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Apparently different criteria are used to arrive at the integral representations of Jost functions.
In dealing with this we present a guideline to rederive these results only from the Volterra integral
equation satisfied by the Jost solutions. Both on- and off-shell Jost-type functions are considered.
Using one of our formal results, we derive a useful expression for the s-wave Coulomb off-shell Jost

solution.

At an energy E=k?>0 the Jost function! f,(k) is
determined by the behavior of the irregular solution
fi(k,r) of the radial Schrédinger equation near the ori-
gin. This function has played a central role in examining
the analytic properties of partial-wave scattering ampli-
tudes. For a given angular momentum [, there exist two
integral representations® for f;(k); one in terms of the ir-
regular solution f;(k,r) and the other in terms of the reg-
ular solution ¢,(k,r). The integral representation involv-
ing the irregular solution follows in a rather straightfor-
ward way from the integral equation for f,(k,#). In con-
trast to this the other integral representation is derived
with particular attention to the asymptotic behavior of
@, (k,r).

In the recent past, Fuda and Whiting? have introduced
an off-energy-shell generalization of the Jost function.
The off-shell Jost function f;(k,q) is also determined
from the irregular solution of an inhomogeneous
Schrodinger equation in the same way as f;(k) is ob-
tained from f;(k,r). Here g is an off-shell momentum.
The function f,(k,q) is normalized so that, for scattering
on short-range potentials, f,(k,q) becomes the ordinary
Jost function f;(k) on the energy shell, i.e., when ¢ =k.
For the Coulomb potential, however, f,;(k,q) exhibits a
discontinuity* as g—k. The half-off-shell 7" matrix can
be expressed directly in terms of off-shell Jost functions.
Also by exploiting the relations which exist between the
fully off-shell T matrix elements and half-off-shell 7" ma-
trices, one can write the off-shell 7" matrix in terms of the
off-shell Jost function. As with f;(k), the function
fi(k,q) has also two integral representations. One of
these is given in terms of f,(k,q,r), the off-shell Jost solu-
tion. This result follows from the integral equation for
fi(k,q,r). The other one involves a free-particle off-shell
solution and the on-shell function ¢,(k,r). The deriva-
tion of the second integral representation is rather tricky.
For example, Fuda® obtained it by using a momentum
space formulation of the off-shell Jost function and taking
recourse to Kowalski’s generalization of the Sasakawa
method.® Thus it is clear that we do not have a common
basis to derive these integral representations.

One of our objectives in this work is to look for a
unified prescription to arrive at these integral representa-
tions. We shall achieve this by writing a representation
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for f,(k,q,r), which has not hitherto been discussed in
the literature. Further, we shall demonstrate that this
new representation provides a natural basis for expressing
the off-shell Coulomb Jost solution in simple analytical
form. The result for the Coulomb off-shell Jost function
has appeared in a number of publications,” while the re-
sult for the Coulomb off-shell Jost solution is new to our
knowledge. For clarity of presentation we shall deal only
with the s-wave case and omit the subscript, / =0. The
treatment of the higher partial wave will not involve any
new mathematical complication.

The off-shell Jost solution f(k,q,r) for a spherically
symmetric potential ¥ (r) satisfies the Schrodinger-like
equation

2
d—+k2—V(r)

i f(k,g,r)=(k*—gq%e . )
-

The function f(k,q,r) has asymptotic normalization

flk,g,r) ~ e'". 2)
When g ==k, f(k,q,r) goes over into the two irregular
solutions of the Schrodinger equation which enter into
the theory of the ordinary Jost function f (k) and we
have

f(xk,r)=f(k,tk,r) . (3)

Equations (2) and (3) hold when the first and second mo-
ments of V(r) are finite. The Coulomb case needs
separate considerations. We shall introduce them while
dealing with the Coulomb problem.

