=0
32 2—p ph = 21. 12 cm

3 B

(b) 2D hydrogen atom

n = 1

2mctx2 4

F = 1

128 2—p ph = 5. 28 cm
3 B

bation theory gives

(Ei., F=&)ht &
ijai/&

and

(+ls, F=O)hf g PBP~

The hyperfine splitting therefore is

Is, F=1)h ( 1s,F=0 hf +PBBS

(2.93)

(2.94)

(2.95)

which is four times the corresponding splitting of a 3D
atom. Instead of the famous 21.12-cm line in a 3D H-
atom, we will have a 5.28-cm line for a 2D hydrogen
atom. The hyperfine structure of the n =1 level is illus-
trated in Fig. 5.

III. CONCLUDING REMARKS

In spite of the fundamental importance of the hydro-
gen problem in terms of basic theory and in various prac-
tical applications, there have been only a few attempts to
apply the nonrelativistic Schrodinger equation to a 2D
hydrogen atom. This is probably due to the fact that a
single hydrogen atom must be treated as a 3D problem.
In this paper we have presented in detail the analytical
solutions to the Schrodinger equation for a 2D hydrogen
atom. On the theoretical side, these analytical results

F=0

FIG. 5. Hyper6ne structure of the n =1 level of the hydro-
gen atom. (a) 3D hydrogen atom, (b) 2D hydrogen atom.

give insight into the quantization conditions, the
difference, as well as the similarity between the 2D and
3D cases. Among the theoretical results, the Darwin
term in the fine-structure Hamiltonian is of particular in-
terest. For the 3D case, the Darwin term contributes
only for the s electrons. However, it affects all the elec-
trons in the 2D case. The physical origin of this
phenomenon is still not clear. In the dc Stark problem,
we may not need many terms to give a reasonably accu-
rate result because of the large binding energy of a 2D
atom. A rigorous proof along the line of Simon's work '

is still needed. The ac Stark effect is another interesting
problem which we have not considered in this paper.

Historically, the study of this 2D hydrogen problem
was introduced as a leading approximation for the elec-
tron motion in a highly anisotropic crystal. For exam-
ple, let us consider an anisotropic mass tensor of the elec-
tron inside the crystal field, such that m„= m =m, and
m, =am„where u))1. Then it follows that by scaling
the z variable to 0.' z, we can transform the Coulomb po-
tential V(r) into a 2D Coulomb potential V(p), where
p=(xz+yz)'/z plus a term which is of order
(1/a) V'(z, p). Thus in the limit a~ ~, this electron will
be confined to planar motion. Therefore the solution of
the 2D hydrogen is of interest to the study of anisotropic
effect in solids.

)Vote added in proof. Exact analysis results for 2D and
3D Stark shifts up to 20th order have recently been ob-
tained by C. K. Au and K. L. Pom, using logarithmic
theory (unpublished). We wish to thank Professor Ken-
neth Young for informing us of the new result.
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