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Partial solubility in quantum mechanics is investigated by studying the logarithmic derivative of
the wave function. By explicitly isolating the singularities of the logarithmic derivative, a modified
Ricatti equation for the regular component is obtained. For the finite Laurent series potentials con-
sidered, we derive the constraints on the coupling constants to obtain closed-form solutions for a
subset of eigenstates. With an appropriate change of variables the method is generalized in order to
cope with more general potentials. In this way, new families of partially solvable potentials related
to the already known exactly solvable ones are identified.

I. INTRODUCTION

Exactly solvable potentials are of great interest in
quantum mechanics, both for their intrinsic meaning and
for testing the quality of perturbative, numerical, or semi-
classical approximations. The usual concept of a solvable
Hamiltonian entails the possibility of knowing exactly its
whole set of eigenfunctions and the corresponding spec-
trum. The potentials that satisfy such a criterion are
comparatively few, and are mostly those contained in the
classification of Infeld and Hull' plus the ones related to
them by the method of Abraham and Moses. With the
advent of supersymmetric theories extensive use of their
methods has been made to study solubility in quantum
mechanics as a consequence of shape invariance. How-
ever, it has been proven that this approach is equivalent
to the factorization method. '

In the last few years there has been a growing interest
in a wider category of solvable potentials. Their charac-
teristic is that they have an exactly solvable subset of
eigenfunctions. Recently several papers have been pub-
lished dealing with this problem. These potentials
fall into two categories: those which have only one exact-
ly solvable state (from now on we will call them partially
soluable potentials), and (much more interesting) those
which have a family of exactly solvable states (quasiex
actly solvable potentials). A well-known example of this
last class is the sextic symmetric anharmonic polynomial
oscillator.

In this work we consider an alternative approach to in-
vestigate partial solubility based on a modified Ricatti
equation for the regular component of the wave-function
logarithmic derivative, where the necessary conditions
for exact solutions to exist arise naturally. The simplest
version of the method is specially suited to cope with
finite Laurent-series-type potentials. They include among
others the anharmonic polynomial oscillators, intensively
considered in the context of quantum field theory, the
three-dimensional anharmonic polynomial oscillators, the
Coulomb plus polynomial terms potentials (both of

II. THE MODIFIED RICATTI APPROACH

In the present work we will restrict ourselves to poten-
tials that admit bounded eigenfunctions, having in conse-
quence a discrete energy spectrum. Let us consider the
logarithmic derivative of the mth excited-state wave
function,

g (x) = in/ (x), (2.1)

which has proven to be very useful in classifying most of
the exactly solvable Hamiltonians. In terms of it we can
write

(x) ~ exp J dy g (y) (2.2)

When inserted into the Schrodinger equation

relevance in the problem of quark confinement in QCD)
and the generalized Lennard-Jones-type potentials used
to describe molecular interactions.

Furthermore, a generalization of the formalism, in-
duced by simple mappings, allows us to analyze partiaI
and quasiexact solubility in a very much larger class of
potentials. These last can be thought of as members of
families related to the well-known exactly solvable ones.
A detailed analysis of this generalization and further de-
velopments are planned to be presented in a forthcoming
article. '

This paper is organized as follows. In Sec. II we intro-
duce the main features of the modified Ricatti approach
for finite Laurent-series-type potentials. In Secs. III, IV,
and V we analyze the anharmonic polynomial oscillators,
the fractional polynomial potentials, and the general po-
tentials with polynomial plus fractional terms, respective-
ly. In Sec. VI we sketch the generalized formalism which
suggests new families of partially solvable potentials re-
lated to the exactly solvable ones. Finally, Sec. VII is de-
voted to concluding remarks.
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+E —V(x) f (x)=0,
dx

it gives place to the Ricatti equation for g (x):

(2.3)

n

(x;n)=—g(x)+ (x —x, )

=Q(x)B (x;n), m (n . (2.7)

g (x)+g' (x) = V(x) E— (2.4)

As follows from Eq. (2.2), a wave function will have a
closed expression if and only if g (x) has a primitive ex-
pressible in closed form. If, in addition, the resulting
g (x) function is such that g +g' and g —g' have the
same functional dependence on x, after come reparametr-
ization, ' the problem will be strictly solvable in the
sense of Infeld and Hull.

The solubility problem has been traditionally addressed
by making an ansatz for the wave function of the form

(x)=8 (x)ij'jlx)

=8 (x)exp f dy g(y)
E

(2.5)

where g(x)=(in/)' and g(x) gives the leading behavior
of the wave function at the boundaries. As the wave
function is normalizable we can loosely assume that it
will vanish at the boundary of the physical domain [the
real interval (x,x+ )], i.e. , lim„„g(x)=0 and so+

lim f dy g(y)= —~ .
X —+X-+

(2.6)

In the case of solubility g(x) can be written in closed
form so that 8 (x) becomes a finite power series. The
key in this process is certainly the selection of itt(x) [or
equivalently g(x)].

For all the very well-known exactly solvable Hamil-
tonians g(x) can be constructed by solving the
Schrodinger equation (2.3) in the limit x~x+. Con-
versely, the same can be said about g(x) which can be ob-
tained by solving the Ricatti equation (2.4) in the limit
X ~X+.

For an arbitrary potential we lack a general procedure
to identify the adequate decomposition as given in Eq.
(2.5). However, for a particular, still large, class of poten-
tials which generalize the exactly solvable ones, we pro-
pose a systematic method to identify g (x ) through the
modified Ricatti approach [Eq. (2.9) below].

As a erst approach we will only require that the poten-
tials will be regular almost everywhere in the complex
plane; by these words we mean that if V(x) has singulari-
ties they are located at the boundaries x =x+ or at
infinity (~x~~~). We will come back to this point in
Sec. VI. Removing this restriction will lead to other
cases left out in this work. '

From the Sturm-Liouville theory, the normalizable
wave function P (x) representing the mth excited state
has m simple zeros [x J i on the real axis in
x (x (x+. Moreover, V(x) being regular almost
everywhere in the complex plane, all the zeros of the wave
function must be simple almost euerymhere, and we can
explicitly isolate them:

We have introduced a notation that discriminates be-
tween the total number of zeros, n, and the m ~ n nodes
of the wave function [the zeros in the interval (x,x+)].
The so defined factor ll (x) is regular almost everywhere.

In terms of the logarithmic derivative Eq. (2.7) be-
comes

g (x, n)=g(x)+ g 1

X Xj
(2.8)

where g(x)=d(in/)/dx is regular almost everywhere in
the complex plane.