With Fuda and Whiting® we assume that the particular
integral of Eq. (1) represents the off-shell Jost solution.
We thus write

f(k,q,r)Z(kZ—qz)fwGI(k,r’rf)eiqr'dr, , @

where Gl(k,r,r') stands for the irregular Green’s func-
tion for motion in the potential ¥ (#) and is given by

0, r<r
[o(k,r")f (k,r)

—¢lk,r)f (k,r')]/ f (k),

Glk,rr)=
r'>r. (5)
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Here ¢(k,r) and f(k,r) are the regular and irregular
solution of the Schrodinger equation for V(7). Obvious-
ly, f (k) is the corresponding Jost function. From Egs.
(4) and (5) and the radial Schrédinger equation, we have
found that

— igr 1 «© ,
fUegr=et+—rm [ °Lf krigik,r)

—¢(k,r)f (k,r')]
XV (e 'dr' . (6)

In deriving Eq. (6) we have used the boundary condi-
tions? on f(k,r) and @(k,r). Interestingly, Eq. (6) is the
formal solution of the integral equation

flgn=e"+ [ “Gk,r,r )V (r')f (k,q,r)dr
(7

with G}(k,r,r'), the free-particle irregular Green’s func-
tion written as

0, r'<r

Gylk,rr')= (8)

—k sink(r—r"), r'>r.

Although Eq. (6) appears to follow in a rather straightfor-
ward way from Eq. (8), it was never used to derive the in-
tegral representations for Jost functions. In the on-shell
limit Eq. (6) gives

J

fCk,q,r)=e"—T(1+in)re™[2ikW(1+in,2;

—2ikr)I,(r)+e ™ 2D(1+in,2;
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flk,r)=e ""+ f [f (k,r)plk,r')— Uk, r)f (K,r')]

XV(re*rdr . 9)

From Egs. (6) and (9) the integral representations of

f(k,q) and f (k) are obtained as

k.g)= = *

f(k,q)=f(k,q,0) 1+fo e
and

SR)=f(k0=1+ [ “e™V(rgtk,rdr . (11)

4V (r)g(k,r)dr (10)

Thus in contrast to the derivation of Fuda® and of
Newton? we have arrived at Egs. (10) and (11) only by us-
ing the formal solution of the familiar integral equations
for f(k,q,r) and f(k,r). Note that the other integral
representations follow directly from Eq. (7) and its on-
shell version. This indicates that the integral equation
for the Jost solution and its formal solution provide a
common basis for deriving all the integral representa-
tions.

An important virtue of Eq. (10) is that it is applicable
both for short-range and Coulomb potentials. We, there-
fore, venture to suggest that Eq. (6) will also hold good
for the Coulomb potential V<(r)=27k /r with 7, the
Sommerfeld parameter. Using the regular and irregular
solutions’ of the Coulomb potential as well as the
Coulomb Jost function in Eq. (6) we can write the
Coulomb off-shell Jost solution in the form

—2ikr),(r)] , (12)

where @ () and W () stand for the regular and irregular confluent hypergeometric functions and the superscript C refers
to the Coulomb potential. The quantities /,(r) and I,(r) are given by

ILi(n=2nk [ "'k 0" ®(1+in,2; —2ikr')dr’
r

and

IZ( )=—4l7]k2 77'17/2f°° ilk+q)r \I/(1+l7], ;

—2ikr')dr’

(13a)

(13b)

We have evaluated the values of I,(r) and I,(r) by using the integral representations® of the ® () and ¥ () functions

and arrived at

4nk*rT(1+in) 1 .
G eer 1 4 —2ikr)+e " TD(1+i
S k,q,7) I+ k+q Fl_in)‘l’(1+n7, ikr)+e (1+in,2; —2ikr) |S(r)
k +q . .
————W(1+in,2; —2ikr)T(r) > (14)
|F(1+i77)|2 in ikr r ]
where S (r) and T'(r) are given by
- (2ikr)" . . . q—
S(r)= — = I(n—in),F, |L,1+in;1+in—n; (15a)
2 Tr(+inT K YR TETT k
and
_ 1 |g+k " & rU+n—inrin—n) |q—k |" ..
T = | L n
n=sr o=k | = o D) (2ikr) (15b)

