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Negative dimensions in probabilistic fractal measures are analyzed using the concept of level-

independent multiplier distributions. By suitably manipulating these distributions we compute the

positive and negative parts of the f(a) function. It is demonstrated that the multiplier method

extracts the f(a) function with exponentially less work, and that it is more accurate than conven-

tional box-counting methods. The utility of this method is demonstrated by applying it to a

binary cascade with a triangular multiplier distribution and the dissipation field of fully developed

turbulence.

In its present form, the multifractal formalism involves
decomposing fractal measures into interwoven fractal sets
each of which is characterized by its singularity strength.
Examples of such measures are the invariant probability
measure of a dynamical system, the harmonic measure of
a diffusion-limited aggregation (DLA), or the spatial dis-
tribution of the dissipation field of fully developed tur-
bulence. The simplest way of performing a multifractal
analysis' is to partition the measure using boxes of fixed
size e. Then the measure in each box of size t.. can be
characterized by a singularity strength a by P; (e)—e",
where the index i =1,2, 3, . . . , I/e denotes the box num-
ber. The number of occurrences of a particular value of a
defines f(a) (the fractal dimension of that iso-a set) by
N(tt) —e ft'). The canonical way of computing f(a)
directly (without Legendre transforming) is described in

Refs. 3-5.
An alternative way of performing the analysis is to

compute the sum (or partition function)

Z(q) =+Pq(e) =e ' t)i

and use the equations

(a(q))=, f(q) =q(a(q)) —(r(q)) . (2)t)(r(q))
Bq

Typically one varies e and checks for a unique f(a) func-
tion over some range of t. . The existence of such a unique
function is believed to be a signature of statistical self-
similarity.

However, when one performs a multifractal analysis on

measures arising from experiments, in particular the dissi-

pation field of turbulence, one notices that the f(a)
function fluctuates from sample to sample by an amount
greater than the (least-squares) error bars on any one

sample would indicate and that the dimension of the ex-
tremal iso-a sets are often negative. '' In this paper we

wish to understand the occurrence of the above two obser-
vations and provide an efficient method of computing both
the positive and the negative parts of the f(a) function.
The approach rests on the view that the scaling properties
reAecting the self-similar structure of the measure can
(for such probabilistic multifractals) be described in

terms of a repeated composition of a level (scale) indepen-
dent distribution of multipliers that define the rearrange-
ment of the measure into smaller pieces. This issue has
been discussed briefly in Refs. 10 and 12. We demon-
strate that by suitably manipulating this multiplier distri-
bution one can compute the entire f(a) function with ex-
ponentially less work (and correspondingly more accu-
rately) than is possible by conventional box-counting
methods, and apply the multiplier method to the dissipa-
tion field of fully developed turbulence.

The sample-to-sample fluctuation of the scaling proper-
ties of the measure implies that the partition function
Z(q) [defined by Eq. (I)] varies from sample to sample.
To define thermodynamic quantities one must adopt an

averaging procedure. One can average the logarithm of
the partition function over different samples (quenched
averaging) or average the partition function itself (an-
nealed averaging) (in the context of multifractals see for
example Refs. 9 and 13-17). In quenched averaging, one
first computes f(a) for each sample. Since every ob
served a value will occur at least once, these curves will be
strictly positive resulting in an averaged positive function.
In annealed averaging, the resultant curve may not be
positive everywhere because the dimension is now defined

by (N(a)) —e ' . Since f(a) is now the logarithm of
an expectation value, a negative dimension will be associ-
ated with an iso-a set composed of a values that occur less
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often than one per typical sample.
There are at least two situations where negative dimen-

sions are of interest. First, one may have a cascade pro-
cess which is inherently probabilistic and the negative di-
mensions will describe the rarely occurring events.
Second, the experimental procedure itself may force one
to adopt a probabilistic view of a deterministic process.
For example, one-dimensional hot wire measurements of
the dissipation field of turbulence may be considered as
randomly oriented one-dimensional cuts through a three-
dimensional turbulent dissipation field, even if the latter
arises from a strictly deterministic process. Events occur-
ring with low probability in three-dimensional space
would be missed by any single typical cut, but averaging
(supersampling ) over many such cuts would enable one
to gather information about such events. ' Notice that a
negative exponent in Eq. (1) means that as @~0 the
number of occurrences of these a values actually de-
creases. Thus as one refines the measure, i.e., increases n,
one needs an exponentially increasing number of samples
to observe the same a value. Correspondingly, for a fixed
number of samples, increasing the level of refinement of
each sample would show lesser negative parts of the f(a)
curve. This statement, although correct, is paradoxical:
a priori it stands to reason that refining a measure should
lead to better information about its scaling properties.
And yet, following the supersampling procedure one does
increasingly worse as the level of refinement increases.
The attempt to resolve this apparent paradox is what has
led us to explore the multiplier method.