Inserting Eq. (2.8) into Eq. (2.4) and by decomposition
in partial fractions of the resulting expressions, we obtain
a modified Ricatti equation for g(x)

g (x)+g '(x)+2F (x;n)= V(x) E—
where

n g(x) —yF (x;n)= g
i=1 x xJ

(2.9)

(2.10)

and y„.=gk, «.(xk —x )
' for j =1,2, . . . , n, to-

gether with yo 0
=—yi o—=0 and Fo(x;0)=—0. A useful

property is g". , y„~ =0.
The potential V(x) being regular almost everywhere

the left-hand side of Eq. (2.9) cannot have singularities at
x =x., so F (x;n) cannot have them either. Therefore
g(x )

—y„, must be proportional to (x —x ), or

g(x )=y„(x„xz,. . . , x„), j =1,2, . . . , n (2.11)

strongly relating the zeros of the wave function to the
regular component of its logarithmic derivative. Now we
can rewrite F (x; n ) =g,",(x —xj ) '[g(x) —g(xj ) ].
We should remark at this point that, for a given n. , the
nonlinear system of Eqs. (2.11) can have more than one
solution set [x., j = 1,2, . . . , n ] and correspondingly,
more than one wave function with n zeros can be ob-
tained.

Let us consider that there is more than one solution set
to Eqs. (2.11). In principle, each set [x, j=1,2, . . . , n ],
will lead to a different F (x;n) and thus the right-hand
side of Eq. (2.9) must accordingly change. For a fixed
value of n there are two possibilities.

(a) If the F (x;n) corresponding to distinct solution
sets [x ] differ from each other in their x dependence,
the resulting wave functions correspond to different po-
tentials (partially solvable potentials).

(b) Another much more interesting possibility is that
the F (x;n) corresponding to distinct solution set [x I

differ from each other by an additive constant. In this
case, the different wave functions correspond to eigen-
states of the same Hamiltonian, with different energies.
The solution sets differ from each other in the number I
of nodes (zeros in the physical domain). We have a
quasiexactly solvable potential.

The set of Eqs. (2.11) is crucial for our formal analysis.
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Once g(x) is known for a given n, a family of wave func-
tions with n zeros, in principle, can be completely
specified. This is because the remaining polynomial fac-
tor 8 (x;n)=Q". ,(x—x, )=g" Ob. ,x' .can be deter-
mined at least in two ways.

(a) We can solve the nonlinear system (2.11) for the
zeros of the wave function and from them construct
8 (x;n) [see Eq. (2.7)]. However, except for low values
of n this can be very difficult to implement due to the
structure of Eqs. (2.11).

(b) An alternative to Eqs. (2.11) is to solve the set of
Eqs. (B5) (in general also nonlinear) for the coefficients

I b I. o
. „ i of the polynomial B (x;n ) (see the

derivation in Appendix B).
This being pointed out, let us study the conditions un-

der which it can be easy to determine g(x) through Eq.
(2.9).

A. The general Laurent-type potential

The modified Ricatti Equation (2.9) is clearly well suit-
ed to treat finite Laurent-type potentials

integers. In analogy to Eq. (2.7) the eigenfunctions can be
written

(x; n ) =V„(u;v) =C„(u;v)%(u ), (2.16)

where C„(u; v) =ff . ,( u —ut) =g'. oc, u ~ is a polyno-
mial of degree v= [n/2] ([ ]) means "integer value of")
and p= [m /2] is the number of zeros of C„(u;v) in the
real positive axis. When L =0, the well-defined parity
( —1) is accounted for by the remaining factor %. The
logarithmic derivative of the wave function is according
to (2.1)

g ( xn)= in'P(uv)= G(uv) .
du du

(2.17)

where the dot denotes the derivative with respect to u.
Decomposing as before G„(u;v) in its regular and singu-
lar components,

Thus, in the symmetric case, the Ricatti equation (2.4)
modifies to

4u [G„(u;v)+ G„(u;v)]+2G (u; v) = IV(u) E—
(2.18)

2M
V(x)= g U x ML ~0

k =—2L

(2.12) G„(u;v)=G(u)+ g 1

~ 1u uJ
(2.19)

M
g(x) = g a„x",

k= —L
(2.13)

as it allows an almost algebraic determination of g(x).
The simplest example is V(x) =co x /4, for which just by
inspection of Eq. (2.9) we derive g (x)= —cox /2.

For L =0, M) 0 the potential becomes a polynomial
and the physical domain spans the whole real axis, i.e.,
(x,x+ )=(—~, + ~ ). For L )0 we will consider
(x,x+ ) = (0, + ~ ) either because U 2L )0 or alterna-
tively because we are thinking of Eq. (2.12) corresponding
to a spherically symmetric three-dimensional (3D) poten-
tial.

We are looking for g(x) which is regular almost every-
where (if it has singularities they lie at infinity in the com-
plex plane) with its primitive expressible in closed form.
An obvious solution of Eq. (2.9) satisfying such require-
ments is the finite Laurent series

4u [G (u)+ G(u) ]+2G(u)+2%„(u;v) = 8'(u) E—
(2.20)

where

4u [G(u) —I ]+1
4„(u;v)= g

j=1 J
(2.21)

and I,=—gk, k& (uk —uj )
' for j =1,2, . . . , n, to-

gether with I o O= I i o—=0 and @0(x;0)—=0.
If the right-hand side of Eq. (2.20) is regular almost

everywhere, N„(u;v) must be regular too and conse-
quently

where G(u)=d(in%')/du, and replacing this expression
in Eq. (2.18), a modified Ricatti equation for the sym-
metric case results:

and thus G(u )+ =I ., j=1,2, . . . , v
1

4uj
(2.22)

g(x) ~x 'exp k k+1
k+ I

kA —1

(2.14)

M
IV(u)= g wku" .

k= —L
(2.15)

We will restrict the analysis to I. and M both odd positive

B. The symmetric case

Reflection symmetric potentials, i.e., V(x) = V( —x), of
Laurent type deserve special attention. Introducing the
mapping u—:x, a more economic formulation of the
problem can be presented: (M —1)/2

G(u)= g Aku" .
k = —

(,L —1)/2
(2.23)

The connection with the general case treated in Sec. II A
is given by the identification a2k =0, a2k+, =22k. It is

which are certainly a similar but simpler alternative to
Eqs. (2.11), ([n/2] equations instead of n), relating the
zeros of the wave function to G(u). As in the general
nonsymmetric case the knowledge of G(u) completely
specifies the wave function. Moreover, the recognition of
partial, quasiexact, or exact solubility derives from the
analysis of @„(u;v) (constant or u dependent).

For the symmetric Laurent-type potentials (2.15) it is
immediate to state that
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convenient to rename the coeKcients 2 1
=6/2; for

L, =0, 5=n —2v=0, 1 is the parity of the wave function,
while for I.)0, 6=a

Until now we have discussed the cases for which the
modified Ricatti equation is suitable to determine the reg-
ular components g (in the general case) and G (in the
symmetric case). Next we apply the formalism here
presented to analyze partial solubility for the potential
given in Eq. (2.12) in the cases (L =O, MAO),
(LAO, M =0), and (LAO, MAO) in both its general and
reAection symmetric forms.

