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Maximization of vortex entropy as an organizing principle in intermittent,
decaying, two-dimensional turbulence

Ralph A. Smith
Department of Physics, 8-019, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0319

(Received 17 August 1990)

The statistical mechanics of a discrete-vortex system is considered in a coarse-grained sense, as
a model for relaxation of two-dimensional turbulence at very large Reynolds numbers. The impli-

cations are qualitatively consistent with observations from recent numerical simulations of decay-
ing homogeneous turbulence.

Attempts to apply methods of statistical thermodynam-
ics to turbulent flows have usually been based on wave
number decomposition of an Eulerian velocity field. ' In-
termittency, which involves spatially localized phenomena
and hence phase correlations, is notoriously difficult to
treat in this way. An essential feature of turbulence is the
randomization of positions of fluid elements, in the sense
of increasing configuration entropy. In two-dimensional
(2D) flow at very large Reynolds number, the total energy
and the circulation of each fluid element are nearly con-
served quantities. Accordingly, Onsager based an alter-
native statistical approach on an idealization of Lagrang-
ian fluid elements as point vortices. Montgomery em-
ployed this approach to describe time-averaged properties
of early numerical simulations of 2D turbulence, without
reference to intermittency. In recent years, direct numeri-
cal simulation has been applied to decaying, incompressi-
ble, 2D turbulence obeying Navier-Stokes and related
equations of motion at higher resolution and over longer
time intervals; the results furnish detailed information
about the localized vortex structures which embody inter-
mittent behavior. I will show that discrete-vortex statis-
tics, when extended to incorporate time dependence, can
account for several of the features observed in such simu-
lations, namely the presence and predominant form of ed-
dies, and some gross features of the structure function or
energy spectrum. I extend earlier research (e.g. , Refs. 9
and 10) by emphasizing fundamentally thermodynamic
aspects of the evolution.

The vorticity evolves according to the Navier-Stokes
equation

N +v Vco = vV co .

The velocity is given by v = —x8,, Vt+y8, y, where the
stream function y satisfies V y= —co with appropriate
boundary conditions. My objective is an approximate
description of decaying turbulence (i.e., small v) after ini-
tial transients but before asymptotic viscous decay. The
energy E = —,

' fd rcoy and the absolute circulation I,, b,=fd recto~ will be regarded as constants. The precise
form of dissipation terms acting on small scales is not cru-
cial for intermediate and large-scale behavior, so many of
the following arguments apply to generalizations of Eq.
(1).'

The idea of maximizing entropy subject to a few conser-

vation laws may be compared to a selective decay hy-
pothesis, ' " which represents turbulent dynamics as
minimizing a more rapidly decaying quantity (enstrophy,
say) while nearly preserving others (energy). Such ap-
proaches lead to variational schemes which predict the
typical forms of eddies and energy spectra. Applications
of selective decay hypotheses suffer from the conceptual
flaw that the choice of important dissipated functionals of
vorticity is somewhat artificial. ' One might regard the
conservation of circulation of small fluid elements as an
approximation to the conservation of all integrated func-
tions of vorticity, which obtains in the nondissipative limit.
While the circulations of fluid elements change only very
slowly (provided there is little structure on the smallest
spatial scales), dissipative effects or coarse-graining are
more effective in breaking the severe topological con-
straints of ideal Euler flow. The time scale for the decay
of the energy is prolonged by the tendency for energy to
collect at large spatial scales in 2D turbulence. ' ' The
constrained randomization hypothesis leads us to study
the statistics of the phase space for fluid elements.

Turbulent flow is accordingly modeled by a collection of
discrete vortices, which idealize Lagrangian fluid ele-
ments. ' Recent mathematical studies and numerical ap-
plications show that many-vortex dynamics approximates
continuous fluid flow under a variety of conditions. ' In
such models, viscosity acts as a random force on the ele-
ments. ' In the continuous fluid, viscosity imposes a
minimum contributing scale size, such as l„=(v/supco) '1,
the diffusion length for the eddy turnover period at the
maximum realized vorticity. ' Thus a small viscosity
avoids some delicate questions associated with the contin-
uum limit of Euler flow. To the extent that viscosity is
weak but nonvanishing, the vortex system may plausibly
be modeled by a Hamiltonian system with many degrees
of freedom but few constants of the motion, so that an er-
godic hypothesis is a natural starting point. Let us further
approximate the dynamics by replacing the vorticity dis-
tribution by a collection of point vortices. Following On-
sager, I assume that the flow tends to ergodize the distri-
bution of vorticity elements over the energy shell in their
phase space, canonical coordinates for which are just the
spatial coordinates of the elements. This point-vortex
system is the microscopic basis for a coarse-grained
description, which should approximate the behavior of a
continuous fluid with vorticity smoothed over a coarse-
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graining length a ~ I,.
Let the coarse-grained densities of elementary vortices

of circulations y and —
y be p+ and p, respectively.

