Integral representations of the Jost function

B. Talukdar, U. Laha,* and U. Das Department of Physics, Visva-Bharati, Santiniketan 731 235, India (Received 31 January 1990)

Apparently different criteria are used to arrive at the integral representations of Jost functions. In dealing with this we present a guideline to rederive these results only from the Volterra integral equation satisfied by the Jost solutions. Both on- and off-shell Jost-type functions are considered. Using one of our formal results, we derive a useful expression for the s-wave Coulomb off-shell Jost solution.

At an energy $E = k^2 > 0$ the Jost function¹ $f_1(k)$ is determined by the behavior of the irregular solution $f_i(k, r)$ of the radial Schrödinger equation near the origin. This function has played a central role in examining the analytic properties of partial-wave scattering amplitudes. For a given angular momentum l , there exist two integral representations² for $f_i(k)$; one in terms of the irregular solution $f_1(k, r)$ and the other in terms of the regular solution $\varphi_1(k, r)$. The integral representation involving the irregular solution follows in a rather straightforward way from the integral equation for $f_l(k, r)$. In contrast to this the other integral representation is derived with particular attention to the asymptotic behavior of $\varphi_l (k, r)$.

In the recent past, Fuda and Whiting³ have introduced an off-energy-shell generalization of the Jost function. The off-shell Jost function $f_1(k, q)$ is also determined from the irregular solution of an inhomogeneous Schrödinger equation in the same way as $f_i(k)$ is obtained from $f_l(k, r)$. Here q is an off-shell momentum. The function $f_i(k, q)$ is normalized so that, for scattering on short-range potentials, $f_1(k, q)$ becomes the ordinary Jost function $f_i(k)$ on the energy shell, i.e., when $q = k$. For the Coulomb potential, however, $f_l(k, q)$ exhibits a discontinuity⁴ as $q \rightarrow k$. The half-off-shell T matrix can be expressed directly in terms of off-shell Jost functions. Also by exploiting the relations which exist between the fully off-shell T matrix elements and half-off-shell T matrices, one can write the off-shell T matrix in terms of the fire the call write the on-shell T matrix in terms of the
off-shell Jost function. As with $f_l(k)$, the function $f_1(k, q)$ has also two integral representations. One of these is given in terms of $f_l(k, q, r)$, the off-shell Jost solution. This result follows from the integral equation for $f_1(k, q, r)$. The other one involves a free-particle off-shell solution and the on-shell function $\varphi_1(k, r)$. The derivation of the second integral representation is rather tricky. For example, Fuda³ obtained it by using a momentum space formulation of the off-shell Jost function and taking recourse to Kowalski's generalization of the Sasakawa method.⁶ Thus it is clear that we do not have a common basis to derive these integral representations.

One of our objectives in this work is to look for a unified prescription to arrive at these integral representations. We shall achieve this by writing a representation for $f_1(k, q, r)$, which has not hitherto been discussed in the literature. Further, we shall demonstrate that this new representation provides a natural basis for expressing the off-shell Coulomb Jost solution in simple analytical form. The result for the Coulomb off-shell Jost function has appeared in a number of publications,⁷ while the result for the Coulomb off-shell Jost solution is new to our knowledge. For clarity of presentation we shall deal only with the s-wave case and omit the subscript, $l = 0$. The treatment of the higher partial wave will not involve any new mathematical complication.

The off-shell Jost solution $f(k, q, r)$ for a spherically symmetric potential $V(r)$ satisfies the Schrödinger-like equation

$$
\left(\frac{d^2}{dr^2} + k^2 - V(r)\right) f(k,q,r) = (k^2 - q^2)e^{iqr} . \tag{1}
$$

$$
f(k,q,r) \sim e^{iqr} \ . \tag{2}
$$

When $q = \pm k$, $f(k, q, r)$ goes over into the two irregular solutions of the Schrödinger equation which enter into the theory of the ordinary Jost function $f(k)$ and we have

$$
f(\pm k,r)=f(k,\pm k,r) \tag{3}
$$

Equations (2) and (3) hold when the first and second moments of $V(r)$ are finite. The Coulomb case needs separate considerations. We shall introduce them while dealing with the Coulomb problem.

With Fuda and Whiting³ we assume that the particular integral of Eq. (I) represents the off-shell Jost solution. We thus write

$$
f(k,q,r) = (k^2 - q^2) \int_{r}^{\infty} G^{I}(k,r,r') e^{iqr'} dr' , \qquad (4)
$$

where $G^{I}(k, r, r')$ stands for the irregular Green's function for motion in the potential $V(r)$ and is given by

$$
G^{I}(k,r,r') = \begin{cases} 0, & r' < r \\ \left[\phi(k,r')f(k,r) \right. \\ -\phi(k,r)f(k,r') \right] / f(k), & r' > r . \end{cases}
$$
 (5)