Consider a simple binary process' in which at each lev-
el of refinement every piece divides into two equal ones
but distributes its measure in the unequal ratio 3 . This is
a special case of a probabilistic cascade, where the
refinement process of each piece is (randomly) either
[0.7,0.3] [i.e. , the left piece (of the next generation) re-
ceives 70% of the measure and the right piece receives
30%] or vice versa, i.e., [0.3,0.71. At the nth level, there
are 2" difrerent combinations of multipliers that give rise
to various a values. Since there are also exactly 2" boxes
at the nth level, all possible a values will be found in a
single sample, leading to a well-defined and sample-
independent f(a) curve. The extremal iso-a sets com-
posed of boxes corresponding to the multipliers 0.7,0.7,
0.7, . . . , n times [a =log(0.7)/log(0. 5) =0.514. . . ] and
0.3,0.3,0.3, . . . , n times [a =log(0. 3)/log(0. 5) = 1.71. . . ]
will occur exactly once at each level, and thus have zero
dimension. All other combinations of the multipliers will
occur more often and hence f(a) ~ 0 everywhere. Con-
sider a simple generalization, where now the multipliers
can be picked randomly from four rules: [0.7,0.3],
[0.3,0.7], [0.8,0.2], and [0.2,0.8]. The extremal iso-a sets
will be composed of boxes with multipliers 0.8,0.8,
0.8, . . . , n times (a =0.138. . . ) and 0.2,0.2,0.2, . . . , n
times (a=2.321. . . ). However, these boxes will occur
with probability ( —„' )". Since there are only 2" boxes per
sample, these extremal singularity strengths will be ob-
served only once every (2"4 ") ' =2" samples. Thus the
f(a) curve will fluctuate from sample to sample and one
will have to average over 2" samples to observe the entire
curve (this being the idea behind supersampling). The di-

mension of the singular set corresponding to a =2.321. . .
is log(2 ")/log(2") —1, and the f(a) function, now
quantifying the relative frequency of observing a singular-
ity strength a in a given number of samples of finite size,
ranges from —

1 to 1. This example suggests that all the
scaling properties can be understood in terms of multi-
pliers and the frequency with which various combinations
occur. In particular the existence of a unique f(a) curve
over diff'erent levels of resolution implies the existence of a
scale-invariant multiplier distribution, whose repeated
composition gives rise to the scaling properties. This
means that, for each value of a, there exists a value of the
multiplier M* which, when composed n times, would pro-
duce the same a value, i.e., M* —2 ' . The proba-
bility P(M ) of choosing the multiplier M* is related to

+ tf(~*)—D,l
the dimension of the iso-a set by P(M*) =2
It is important to note that P(M ) is a scale-invariant
multiplier distribution derived from P(M) but diff'erent
from it.

In order to compute the scaling exponents from P(M)
one averages in the standard way the partition function
over K samples (supersampling) of equal size so that

a It

log —g g P;, (e)
&r(q)&- log&Z(q) & (3)

log(e) log(e)

where e =a " (2 "for binary cascades) and P;i(e) is the
measure in the ith box of the jth realization of a cascade
at level n. Since this relation should hold at any n due to
the self-similarity of the measure, we set n= 1. (Note
that in doing so, we are assuming that no level-to-level
correlations exist in the cascade. If they do then one
should set n to a larger number so that the two boxes be-
ing compared are uncorrelated. ' In the limit of' infinite
range correlations the multiplier method reduces to con-
ventional box counting. However, systems with such
long-range correlations are by definition not random mul-
tiplicative processes. It is therefore useful to run a con-
ventional box-counting analysis on the data before using
the multiplier method and establish self-similarity.
Disagreement between the results of a multiplier analysis
with conventional box counting then can be understood
not as a breakdown of self-similarity but of the presence
of strong level-to-level correlations in the cascade. ) Hav-
ing set n=l, we have a collection of K sets of boxes,
where the measure in any one box is simply a multiplier
picked randomly from P(M) (subject to the constraint of
conservation of the measure). Denoting the multiplier by
M, and remembering that for n =1 the measure in the ith
box is P;~ =M;~, we can write

&r(q)& = —Do- lo (&M&&) (4)
log(a)

and correspondingly

&

ar(q) —(m'log(m)) (5)
&M~& log(a)

with f(q) given by Eq. (2). Note that the averages are
over the distribution of the multipliers P(M). As q in Eq.
(5) moves from —~ to ~, diff'erent multipliers ranging
from M;„ to M,. „get accentuated reproducing the en-
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tire f(a) curve. The problem of computing the positive
and negative parts of the f(a) function is thus reduced to
the problem of computing P(M). The simplest way of
computing P(M) is to cover a measure at the nth stage of
refinement with boxes of size 2 " ', and evaluate P;
(i 1,2, 3, . . . , 2 " ' ), then subdivide each of these boxes
in two pieces and compute the ratios of the measures in
the original box to any one of the two subdivided boxes.
Each subdivided box will give a value for M, and using the
entire measure one can compute P(M) to a precision of