Consider the most probable densities, as described by
Joyce and Montgomery. ' The statistical weight of a
given configuration is just the phase-space area, which is
proportional to the exponential of an entropy approximat-
ed by S[pt = —fd rp+in(p+a )+p-ln(p a ). The
problem of spatial degeneracy for an incompressible fluid
has been circumvented by the point-particle idealization.
For definiteness, I consider decaying turbulence in a
periodic domain of size L xL. The system is isolated, so a
microcanonical ensemble is appropriate (at least if a is
comparable to l,). Hence the mean-field equilibria
[p+,p —t are obtained by maximizing S subject to the con-
straints of specified energy F. and signed circulations
N= fd rp~. For present purposes it is convenient to
normalize time so that y=1.

The Euler-Lagrange equations satisfied by rnaximum-
entropy configurations are lnp+ =@~ T-Py, where p~
and P are Lagrange multipliers (P is formally an inverse
temperature). Such equations ignore statistical Auctua-
tions, so I will refer to them as "mean-field equations. "
Requiring that the total circulation vanish (in accordance
with periodic boundary conditions) leads to the equilibri-
um vorticity co = —2e" sinhPy [the sinh-Poisson equation
(SPE)). ' Level curves of vorticity and stream function
coincide for solutions of the SPE, so they represent steady
flows. There are multiple solutions for positive energies;
these have been studied in Refs. 21-25. The structure
and classification of the solution branches depends on the
geometry. In cases with symmetry, there are typically bi-
furcations among stationary-entropy states at negative
values of P, some of which may be interpreted as phase
transitions. In the periodic domain, the SPE has the
trivial solution co =0 at any value of P, but vortical struc-
ture or nonzero mean-field energy requires that P &0.
The maximum-entropy solution consists of two eddies of
opposite circulation. Other solutions (vortex-core lat-
tices) are saddle points of the entropy, which have previ-
ously been dismissed as thermodynamically irrelevant.
However, these may locally approximate the transient
states arising as entropy increases from an arbitrary initial
condition, since local rearrangement of Auid elements is
more rapid than global relaxation. Global entropy max-
imization predicts that long-time averages (stationary sta-
tistical equilibrium) would be dominated overwhelmingly
by the two-eddy configurations. They would be stationary
in the field of their periodic images, but drift because of
residual Auctuations. Of course, this prediction ignores
the eff'ects of viscosity on the time scales necessary to
reach such a state; the eddies themselves will decay slowly
to diAerent forms. The latter decay occurs on time
scales beyond the reach of high-Reynolds-number simula-
tions. It is more relevant for the present discussion that
the entropy maximum may be inaccessible for dynamical
reasons, as discussed below.

It is illustrative to consider the typical form of an
intermediate-scale eddy using a Gibbsian approach and a
simple dynamical argument. The simplest such coherent
structure in this context is a distribution co(r) of a subset

of the vorticity elements, dominated by those of one sign
and localized in a part of the domain. Boundary condi-
tions corresponding to the (slowly varying) potential Aow
due to other, distant vortices are to be imposed far from
the vortex core. First let us consider axisymmetric Dirich-
let boundary conditions, which impose another constraint,
conservation of angular impulse (essentially the canonical
angular momentum) M=fd rr co, where r is the dis-
tance from the center of the structure. In the limit that no
elements of the other sign are present, the corresponding
mean-field equation is co=exp[ —P(y+ Qr )+c], where
the inverse temperature P, the rotation frequency Q of an
equilibrium frame, and the normalization constant c arise
as Lagrange rnultipliers.

Now let the axisymmetric boundary conditions be per-
turbed by a weak multipole field which varies slowly com-
pared with an eddy-turnover time; this rnediates an ex-
change of angular momentum, which is the dominant in-
teraction with distant regions. (Energy, which is dominat-
ed by the self-energies of eddies, relaxes much more slow-
ly. ) To be consistent with the prescribed vanishing total
circulation these interactions drive each vortex towards a
state with 0 =0. There is an exact solution to the
mean-field theory in this case—the squared-Lorentzian
vortex (SLV): co(r) =coo[1+(rll) 1 . These struc-
tures are described entirely in terms of an amplitude and a
characteristic scale length l determined by the tempera-
ture. The Fourier transform is r3(k) cx: kK~ (k), where K~
is the modified Bessel function. The contribution to the
energy spectrum from a single SLV is proportional to k
at small k, but exponentially decreasing above a charac-
teristic wave number. The SLV is consistent with the
published plots of many structures seen in numerical ex-
periments.

The SLV approximates the core structures in the most
probable (two-eddy) configurations of discrete vortices at
suSciently large energy. Hence truly ergodic evolution at
large energies would lead to long-time averages with a to-
tal energy spectrum proportional to k ', up to a cutoA'
wave number k —I ' determined by the maximum vorti-
city and the total energy (i.e., independent of viscosity).
This diA'ers from the asymptotic k ' spectrum of abso-
lute equilibrium for wave-number statistics, ' in that
there is no condensation in the lowest wave number; the
nonlinear transfer of energy to large scales is inhibited by
the tendency of vorticity contours to coincide with stream-
lines.