3 1183 1991 The American Physical Society

The function $f(k, q, r)$ has asymptotic normalization

$$
f(k,q,r) \sim e^{iqr} . \tag{2}
$$

$$
\frac{43}{118}
$$

Here $\phi(k, r)$ and $f(k, r)$ are the regular and irregular solution of the Schrödinger equation for $V(r)$. Obviously, $f(k)$ is the corresponding Jost function. From Eqs. (4) and (5) and the radial Schrodinger equation, we have found that

$$
f(k,q,r) = e^{iqr} + \frac{1}{f(k)} \int_{r}^{\infty} [f(k,r)\phi(k,r') - \phi(k,r)f(k,r')]
$$

$$
\times V(r')e^{iqr'}dr' . \qquad (6)
$$

In deriving Eq. (6) we have used the boundary conditions² on $f(k, r)$ and $\phi(k, r)$. Interestingly, Eq. (6) is the formal solution of the integral equation

$$
f(k,q,r) = e^{iqr} + \int_{r}^{\infty} G_0^I(k,r,r')V(r')f(k,q,r')dr'
$$
\n(7)

with $G_0^I(k, r, r')$, the free-particle irregular Green's function written as

$$
G_0^I(k,r,r') = \begin{cases} 0, & r' < r \\ -k^{-1}\sin k (r - r'), & r' > r \end{cases} \tag{8}
$$

Although Eq. (6) appears to follow in a rather straightforward way from Eq. (8), it was never used to derive the integral representations for Jost functions. In the on-shell limit Eq. (6) gives

$$
f(k,r) = e^{ikr} + \frac{1}{f(k)} \int_{r}^{\infty} \left[f(k,r)\phi(k,r') - \phi(k,r)f(k,r') \right]
$$

$$
\times V(r')e^{ikr'}dr' . \tag{9}
$$

From Eqs. (6) and (9) the integral representations of $f(k, q)$ and $f(k)$ are obtained as

$$
f(k,q) = f(k,q,0) = 1 + \int_0^\infty e^{iqr} V(r) \phi(k,r) dr \qquad (10)
$$

and

$$
f(k)=f(k,0)=1+\int_0^\infty e^{ikr}V(r)\phi(k,r)dr \ . \qquad (11)
$$

Thus in contrast to the derivation of Fuda⁵ and of Newton² we have arrived at Eqs. (10) and (11) only by using the formal solution of the familiar integral equations for $f(k, q, r)$ and $f(k, r)$. Note that the other integral representations follow directly from Eq. (7) and its onshell version. This indicates that the integral equation for the Jost solution and its formal solution provide a common basis for deriving all the integral representations.

An important virtue of Eq. (10) is that it is applicable both for short-range and Coulomb potentials. We, therefore, venture to suggest that Eq. (6) will also hold good for the Coulomb potential $V^{C}(r)=2\eta k/r$ with η , the Sommerfeld parameter. Using the regular and irregular solutions² of the Coulomb potential as well as the Coulomb Jost function in Eq. (6) we can write the Coulomb off-shell Jost solution in the form

$$
f^{C}(k,q,r) = e^{iqr} - \Gamma(1+i\eta)re^{ikr}[2ik\Psi(1+i\eta,2;-2ikr)I_{1}(r) + e^{-\pi\eta/2}\Phi(1+i\eta,2;-2ikr)I_{2}(r)],
$$
\n(12)

where Φ () and Ψ () stand for the regular and irregular confluent hypergeometric functions and the superscript C refers to the Coulomb potential. The quantities $I_1(r)$ and $I_2(r)$ are given by

$$
I_1(r) = 2\eta k \int_r^{\infty} e^{i(k+q)r'} \Phi(1+i\eta,2; -2ikr') dr'
$$
 (13a)

and

$$
I_2(r) = -4i\eta k^2 e^{\pi \eta/2} \int_r^{\infty} e^{i(k+q)r'} \Psi(1+i\eta,2; -2ikr') dr' . \qquad (13b)
$$

We have evaluated the values of $I_1(r)$ and $I_2(r)$ by using the integral representations⁸ of the Φ () and Ψ () functions and arrived at

arrived at
\n
$$
f^{C}(k,q,r) = e^{iqr} \left\{ 1 + \frac{4\eta k^{2}r\Gamma(1+i\eta)}{k+q} \left[\left[\frac{1}{\Gamma(1-i\eta)} \Psi(1+i\eta,2;-2ikr) + e^{-\pi\eta} \Phi(1+i\eta,2;-2ikr) \right] S(r) + \frac{k+q}{|\Gamma(1+i\eta)|^{2}} \Psi(1+i\eta,2;-2ikr) T(r) \right] \right\},
$$
\n(14)

where $S(r)$ and $T(r)$ are given by

$$
S(r) = \sum_{n=0}^{\infty} \frac{(2ikr)^n}{\left[\Gamma(1+i\eta)\right]^2} \Gamma(n-i\eta)_2 F_1\left[1, 1+i\eta; 1+i\eta-n; \frac{q-k}{q+k}\right]
$$
\n(15a)

and

$$
T(r) = \frac{1}{2k} \left[\frac{q+k}{q-k} \right]^{i\eta} \sum_{n=0}^{\infty} \frac{\Gamma(1+n-i\eta)\Gamma(i\eta-n)}{\Gamma(n+1)} \left[\frac{q-k}{2k} \right]^n (2ikr)^n . \tag{15b}
$$