M —1

F (x;n)= g x "fk,
k=0

(3.1)

where the coefficients fk are derived in Appendix,
M

fk = g aqsq k ]
q=k+1

with

(3.2)

function F (x;n) defined in Eq. (2.10) is then a polyno-
mial of degree M —1

III. POLYNOMIAL POTENTIAL (L =0,MAO) s = g (x, )q. (3.3)

A. The general case

In order to ensure the existence of bound states we re-
quire UzM )0. For even values of M, Eq. (2.14) violates
the normalizability condition (2.6) and therefore we will
further restrict it only to odd values and aM &0. The

Notice that so = n and consequently

M

fk =nak+]+ p aqsq —k —]
q =k+2

From Eq. (2.9) we get for the potential

(3.4)

M
V(x)=E + ao+(2n+1)a]+2 g a s

m =2

M —1 k M
+ g x" (2n+k+1)ak+, + g aqak q+2 g ams~

k=1 q=0 m =k+2

This implies the following relations hold:

2M k

+ gx" izaak
k=M q=0

(3.5)

k M
(2n +k+1)ak+]+ g a.ak . +2 g a s k ], k =1,2, . . . , M —1

j=0 m =k+2
vk —

M
a ak, k =M, M+1, . . . , 2M

j=k —M

(3.6a)

(3.6b)

so the wave function and the energy are given by

M ak(x;n)=B (x;n)exp g x"+'
k=0

(3.7)

M
E = — ao+(2n +1)a]+2 g a s

m =2

By construction g(x) depends on M+1 parameters:
the ak's. Moreover, from Eq. (2.11)

x, =xj(ao, a, , . . . , aM ), j=1,2, . . . , n (3.8)

and so the wave function g (x;n ) depends only on
M+1 independent parameters. On the other hand, the
potential (2.12) is defined by 2M coefficients. It is clear
that not all the polynomial potentials (i.e., with arbitrary
coefficients I Uk I) will have a corresponding f (x;n) ex-
pressible in the closed form given above. For this to be
the case the coefficients j U„ I„,z 2M must satisfy
M —1 consistency (in general nonlinear) equations.

If M = 1 there are no constraint relations and we are
confronted with a truly exactly solvable potential, the dis-
placed harmonic oscillator. In this case F (x;n)=na,
does not depend on the position of the zeros of the wave
function and consequently the equations (B5) for the
coefficients I ho, b], . . . , b„]I of the wave function be-
come linear. All the wave functions of the form given
above are solutions of the potential, and I =n label the
state. For this potential Eqs. (2.11) give us an interesting
relation between the zeros of the Hermite polynomials,
already found within a difFerent perspective by Szego. In
Ref. 25 he demonstrates an analogous formula for Jacobi
polynomials and sketches the proof for Laguerre and
Hermite polynomials. Equations (2.11) actually general-
ize these results.

A general systematic procedure to obtain exact eigen-
functions ]t (x;n) for the anharmonic oscillator (2.12)
can be developed. From the M + 1 Eqs. (3.6b) it is
straightforward to derive Iak Ik o, M in terms of
Ivkjk M M+, 2M by means of the following backward
recurrence relations:
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aM= U2M=aM U2M

M —1 U2M —1/ M ~M —1(U2M —1 U2M ) (3.9)

U1=(2n +2)az+2aoa, +2a3$1( IXJ j )

vz =(2n +3)a3+2aoaz+a1
(3.12)

1ak=
2a 2M

M

k+M j k+M —Jj=k+1

ak(V1 +M~V/ +M+»

k=M —2, M —3, . . . , 0,

V(x)=v, x+vzx +U3x +v4x +vox +U6x (3.10)

This potential has been treated in the literature only in its
symmetric version (with the particular choice
v 1 U3 U5 0). Proceeding as described above we ob-
tain

We have rejected the solution aM & 0 as it would have re-
sulted in a non-normalizable wave function. The scheme
here proposed univocally determines all the coefficients
[ak j in terms of the higher coupling constants
Ivk jk M M+, zM. Thus from Eq. (2.14) we obtain
P(x).

The remaining polynomial factor B (x;n)
,(x —x )=g" O—b x~ .can be determined as dis-J=1

cussed in Sec. II and the energy of the state can then be
evaluated from Eq. (3.7).

This systematic sequence ends up with wave functions
and energies completely specified only by the M + 1

higher couplings of the potential I UM, . . . , U2M j.
Different solutions for B (x;n) do not necessarily corre-
spond to the same potential, as the remaining couplings
are subject to the constraints given by Eq. (3.6a) that de-
pend on each particular solution. The only exception is
for vM, =UM, (UM, . . . , UzM, n) which does not depend
on the position of the zeros but on the total number of
them.

A very interesting situation exceptionally arises when
the constraints only depend on n: the different 1I( (x;n)
will correspond to the same potential that we will call
V(x;n). For each solution set the number of zeros in the
physical domain must be different (for 1D problems the
bound states are nondegenerate due to time-reversal sym-
metry). Thus for a given arbitrary n we would have found
a Hamiltonian H '"' with an exactly solvable subset, with
at most n elements, of its Hilbert space.

Let us illustrate the method for the simplest nontrivial
case, i.e., for M =3. The general sextic polynomial oscil-
lator reads

$1(x;1)~ (x —x )f(x),

E& = a0+3a&+2a2x +2a3x
(3.13)

where x generically denotes solutions of type (a) or (b).
Every solution found is an eigenfunction of a different
Hamiltonian, as v, =v, (x ) according to Eq. (3.12), and
has a different eigenvalue from Eq. (3.7).

B. The symmetric case

For the symmetric polynomial potentials
M

V(x)= lV(u =x )= g wku"
k=0

(3.14)

the method of the preceding section is far from being the
most synthetic one because it explicitly includes several
null parameters (I vzk+, j, [az, j, Isz~+, j, etc.). The
more appropriate discussion of the modified Ricatti ap-
proach for symmetric potentials in Sec. II applies. For in-
stance, from Eq. (2.20) we immediately realize that

(M —1)/2
G(u) = g A„u "+

k=0 0
(3.15)

In order to avoid unnecessary duplications, we notice
that the previous reasoning remains unaltered by substi-
tuting x ~p, p p, U2k ~~k, g ~2xG, a2k+ &

~2+k,
B ~C„,and so on.