The SLV is only the simplest of a class of maximum-
entropy structures, parameterized by the choice of bound-
ing streamline and the relative concentrations of the two
species. With other boundary conditions, entropy maxim-
ization leads to configurations such as Kelvin-Stuart
cat' s-eyes (a row of vortices in shear Aow). Published
data showing the functional dependence of vorticity on
strearnfunction in long-lived structures seen in experi-
ments and simulations seem qualitatively consistent with
the hyperbolic-sine or exponential profiles which follow
from local entropy maximization in the neutral and
single-sign cases, respectively. In the small-amplitude
limit, circular maximum-entropy vorticity structures are
approximately Bessel-function distributions. ' ' ' Thus the
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(2)

where I" is its circulation, and l is a characteristic radius
measured in units of a system scale L. Its self-energy is

(3)

(E and I are evaluated as integrals over a disk concentric
with the core, with radius L comparable to the system
size; weak dependencies on this radius will be ignored. )
The SLV is assumed to be well localized, so l&(1. Now
suppose two SLV's with parameters l~, I j, j=1,2 collide
to form one with ty, Iy and filaments far from the core.
The central vorticities are equal by assumption, so I ~/l~ is
independent of j. Conservation of core energy is ex-
pressed by E(l~)+E(lz) =E(l~), where E(x) = —x (1
+21nx). If pairwise collisions are the dominant process
(this is more general and more realistic than the hierarchy
postulated in Ref. 7), then the distribution function n(l, t)
obeys

dl'dl" W(l', I";l,r ) —W(l, i";l';r ) . (4)

maximization of entropy generalizes the minimization of
enstrophy to cases exhibiting more sharply localized vorti-
city.

As indicated by Benzi et al. , the later stages of evolu-
tion are probably best described in terms of the dynamics
of distinct vortices. It is interesting to consider the scaling
behavior which follows from a crude kinetic theory based
on modeling these structures as SLV's between collisions.

Let us estimate the parameters which describe an SLV
resulting from the collision of an earlier pair. In such a
merger event, total energy, angular momentum, and gen-
eralized enstrophies are nearly conserved. During the in-
teraction, filaments are produced which typically contain
a small fraction of the total circulation; these can move to
arbitrarily large distances from the center of circulation,
so as to conserve angular momentum without constraining
the form of the remaining core. In the spirit of our
coarse-grained description, the generalized enstrophies
may also be regarded as unconstrained. The dominant
contributions to the energy, on the other hand, are from
the core self-energies before and after the collision. If we
limit our attention to structures significantly larger than
the coarse-graining scale, the maximum vorticity is also
nearly unchanged. For simplicity, let us suppose that all
vortices have the same peak vorticity. (This is consistent
with initial conditions leading to nucleation around nearly
identical, well localized, initial vorticity extrema. )

The SLV vorticity can be written as

to be concentrated on the surface E(x)+E(y) =E(z),
which defines an implicit function Y(x,z). W then
presumably has the form

W(x,y;z;r ) =n(x, r )n(y, r )ave(y —Y(x,z) ),
where o.v is an average product of velocity and cross sec-
tion, which depends on x and y. We can use the charac-
teristic radius and the (nearly constant) rms velocity v to
approximate o v by FL [max(x, y) ] ' . Then

Bn(l, r) =LF dxn (x, t )n [Y(x,l ), t ] [max(x, Y(l, x ) ) l
'

'dt 4o
r 1

Lvn(l, —t) dxn(x, t) [max(x, l)] ' (6)

Dimensional analysis of Eq. (6) suggests that
n(l, t) ~n(l)t, and if production of vortices of size l
from smaller ones predominates over absorption into
larger ones, then a scaling ansatz [n (l ) ~ l"] yields
b = —2, which is consistent with the observations in Ref.
7. The energy spectrum of a single vortex is approximate-
ly A(l)k 'H(l —k ') where H is the heaviside function.
For structures with the same peak vorticity coo, this im-
plies that A(l) = 2rvpl, so that the total contribution to
the energy spectrum from localized vortices is

~ 1/k

E(t,k) = dlA(l)k 'n(t, l) ~ t 'k . (7)

This spectrum is augmented by contributions from
sma!l-amplitude, wavelike fluctuations spread over large
regions. Merger events will produce filamentary struc-
tures which may undergo Kelvin-Helmholtz instabilities
and generate more small vortices (with peak vorticity
diA'ering from cop). Eventually, most of the vorticity will
be contained in a few large vortices. Their arrangement
may be close to a stable inviscid equilibrium, which would
invalidate the ergodic hypothesis. In view of the crude-
ness of this theory and the simplifying assumptions, more
detailed comparison between the underlying ideas and nu-
merical experiments is desirable.

The relaxation process depends on the initial conditions
and on the character of any externally imposed strain
fields or vorticity sources. I assumed above that the dy-
namics can be represented (at least statistically) by the
ergodic interaction of point vortices. This is most plausi-
ble for initial conditions with a structure function (co )q
peaked at very large wave numbers. When the circulation
is more broadly distributed, a better description might be
obtained by generalizing the entropy functional S to treat
the statistics of nonoverlapping fluid elements with arbi-
trary vorticity.

The first term represents formation of eddies of size l from
pairs of smaller ones, the second coalescence with eddies
of any size. The transition rate W(x,y;z;t) is assumed
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