The series in Eqs. (15a) and (15b) are uniformly convergent and can therefore be evaluated on a digital computer. Making use of the fact that $\Psi (a,c;z)_{z\rightarrow 0}z^{1-c}\Gamma(c-1)/\Gamma(a)$ and $\Phi(a,c;z)_{z\rightarrow 0}$ and also that only $n=0$ terms of $S(r)$

$$
f^{c}(k,q) = \left(\frac{q+k}{q-k}\right)^{i\eta}.
$$
 (16)

Another useful check on Eq. (14) consists in showing that⁴

$$
f^{C}(k,r) = \lim_{q \to k} \left[\frac{q-k}{q+k} \right]^{i\eta} \frac{e^{\pi \eta/2}}{\Gamma(1+i\eta)} f^{C}(k,q,r) \tag{17}
$$

Equation (17) can easily be verified from our results in Eqs. (14)and (15). As in the case of short-range potentials $f^C(k,q,r)$ also goes like e^{iqr} as $r \to \infty$. This is not apparent from Eq. (14). However, one can write equivalent form \mathbb{R}^2

$$
f^{C}(k,q,r) = e^{iqr} \left[1 + \frac{4\eta k^{2}r}{k+q} \sum_{n=0}^{\infty} \left[\frac{2k}{k+q} \right]^n \frac{\Gamma(1+i\eta+n)}{\Gamma(n+2)} \times \{ \Psi(1+i\eta,2;-2ikr)\Phi(1-i\eta,n+2;2ikr) -\Phi(1-i\eta,2;2ikr)(-1)^n \Gamma(n+2)\Psi(1+n+i\eta,n+2;-2ikr) \} \right].
$$
 (18)

Using the asymptotic values⁸ of Φ () and Ψ () in Eq. (18), one can check that $f^C(k, q, r) \sim_{r \to \infty} e^{iqr}$.

By using a Sturmian discretization of the Coulomb Green's function Dube and Broad⁹ have recently constructed some useful algorithms to compute the values of the outgoing-wave off-shell Coulomb function $\Psi_l^{C(+)}(k, q, r)$. But our results for $f^C(k, r)$ and $f^C(k, q, r)$, and their subsequent higher partial-wave generalization can be used to construct an exact analytic expression for $\Psi_l^{C(+)}(k,q,r)$. Given the expression for $\Psi_l^{C(+)}(k,q,r)$ one will be in a position to write a uncomplicated expression for the partially projected off-shell Coulomb T matrix in terms of the formula

- *Permanent address: Physics Department, Regional Institute of Technology, Jamshedpur, Bihar, India.
- [†]Permanent address: Department of Physics, Abhedananda Mahavidyalaya, Sainthia 731 234, India.
- ¹R. Jost, Helv. Phys. Acta **20**, 256 (1947).
- ²R. G. Newton, Scattering Theory of Waves and Particles (Springer-Verlag, New York, 1982).
- M. G. Fuda and J. S. Whiting, Phys. Rev. C 8, 1255 (1973).
- $4H.$ van Haeringen, Phys. Rev. A 18, 56 (1978); B. Talukdar, D. K. Ghosh, and T. Sasakawa, ibid. 29, 1865 (1984).
- 5M. G. Fuda, Phys. Rev. C 14, 37 (1976).

$$
T_l^C(p,q,k^2) = \frac{2}{\pi pq} \int_0^\infty dr \,\hat{j}_l(pr) V^C(r) \Psi_l^{C(+)}(k,q,r) \qquad (19)
$$

with $\hat{j}_l(x)$ the Riccati Bessel function. This conjecture represents a straightforward approach to deal with offenergy-shell scattering on the Coulomb potential. It is expected to circumvent in a rather natural way the typical difficulties associated with derivation¹⁰ of T_l^C) from the known expression for the three-dimensional Coulomb T matrix.¹¹

This work was supported by the Department of Atomic Energy, Government of India.

- $6K$. L. Kowalski, Nucl. Phys. A 190, 645 (1972).
- ⁷U. Laha Ph.D. thesis Visva-Bharati University, 1987.
- 8 L. J. Slater, Confluent Hypergeometric Functions (Cambridge University Press, New York, 1960).
- 9 L. J. Dube and J. T. Broad, J. Phys. B 22, L503 (1989).
- 10 J. Dusek, Czech. J. Phys. B 31, 941 (1981); H. van Haeringen, J. Math. Phys. 24, 1267 (1983).
- ¹¹J. C. Y. Chen and A. C. Chen, in Advances in Atomic and Molecular Physics, edited by D. R. Bates and I. Esterman (Academic, New York, 1972).