An interesting nontrivial example is the sextic sym-
metric oscillator [M =3 in Eq. (3.14)]. By solving Eqs.
(3.11) or the corresponding mapped equations we obtain

Let us consider the case n = 1, i.e., we are going to look
for eigenfunctions with only one zero in the complex
plane. Having s& =x& and the coefficient v& real, from
Eq. (3.12) x, must be one real solution of Eq. (2.11), in
this case the cubic equation:

a0+a, x, +a2x
& +a3x] 02 3=

Upon the particular values of U3, U4, v5, and v6 we can
obtain (a) one real solution x, and two complex conjugate
roots or (b) three real solutions Ix», xbz, xb3j.

The wave functions and their energies can be immedi-
ately constructed from Eqs. (3.11), (2.14), and (3.7),

a3 = —QU6,

az = —v, /2+U6,

A1 = QW3/2

Ao = —wz/4+w»
(3.16)

a
2
5 2+U6,

(3.1 1)
Notice that in the general formalism a0 =a2 =0 would be
derived from Eqs. (3.11). The only constraint [mapped
from Eqs. (3.12)] becomes

a 0

2
5

2U6 4U6
U4 +U3 2+U6, W1=2(2n +3)A, +4Ao=wz/4w3 —(2n +3)+W3

=W1(Wz, w3jtt ) (3.17)

and the resulting constraints (in the general formalism v, =0 is also a constraint au-
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tomatically satisfied by definition). The quasiexactly solv-
able symmetric sextic potential takes the following com-
pact form:

W(u;n)=w3u(u+W2/2w3) —(2n +3)+W3u . (3.18)

The wave functions and corresponding eigenenergies are

member. Let us denote u i+ (u i ) the positive (negative)
solution in Eqs. (3.22) and (3.23). The first set (p=0) pro-
vides two pure imaginary (conjugate pair) zeros at
x, 2=+i(Iu, )'~, while the second (@=1) provides two
real zeros at xi 2= + (u i+ )'~ . For n =2 we obtain exact
solutions for the ground state and the second excited
state:

4 (u;v) ~ C„(u;v)u exp— W2
Q

41/ w3

QW3
4

(3.19)

fo(x; n =2) ~ (x + lu, I )%(x) ~

$2(x;n =2) o- (x —u,+ )4(x),
In a similar way, for n =3 we obtain exact solutions for
the first and third excited states:

W2 V

E = (n+1/2) +4+W3 g u~
QW3 j=1

(3.20)

lt(ox;n =0) ~exp
W2

0
41/ w3

QW3 u—:4(u),

(3.21)
Fo =wz/2+w»

i.e., for the potential V(x, n =0), only the ground state
has a closed expression.

For n =1 (v=O) there is only one node at the origin,
xi =0 and the wave function g ( ixn =1)~x4(u), corre-
sponds to a first excited state in the potential V(x;n =1)
with energy E, =3W2/2+W3.

For n =2, 3 (v= 1) we explicitly find, after solving Eq.
(2.22),

W2 8W3+w3
+SgnLU2 1 +

4W3 W2

1/2

1, n=2

(3.22)

W2
+sgnw2 1+

4W3

1/224 +W3W3
W 2

—1, n=3

(3.23)

In both cases there are two solution sets with only one

When looking for the zeros of C„(u;v) through the
system of Eqs. (2.22) we find several solution sets. The
pth set, say [u'"'=(x ) =(x„'"+, ); j =1,2, . . . , v], is
characterized by having only a subset of p ~ v positive
roots, i.e., u'"')0 for j =1,2, . . . , p while p'~'&0 for
j=@+1,. . . , v. Associated with each solution set, a
wave function with m =2p+5 nodes (m ~ n) and
n =2v+6 zeros is obtained. From symmetry considera-
tions the nodes of a particular wave function P (x;n),
are located at +[uJ'"']', 1~j ~p, and when n is odd
(5=1) at x =0 also. The remaining (n —m) zeros of the
wave function appear in complex-conjugate pairs on the
imaginary axis at +i

I
u '"'I ', p+ 1 ~j ~ v.

For a fixed value of n, the constraint relation (3.17)
holds, irrespective of the particular solution set con-
sidered; then we are left with a family of eigenfunctions
and corresponding eigenenergies of the Hamiltonian
whose potential is defined by Eq. (3.18). Let us write out
these results for the first n values.

For n =0 (v=0) we have simply

q, ( x;n =3)~x(x'+ lu, I)+(x),
p (3x; n=3) o-x(x —u,+ )4'(x) .

For large values of n, it is no longer easy to solve Eqs.
(2.22) for the zeros [u'"'J of the polynomial C (u;v).
Instead, one can obtain the coeScients of these polynomi-
als by solving the system of Eqs. (B9) which has v+1 in-
dependent solution sets: [ck"'J, p=0, 1, . . . , v. From
the v+ 1 eigenfunctions can be constructed, with
m =n,, n —2, . . . , 5 nodes in the x real axis. The corre-
sponding eigenenergies are readily obtained through Eq.
(3.20) by noticing that g,u'"'= —c'"', .

Another purely algebraic procedure has been recently
developed in Ref. 11, that seems to be more adequate for
computational purposes (see Appendix B).

IV. INVERSE POWER POTENTIALS (L +0,M =0)
Now we consider potentials of the form

0
V(x) = g u, x',

j=—2L

with u, &0 (this excludes the possibility of analyzing
symmetric potentials), u 2

~ —
—,
' and the remaining cou-

pling constants [ui I ensuring the existence of bound
states. This form is suitable to model atomic and molecu-
lar potentials.

From Eqs. (2.13) and (2.14) we have
0

g(x) = g ai, x (4.2)
k= —L

(4.1)

a ak
it(x) ~x 'exp g x"+'

0+1
kW —1

From the requirement that g(x) be square integrable it
follows that a ~ &0 when L ) 1 and a, ) —

—,
' when

L =1. From Eqs. (2.10) and (4.2)
—1

F (x;n)= g fk x", (4.4)
k= —L

where the coefficients fk are derived in Appendix A:

(4.3)

fk=—
k

aqSq k 1

q= —L
k= —L, —L+1, . . . ,

—1 .

(4.5)

Inserting Eqs. (4.4), (4.5), and (4.2) in the modified Ricatti
equation (2.9) we obtain the following relations between
the coefficients [ai, ] and [ uk I:
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k+L
ajQk —j&j=—L

—2L~k~ —L —2 (4.6a)

—1

v, ~
——La—t. + ga, a

j=—L

k= —L —1 (4.6b)

k 0—2 g a~s~ k, +(k+1)ak+, + g ajak
q= —L j=k

—L&k~ —1. (4.6c)

for k= —1, —2, . . . , —2L.
In order to have a unified description we define

fk —=0. The wave function and the energy are given by

(x;n) ~B (x;n)x ' exp

nv

2(n +a, )

which substituted in Eq. (4.10) gives

(4.12)

Thus, summing (4.11) over the index j and taking into ac-
count Eqs. (4.5) and g,". ,y„=0we have

E = —a 2
m 0

(4.7) Q0=
2(n +a, )

(4.13)

a, =
—,'+Q(1/4)+v 2=A+ I (4.8)

so they are completely specified by the L +1 coefficients

I ak ] L k p. The index m (the radial quantum number)
denotes the number of zeros of the wave function in the
0 (Re(x) ( ~.