The series in Egs. (15a) and (15b) are uniformly convergent and can therefore be evaluated on a digital computer. Mak-
ing use of the fact that ¥ (a,c;z)~zﬁozl“cl‘(c —1)/I'(a) and ®(a,c;z)~,_ 1 and also that only n =0 terms of S(r)
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and T (r) remain nonvanishing near the origin, we can obtain the Jost function f €(k,q) from Eq. (14). We have*

in
FCk,g)= | LK (16)
qg—k
Another useful check on Eq. (14) consists in showing that*
mo mn
o1 | 9K e™ Clk 17
fUen=lm "= Rt er) an

Equation (17) can easily be verified from our results in Egs. (14)and (15). As in the case of short-range potentials
fC(k,q,r) also goes like e’ as r— oo. This is not apparent from Eq. (14). However, one can write Eq. (14) in the

equivalent form

n

dnk*r & 2k

T(1+in+n)

fc(k,q,r)=ei"’ 1+

k +gq n§0 k +gq I'(n+2)

X {W(1+in,2; —2ikr)®(1—in,n +2;2ikr)

—®(1—in,2;2ikr)(—1)"T(n +2)¥(1+n +in,n +2; —2ikr)} | . (18)

Using the asymptotic values® of ® () and ¥ () in Eq. (18),
one can check that f(k,q,7)~,_ e

By using a Sturmian discretization of the Coulomb
Green’s function Dube and Broad® have recently con-
structed some useful algorithms to compute the values of
the outgoing-wave off-shell Coulomb function
‘I/,CH)(k,q,r). But our results for f(k,r) and fc(k,q,r),
and their subsequent higher partial-wave generalization
can be used to construct an exact analytic expression for
WE () (k,q,r). Given the expression for W& (" )(k,q,r) one
will be in a position to write a uncomplicated expression
for the partially projected off-shell Coulomb T matrix in
terms of the formula

l
TE(p,a, k> =—=— [ “dr5,(prIVrwE kg, (19)
mpq Yo

with 7,(x) the Riccati Bessel function. This conjecture
represents a straightforward approach to deal with off-
energy-shell scattering on the Coulomb potential. It is
expected to circumvent in a rather natural way the typi-
cal difficulties associated with derivation'® of T°( ) from
the known expression for the three-dimensional Coulomb
T matrix.!!

This work was supported by the Department of Atom-
ic Energy, Government of India.

*Permanent address: Physics Department, Regional Institute of
Technology, Jamshedpur, Bihar, India.

fPermanent address: Department of Physics, Abhedananda
Mahavidyalaya, Sainthia 731 234, India.

IR. Jost, Helv. Phys. Acta 20, 256 (1947).

2R. G. Newton, Scattering Theory of Waves and Particles
(Springer-Verlag, New York, 1982).

3M. G. Fuda and J. S. Whiting, Phys. Rev. C 8, 1255 (1973).

4H. van Haeringen, Phys. Rev. A 18, 56 (1978); B. Talukdar, D.
K. Ghosh, and T. Sasakawa, ibid. 29, 1865 (1984).

5M. G. Fuda, Phys. Rev. C 14, 37 (1976).

6K. L. Kowalski, Nucl. Phys. A 190, 645 (1972).

7U. Laha Ph.D. thesis Visva-Bharati University, 1987.

81.. J. Slater, Confluent Hypergeometric Functions (Cambridge
University Press, New York, 1960).

9L. J. Dube and J. T. Broad, J. Phys. B 22, L503 (1989).

105, Dusek, Czech. J. Phys. B 31, 941 (1981); H. van Haeringen,
J. Math. Phys. 24, 1267 (1983).

113, C. Y. Chen and A. C. Chen, in Advances in Atomic and
Molecular Physics, edited by D. R. Bates and I. Esterman
(Academic, New York, 1972).