22

Consider why the multiplier method is a substantial im-
provement over supersampling. From the definition of
P(M ), a values corresponding to P(M ) ( —,

' will occur
with probability less than ( —,

' ) ", and supersampling han-
dles this by increasing the number of samples. If one su-
persamples over E diA'erent samples (of a binary cascade)
then the minimum a value observed follows from the
equation (2"K)[P(M )]" 1. For K=2", one can ob-
serve all a values corresponding to P(M ) ~ —,

' . Super-
sampling is thus a linear technique for increasing the
probability of observing iso-a sets. Since the probability
of encountering iso-a sets of negative dimension decreases
exponentially with increasing level of resolution, one must
increase the number of samples exponentially every time
the measure is refined in order to keep the same resolution
in f(a). On the other hand in the multiplier method,
since one is measuring only the relative probability of oc-
currence of multipliers rather than the relative probability
of occurrence of strings of n multipliers, one has much
better precision. Further, as n increases, the multiplier
method gets better as one can compute P(M) to better
precision, while the supersampling method gets exponen-
tially worse. It is in this sense that the multiplier method
requires exponentially less work besides being able to

compute f(a) with better precision in comparison to su-
persampling.

We demonstrate these arguments by two examples. In
the first example the multipliers of a binary cascade pro-
cess are chosen randomly from a triangular distribution,
i.e., P(M) =4M for 0(M ( —,

' and P(M) =4(l —M)
for & & M & 1. We compare both box-counting and mul-
tiplier methods with the analytical result. Figure 1 shows
this comparison for the cascade at n =15. The difference
between the f(a) computed using the multiplier method
(circles) from a single sample and the analytical f(a)
(solid line) is not discernable. Since box counting a single
sample of the same length would not give us any negative
dimensions, we arbitrarily averaged (supersampled) 15
diff'erent realizations (each at n =15). Figure 1 shows
that supersampling (diamonds) produces good results for
most of the positive f(a) curve but there is some error
near the tails. Some negative values can be seen, but the
convergence is clearly very slow and the accuracy poor.

The second example is the application to the dissipation
field of fully developed turbulence in the atmospheric sur-
face layer. The scaling properties of this quantity are
rather important in order to be able to make statements
about universality. In addition, the examination of the
multiplier distribution itself may be quite useful for un-
derstanding the underlying fractal structure of tur-
bulence. Figure 2 shows a comparison between box
counting and the multiplier method for a record length of
720000 points of the atmospheric dissipation field ob-
tained from hot wire measurements. We see that the
multiplier method yields negative dimensions which could
not be obtained from supersampling: Simple esti-
mates' ' ' show that to observe a values corresponding
to dimension of say —2, the latter method would require
over 10X10 samples (roughly 10'' data points) requiring
several years of data acquisition.

I I I I I I I I I
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FIG. 1. Comparison between analytic results (solid line),
multiplier method (circles), and supersampling (diamonds), for
a binary cascade at n 15 where the multipliers have been
chosen randomly from a triangular distribution. The results of
the multiplier method are for a single sample of 2" points
whereas, to improve statistics of the supersampling method, data
for it were averaged over 15 dia'erent realizations. Results are
shown only for q & 0. For q & 0, results from both methods can
have large errors (Ref. 17).

FIG. 2. Comparison between supersampling (diamonds) and
the multiplier method (joined circles) for the dissipation field of
fully developed turbulence in the atmospheric surface layer us-
ing 720000 data points. Shown is the portion of the f(a) curve
which corresponds only to the singular region (a ( 1) of the dis-
sipation field. Multipliers were obtained from box sizes ranging
approximately from 100 to 2000 Kolmogorov scales assuming a
binary cascade.
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It appears that this reasoning holds true for most natu-
ral systems. In the study of fractals one is interested in
looking either at the limit e 0, i.e., very fine resolution,
or examining scaling behavior over a large range of reso-
lution. However, for purposes of computing negative di-
mensions, the higher the level of refinement, the worse box
counting gets while the multiplier method gets better. We
therefore hope that the multiplier method will prove to be

useful for the study of multifractal scaling behavior in a
wide variety of systems. Indeed, we urge its usage when-
ever sample-to-sample IIuctuations in the f(a) curve
occur [as in the DLA (Ref. 28)] or where one expects the
underlying mechanism to be probabilistic.

We thank C. J. Evertsz, R. V. Jensen, P. W. Jones, B.
B. Mandelbrot, and N. Read for useful discussions.

Current address: The Mathematical Disciplines Institute, Uni-
versity of Chicago, Chicago, IL 60637.
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