The Eqs. (4.6a) —(4.6c) contain both the consistency re-
lations and the definitions of the Iak[ in terms of the

tv J. The systematic procedure to obtain exact eigen-
functions when the potential is given by Eq. (4.1) can
be implemented as follows. From Eqs. (4.6a) and (4.6b)
(for k = L, L+—1, . . .—, —1) it is possible to
obtain the coefficients ak as a function of
tv 2L, V 2L+„.. . , v L+k j. The cases L =1 or L) 1

require slightly different approaches:
For L =1 we must have v &=A, (A, +I)) —

~ and

adopting X) —
—,
' we get

In this way both f and the energy
2

U

2[n +a, (Ivk ] )]
(4.14)

are completely specified by L + 1 of the couplings vk and
and by n. For the remaining polynomial factor B (x;n)
the discussion of Sec. II applies.

For L ) 1 different solutions for B (x;n) do not neces-
sarily correspond to the same potential, as the remaining
L —1 couplings are subject to the constraints given by
Eq. (4.6c) that depend on each particular solution.

Through some simple examples we will now show how
this approach works and briefly quote the results ob-
tained for the cases L = 1, 2, and 3.

a. Coulomb Eratzer type -potenti-al (L = 1). The
Coulomb-Kratzner potential is given by

and the other root, a 1=—k, leads to a wave function
that does not satisfy the Schrodinger equation.

On the other hand, when L ) 1 we have
A,(k+ 1)

x
2Z

xag
(4.15)

Q L
= U

Qk=
2Q j = —L+1

L
j k —L —j +

2
~ —1, k

k= —L+1,—L+2, . . . , —1 . (4.9)

where X is not necessarily an integer and az =2/e is the
Bohr-radius-like parameter. In this case there are no
consistency conditions, and we are confronted with a tru-
ly solvable potential, i.e., all the levels are expressible in
closed form. From Eqs. (4.8) and (4.13)

1a0=
2a

V
1 2f i (4.10)

The coefficient ao is defined through Eq. (4.6c) with
k = —1.

a 1=A,+1,
Za0=

aii(n +X+ I)

This leads to the well-known result

(4.16)

In order to write g(x) and the energy E„ in terms of
the coupling constants I vk I, it seems that we first need to
obtain f" i(Ix. ] . i 2 „). However, after Eq. (4.10),
the set of Eqs. (2.11) that define the nodes can be rewrit-
ten as

P„ i(x) =B„(x)x +'exp
as n +X+ I

(4.17)
Z2

E, ~=-
a~(n +A, + 1)

a„x,"+
I 2Q

J=1, . . . , n . (4.11)
where, for example, the nodes for n = 1,2 are located at



1176 L. D. SALEM AND R. MONTEMAYOR 43

x, =(k+1)(A,+2)a~/Z, n =1 (4.18)

xi 2=(2A, +3+&2K,+3)(n +A, +1)as/(2Z), n =2

(4.19)

b. L =2. The potential

V 4 V 3 V

V(x)= + + +
2p x x x

(4.20)

with U 4 & 0 models a repulsive interaction at short dis-
tances. As before we assume that the remaining coupling
constants [ vz j are such that the potential admits bound
states. For it we get

(1+v 3/2+v 4)
X =X

V. FINITE LAURENT-TYPE POTENTIALS
(L%0,MAO)

k+L
a ak

j=—L

—2L (k( —L —2 (5.1a)

For the general potential considered in Eq. (2.12) only
some minor modifications need to be addressed. With
respect to the range of the coupling constants of the po-
tential the considerations made in the previous sections
apply. The only significant difference is that the max-
imum power M in the potential is not restricted to be odd
as the wave function (2.14) is normalizable in any case.

Proceeding as before the relations between the
coefficients [ak j and [vk j now read

1X exp
2(n + 1+v 3/2+v 4)

QV 4

(4.21)

C

2f,"+( k + 1)a, +, +
min(L + k, M)

a ak
j= —min(L, M —k)

—
1

La L—+ g a a I i J, k= L ——1 (5.lb)
j=—L

U

2(n +1+v 3/2+v 4)

2 —L (k(M —1

M

a, ak, M(k (2M
j=k —M

(5.1c)

(5.1d)

when the coupling are related by the constraint

V 1 U 4
V

(n +1+v 3/2+v 4)

2+V 4S

U U

+ 1+
2+v 4 2+v 4

(4.22)

for k&0. In these equations fk is the coefficient of the
finite Laurent expansion of F (x; n ) defined through Eqs.
(2.10):

c. L =3.

g2
V(x) =

2p

Finally for the potential

V 6 U 5 U 4 U 3 U6+ S+ 4+ 3+ 2+
X X X X X

V

(4.23)

M —1

F (x;n)= g fkx",
k= —L

(5.2)

with the coefficients fk defined in Eq. (3.1) for k &0 and
in Eq. (4.5) for k (0.

Finally the wave function and its energy are given by

with v 6)0 we get

a V 1 V

itj(x) =x 'exp
2(n +a, )

Qv 6 1

2 X2

(x;n) =B (x;n)x 'exp

E = — 2[n +X+3/2]a, +
min(L, M)

j = —min(L, M)
j&1

aja

M
k k+1

k+1
kW —1

(5.3)

U

2(n +a, )

2 (4.24)
M —1

+2 g a +is
m =1

U V

v &=a,(a, —1)+ —s
Qv 2 n+a

U 6S 27 (4.25)

—5 V

v 3
= (a, —1)+Qv

Qv n+a 2s

with a& =
—,'+(v 4

—v ~/4V 6)/2+v 6, while the con-
sistency relations for the potential to be solvable are
given by

As before, the polynomial factor B (x;n) can be deter-
mined from the knowledge of the coe%cients
[ak j I «(I and thus both the wave function and its
energy are now completely specified by L +M+1 free
parameters. The systematic procedure can also be adapt-
ed for this case as follows. From Eqs. (5.1a) and (5.1b) it
is possible to obtain the coefficients ak for k = —I,

L+1, . . . , —1, i—n terms of [v 21, v zl +, , . . . ,
v I +k j and from Eq. (5.1d) the coefficients a& for
k =0, 1, . . . , M, in terms of [v~M, v~M i, . . . , vM+I j.
The relations are the same as those given in Eqs. (3.9) and
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Eq. (4.8) for L = 1 or Eq. (4.9) for L ) 1.
The discussion of Sec. II applies to the polynomial fac-

tor B (x;n). As before different solutions for B (x;n)
do not necessarily correspond to the same potential, as

I

the remaining M+I. —1 couplings are subject to the
constraints given by Eq. (5.1c) that depend on each par-
ticular solution

. gn&
Uk Uk(v 2L)v 2L+I )' ' . ) V ])UM)VM+1) ' ' t U2M J)k txj & )t n' I ) )I 1 (5.4)

As an illustration of the method we explicitly give the
nodeless function f(x), the energy E„,and the consisten-
cy relations between the coupling constants for the
Coulomb-like potential plus polynomial terms up to the
sixth (L =1 and M = 1,2, 3), e.g,

for M =2

g(x) =x +'exp U3 /4V4 U2 V3 QU4
2

X X X
2+U4 4+v,

)
A, (A, +1)

X 2 X k=1

After some elementary algebra we obtain, for M = 1,

(5.5) E = (n +A, +3/2)
QU4

2+v4 s)

U
2
3

U2
4U4 4U4

2

E„= 2(n+A, +3/2)+U2—
U2

1

u, = —(A, + I)
V1

+2$
U2

lt(x) =x exp — x—1 1 2

2+U2

(5.6)

V2 $

V3
U =

U1 2 2
U4

V
2
3

4U4
—2(n +A, +2)+U4,

for M =3,

r

u
&
=2()I + I) V3

2+v 4v4

(5.7)

P(x)=x +'exp
2
5Vs

2+U6 2v6 4u6

1 V5—
U4 +U3 X+

4+U 4v6
V4 X 2 VS V6

X X
6+U6

2
v4 —v 5 /4U6E„= (n +A, +3 /)2

QU6

2
1 vs vs

4v6 2U6 4V6

Us
U4 +v3 + s) +21/ v6 $2

QU6
2

1 v5 U5u, = —2(A, + I) .
2U6 4U6

V4 +U3 +S—1
(5.8)

V 1

1 vs
U4

2U6 4v6

2
5

4V6

Us Us
v4 +U3 —(n +A, +2) —21/ U6 s&

2U6 QV6

(v5/4v6 U4) Us
U2= +

2U6

2
Vs Vs

2U6 4v6
—v„+u3 —(2n +2k, +5)+v6 .

A,(k+ I )

X

U
2+V1X +U2X

X
(5.9)

From Eqs. (5.6)—(5.8) it is immediately possible to state
the consistency relations, energy, and wave function for
the ground states. From a formal point of view there is
no problem to continue with the excited states, but in
general they involve rather cumbersome algebraic (and
sometimes numerical) manipulations in order to find ex-
plicitly the nodes by solving Eq. (2.11). For the sake of
brevity we explicitly show only the solution for the first
excited state in the case M =I = 1, e.g.,

For n = 1 Eq. (2.11) yields two solutions

4V2

A+1
QU2

U1

4V2
(5.10)

being x, )0 (inside the physical domain) and x
&

& 0
(outside the physical domain). Recalling the discussion in
Sec. II we obtain two wave functions 1'+�(x)

&( xn =1) and l( (x)—=p ( onx=1) with one
and zero nodes, respectively, both with the same eigen-
value E
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g
—(x)~x +'(x —x —, )exp — x — x~

2

2
U]E= 2(A, +5/2)+vz-

4U2

(5.11)

They are eigenfunctions of the Hamiltonians II—with the
potentials V—given by Eq. (5.9) having their "charge"
parameter fixed to the value

(5.12)

For the symmetric Laurent-type potentials, the map-
ping considered in Sec. III 8 lets us recover the discus-
sion above with minor modifications. As an illustration
we quote some interesting results which can be derived
for the 3D version of the anharmonic sextic polynomial
oscillator'

VI. GENERALIZATION OF THE MODIFIED
RICATTI APPROACH

The modified Ricatti approach can be also suitable for
looking at a more general class of potentials as was anti-
cipated in Sec. II. There we considered the transforma-
tion u =x when W(u) is an even finite Laurent series in
u. This particular case leads to a large family of partially
solvable potentials having as a particular exactly solvable
member the harmonic oscillator (1D and 3D). We also
found the very interesting quasiexactly solvable potential:
the 1D and 3D sextic symmetric anharmonic polynomial
oscillator.

In this section we investigate the occurrence of partial
and quasiexact solubility in families related to already
known exactly solvable potentials. The latter are particu-
lar cases in the broader context of the partial solubility
analysis.

Suppose that the potential is regular almost every-
where and can be written as some simple function of
u (x), say V(x) = W(u). Proceeding as before it is natu-
ral to write the wave functions as

A, (A. + I )W(u)= +w, u+wzu +w3u (5.13) (x;n ) =4'„(u; v ) (6.1)

The coefficients Ao= —w2/4+w3 and g, = —Qw3/2
coincide with those derived in the 1D case, while
2A I =5=k+1 should be considered. Notice that p is
now the radial quantum number, equal to the number of
nodes in the physical domain Re(x) )0 which at most
can be equal to v. Then, the 3D results are easily ob-

tained by the substitutions n~2v+k+1 in the 1D ex-

pressions derived in Sec. III 8 (here m and n have no

physical meaning). The only constraint for the potential
to be quasiexactly solvable now reads

w, =2(4v+2A, +5)A, +430

The indexes p and v are related to the number of zeros of
the wave functions (except those at the boundaries) in
the x and u complex plane. For instance, if u =x,
v=[n/2] and p, =[m/2]. According to (6.1), the loga-
rithmic derivative of the wave function is

g (x;n)= [In+„(u;v)]—: G„(u;v) .du d (6.2)

The replacement of Eq. (6.2) in Eq. (2.4) modifies the
Ricatti equation to

a(u)[G (u;v)+G„(u;v)]+P(u)G„(u;v)= W(u) E—
=w2/4w3 —(4v+2A, +5)+w3, v=0, 1, . . .

and the eigenfunctions and eigenvalues read

(5.14)
where a(u) = [(u'(x)], p(u) =u "(x), and the dot denotes
the derivative with respect to u. Decomposing as before
G„(u;v) in its regular almost everywhere and singular
components

G„(u;v)=G(u)+ g 1

~ Iu uj
(6.4)

X exp
41/ w,

Qw3
(5.15)

and replacing this expression in Eq. (6.3) the generalized
modified Ricatti equation results:

a(u)[G (u)+ G(u) ]+P(u)G(u)+24&„(u; v)

E„i = (2v+A, +3/2)
where it is easy to derive

= W(u) E, (6.5)—

For the remaining polynomial factor C (u; v), the discus-
sion in Appendix 8 applies (see also Sec. III B for general
considerations).

In conclusion, for the 3D symmetric sextic anharmonic
polynomial oscillator given by Eq. (5.13) and subject to
the constraint relation (5.14), the first v+ 1 eigenfunctions
and the corresponding energies can be obtained by purely
algebraic methods.

a(u)[G(u) —I, ~
]+P(u)/2

4„(u;v)= g
j=1 u uj

(6.6)

and I ~=—gk, k~. (uk —uj) ' for j=1,2, . . . , n, to-
gether with I p p: I i o:0and @o(x,0) =—0.

Provided that W(u), a(u), and p(u) are regular almost
everywhere, the left-hand side of Eq. (6.6) must also be
regular in the same domain. Therefore we have
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TABLE I. The mapping u (x) for some exactly solvable potentials V'(x) = 8"(u) together with the corresponding regular function
G '(u) [see Eq. (6.4)].

Potential

1D harmonic oscillator

V'(x)

X

4

u (x) G '(u)

6 1

2u 2

3D harmonic oscillator
x A(A+1)
4 X2

u A, (A, + 1)
4 u

1+1 1

2u 2

Morse o2(e —2 2e &) e X o. (u —2u) o —v —1/2
CT

u

Poschl- Teller

Modified Poschl- Teller

g(g —1) x](g—1)
sin x cos x

g(g' —1) q1q+ 1)
sinh x cosh'x

sIn x

sinh x

g(g —1) g1q —1)
u 1 —u

g'(g —1) 7)1q+ 1)
u 1+u

2Q 2(1 —0)

n
2u 2(1+u)

G(u)+ =I, j=l, . . . , v.
u=u.j

(6.7)

q6(u)=6'(u)+ g A; +(u —;)'—=G'(u)+5G, (6.8)

where j=(j„.. . , j~ ).
A detailed analysis of these families, which closely

resembles the discussion of the previous sections, will be
given elsewhere. ' From Eq. (6.8) it is immediate to see
that the candidates for partial solvability will be of the
form

W(u) = 8"(u)+a(u) 2G'5G+(5G) + (56)
du

+P(u)56 . (6.9)

With the particular choice u =x and u =x, Eqs.
(6.1)—(6.9) are consistent with the formalism developed in
the previous sections.

Our restrictions to almost regular potentials considered
here can be removed leading to minor modifications of
the formalism. For example, by redefining the concept of
regularity almost everywhere in order to include as excep-

If a(u) is a polynomial in u with their zeros at Iz;],
i.e. , a(u) ~ Q, , (u

—z, ), we can apply the considera-
tions of Sec. IIA. It is clear that the generalized Ricatti
equation (6.5) is well suited provided that both the poten-
tial 8 (u) and P(u)/a(u)= —(d/du) [ln(dx/du)] can be
written as finite Laurent-like-series potentials in the vari-
ables [u —z, , i =1, . . . , q]. '

Certainly, for some of the well-known exactly solv-
able potentials V'(x), a transformation u(x) with the
desired properties is available. In Table I we explicitly
show the proper choice u(x), and the resulting W'(u)
and G '(u).

In order to construct a family of new partially solvable
potentials we will consider the addition of regular almost
everywhere terms to the solvable 6 '(u), i.e.,

tional points the singularities of the potential, we are able
to generate partially solvable potentials associated with
the Rosen-Morse and Manning-Eckart ones. '

VII. FINAL REMARKS

We have developed a systematic procedure to study the
problem of partial solubility in quantum mechanics for a
large class of potentials. The method is based on isolat-
ing the singularities of the logarithmic derivative of the
wave function. We have shown that the regular com-
ponent g(x) characterizes univocally the solvable sub-
space, fixes the position of the zeros of the wave function,
and satisfies a modified Ricatti equation [see Eq. (2.9)]
which, for a very wide class of potentials, is simpler to
solve than the corresponding one for g (x). The regular-
ity (almost everywhere) of the function g(x) is the key to
determine its functional form. This gives a great general-
ity to the approach here presented, providing a unifying
scope for the several partially solvable systems discussed
in the literature. In that sense we have shown the
efFectiveness of the scheme in finding exact solutions for
both general and symmetric finite Laurent-type potentials
in the 1D and 3D cases. This includes the anharmonic
polynomial oscillators, the Coulomb-like plus polynomial
terms, and the Lennard-Jones-type potentials.

By means of an adequate transformation x~u, we
generalized the method providing a constructive scheme
to generate new families of partially solvable potentials,
associated with the well-known exactly solvable ones. A
detailed analysis is planned to be developed elsewhere. '

For simplicity we have only outlined the skeleton of
the method, and restricted ourselves to those g (x;n)
with only simple poles outside the physical domain and
potentials regular almost everywhere. The removal of
these conditions enlarges the class of Hamiltonians on
which partial solubility can be investigated. We plan to
present the corresponding results elsewhere. '

Lastly, we want to remark that the problem of exact
solubility arises as a very particular case of partial solu-
bility and thus we have given an alternative perspective
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to the Infeld and Hull approach.
The possibilities of the method are far from being ex-

hausted and we mention now two of them. The first in-
volves the construction of the isospectral supersymmetric
partner of the already found partially solvable potentials,
through the factorization approach. ' The second one
consists in using the results so far obtained to obtain
better approximations to unsolvable problems through
perturbation theory as well as by semiclassical
methods. '

M —1 M n

F (x;n)= g g g p" j+I(x )
k= —L m =k+1 j=l

(AS)

According to this, the coefficients fk can be written

M n

fk= $ $ pj+I x " ', L—k M —1 (A9)
m =k+1 j=1

and using Eq. (A4) we finally get
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fn—
—L~k~ —1

m= —L

M n

a g (x) ', O~k(M —1

m =k+1 j=1
k n

a g (x. )

(A10)

APPENDIX A

In this appendix we will derive explicitly the expression
for F (x;n) as defined through Eqs. (2.10), for the func-
tional form of g(x) discussed in Sec. IV (the case of Sec.
III is implicitly considered by making L =0). Let us
write

(M —1)/2
4(uv)= g qrku",

k = —(L+1)/2
(Al 1)

as assessed in Eqs. (3.2) and (4.5).
Similarly, for the symmetric situation, V(x)

= W(u =x ), and from Eqs. (2.21) and (2.23) it is possi-
ble to obtain

M M+L
g(x)= g a x =x g a Ix

and introduce the auxiliary polynomials

(Al)
where the coeKcients yk are given by

(M+1)/2
4 g A g (u ) ", 0~k~(M —I)/2

M+L
P„(x)=x [g(x) g(xj)]= —g p"'jx

such that

P„(x)
F„(x;n) =x

X Xj

(A2)

(A3)

4
k —1

m = —(L+1)/2

APPENDIX B

(A12)

From Eqs. (2.10) and (2.11) it follows that

p" j=a ~
—g(x )5 I, O~m ~M+L . (A4)

In order to evaluate the quotient in Eq. (A3) we expand
P„j(x)around x =x, yielding

The set of coupled Eq. (2.11) can be difficult to solve
for n ~ 2. In an application of the method it could be use-
ful to have an alternative route to solve the posed prob-
lem: Instead of looking for the nodes Ixj I we can try to
solve for the coefficients Ibk I defined by

M+L —1

P„(x)=
1=0

M+L
n,j n —1 —1

1+ I P-'
m =I+1

8 (x;n)= g (x —x.)= g bkx" .
j=1 k=0

(Bl)

X(x —x )'+' (A5)

where we have used P„(x )=0. If we now expand
(x —x )' and make use of the identity 1)n —k x,x, x, =b„(Ix I),

These coeScients are related to appropriate sums over all
the possible products of n —k distinct nodes x, i.e.,

1)l —k 1 m+1
1k l+1 (A6) 0 ~ k ~ n —1 (B2)

we obtain

L+M —1

P„j(x)=(x—x )
k=0

L+M
pn, jXm —k —i k

m =k+1

In our approach to solubility, the constraints and the
energy both require the knowledge of the fk, which ac-
cording to Eq. (A10) depend on the sums

and therefore from Eq. (A3)
s—:g (xj), m = L, , M —1. —

j=1
(B3)
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The relations between s and [b~ j are explicitly given
in Ref. 32 so it is always possible to write fk =fI", ( I b j)..
Thus the Ib j together with the function g(x) specify
completely the wave function, its energy and consistency
relations to attain solubility.

By replacing both Eq. (2.7) and Eq. (2.9) in the
Schrodinger Eq. (2.3) the following differential equation is
obtained for the polynomial B ( x;n) (we omit the in-
dices m and n):

B"(x)+2B'(x)g(x) 2F„(—x)B (x)=0 . (84}

' (k +1)(k +2
2 bk+2, 0(k (n —2

(85)

i.e., a set of nonlinear equations for the coefficients I b j
equivalent to the system of Eqs. (2.11) for the Ixj. j

For the symmetric situation considered in Sec. IIB,
i.e., with the mapping u =x, and B (x, n)=C„(u, v)x,
we obtain, as a generalization of Eq. (84), the following
differential equation for the polynomial
C„(u;v) =g& ock"'u (omitting indices p, v):

4uC+ [SuG(u)+2]C —@„(u;v)C=0 . (86)

The replacement of Eqs. (2.23) and (Al 1) into (86) would
lead to a set of equations similar to (85), i.e., a three-term
recursion relation for the ck's whose coefBcients depend
on Icpl, j and I A j. This system would be in general
nonlinear as the coefficients yk [see Eq. (A11)] also de-
pend on the unknowns {ckj, i.e., yk=yk(Io j) whereo—:g". , (u, ) and through them yk =yk( I ck j ).
Thus, if C(u) is a polynomial solution of Eq. (86), KC(u)
with K an arbitrary constant is not.

Here we will quote the results only for the interesting
situations

For the harmonic oscillator in its 1D (3D) version, i.e.,
L =0 (1), M =1 and 8'=clou /4+5(5 —1)/u, we obtain
G(u)=5/2u+ Ao with Ao= —co/4 and 5=n —2v if
L =0 or 5=A, +1 if L =1. From Eq. (All) results
4&„(u;v)=4Aov, independent of the position of the
nodes, so we are confronted with an exactly solvable po-
tential. In effect, after changing variables to
y = —2 Aou =clou /2, Eq. (86) reduces to the linear
Kummer's differential equation:

For the particular potentials considered in Secs. II—IV
we assume for g(x) a finite Laurent series [see Eq. (4.2)];
thus by equating to zero the coefficients of the different
powers in x in Eq. (84) we obtain

min I M —1,k I minI M, k If"5k —. g (@+1—l)a~bk
j =maxI —L, k —n I j=maxI —L,k+1 —n I

d C dC
y 2 +(5+1/2 —y) +vC=O .

dy
(87)

As C(u) is a polynomial with c =1, only the regular
solution should be considered resulting in
C (u;v)=( —1) v!L ' (eau/2) where L„(y) denotes
the generalized Laguerre polynomial.

The symmetric sextic polynomial oscillator in its 1D
(3D) version corresponds to L =0 (1) and M =3. When
the couplings are subject to the constraint (3.17), we ob-
tain G(u) =5/2u + A 0+ A i u, with Ao and A, given in
(3.16) and 5=n —2v if L =0 or 5=A, +1 if L =1. Now
4„(u;v}=(4Aov—4A, cr r)+(4Aiv)u, where we have
used g". ,u

= —c, , Now Eq. (86) reduces to

—C+ [u( Ao+ A, u )+5/2+1/4]C

—,'(5+ k+ 1/2)(k+ 1)ck+, + [ A,c,—A 0(v —k)]ck

+(k —v —l)ck, =0, k=O, . . . , v+1 . (89)

With c +2=c +, =0 as the initial condition, Eqs. (89)
can be backwards recurred. For k =v, (89) reads
A,c,(c —1)=0, which for a nontrivial solution re-
quires e = 1. For k =v —1 we can write e 2 as a quad-
ratic function of c &. In general, from the kth relation
it is possible to obtain c k, as a polynomial of degree
k + 1 in e, . Thus the k =0 relation reads

—,'(5+1/2)ei(c„ i)+(A, c~ i
—Aov)co(c, , )

=P(c, , )=0,
where P(c,) is a polynomial of degree v+ 1. The v+ 1

roots of I' will give place to v+1 eigenfunctions and their
corresponding eigenenergies [see Eq. (3.20}].

An alternative algorithm (more adequate from the
computational point of view) to solve Eq. (86) has been
recently developed" for the 1D case (L =0) with arbi-
trary M. However, the usefulness of such an approach is
apparent for M =3. The scheme can be easily extended
to cope with the 3D case (L = 1) with minor
modifications. ' Closely following Ref. 11, the unknown
polynomial C(u) can be expanded in a basis of general-
ized polynomials, i.e., C ( u ) =g k qk Q1, ( u ), where Qk ( u )
are defined through a Rodrigues-like formula. When the
constraint relation (3.17) holds, the first v+1 coefficients
of such an expansion satisfy a system of linear equations
and the determinant of the associated matrix coefficients
vanishes. Consequently the system has v+ 1 distinct
solutions.

—
( Aov —A,c,+ A, vu )C=O, (88)

clearly nonlinear in the coeKcients ck. Grouping equal
powers in u the following three-term recursion relation is
obtained:
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