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Korteweg —de Vries soliton excitation in Benard-Marangoni convection
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For a two-dimensional shallow liquid layer open to air and subjected to a thermal gradient
(Benard problem), the threshold condition is given for the onset of a Korteweg —de Vries soliton as
the result of an instability triggered by the Marangoni effect, i.e., by the variation of the interfacial
tension with temperature or concentration of a surfactant. In the absence of buoyancy, in contrast
with Benard convection, the heating for standard liquids must be done from the air side. However,
for liquids exhibiting a minimum in surface tension with temperature the heating can also be done
from the liquid side when operating past the minimum where the surface-tension coefficient in-
creases with temperature.

Recently, we' have discussed the role of the Maran-
goni effect ' i.e., the variation of the surface tension with
temperature or surfactant concentration in triggering
overstability and eventually sustaining transverse
capillary-gravity waves or longitudinal oscillations at the
open surface of a liquid or at the interface separating two
liquids. Our approach relied on the construction of a dis-
sipatiUe harmonic oscillator that at vanishing damping
provides the threshold conditions for overstability in the
liquid layer.

In the present paper, we follow a similar analysis using
the inuiscid nonlinear and dispersive Korteweg —de Vries
(KdV) soliton equation ' as the "ideal" system. Thus an
extension of the KdV analysis is provided in order to ac-
count for viscosity and gradients in surface tension. In
our derivation we draw heavily on the derivation of the
KdV equation provided in Sec. 6.1 of Ref. 7. Then we
show that the Marangoni effect is able to trigger the soli-
ton excitation. Here, however, we do not discuss the sta-
bility and eventual sustainment or destruction of this ex-
citation.

We consider a shallow horizontal liquid layer of thick-
ness h initially at rest and subjected to a transverse
thermal gradient. Disturbances upon the quiescent state
obey the continuity and Na vier-Stokes equations to
which we add a first approximation, either Fourier's heat
equation or Fick s mass diffusion equation. These equa-
tions are supplemented with the corresponding boundary
conditions (BC) at the bottom and at the open surface.
For simplicity we consider only a two-dimensional
geometry with disturbance velocity components (u, w)

along horizontal and vertical coordinates (x,z), respec-
tively. 0 denotes either temperature or surfactant con-
centration disturbance so that ~ is either heat or mass
diffusivity and p is the thermal or mass concentration
gradient, positive when imposed from the liquid side.
and v are the dynamic and kinematic viscosities, respec-
tively, related by the equation g=pv, with p the liquid
density. g denotes the interfacial deformation of ampli-
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and at the open deformable surface z = h +g,
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These BC correspond to some of the experiments with
liquids on glass plates conducted many years ago by
Linde and collaborators.

The velocity v can be decomposed into its potential (p)
and rotational (g) parts

v=Vy+VX@ . (10)

This allows one to introduce viscosity in an iterative way.

tude a and horizontal extent l. V represents the Lapla-
cian that with subscript X restricts its action to the open
surface. The shallow layer approximation demands that
h « 1 and we can safely disregard buoyancy effects in the
Xavier-Stokes equations. Then we have the following
boundary-value problem

V v=O,
a

——v+v. Vv= ——V'p+vV v
Bt P
a H=Pw+ttV 8,
C}t

with BC: at the rigid "insulating" bottom z=O,
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For the two-dimensional problem and

g, =—,'h f, + —,'h gf ——„',h'f„„„+—,'h fg (23)

(12)

where j is the unit vector perpendicular to the (x,z)
plane. Thus

By Bg
ax az '

Using now the BC (8), Eq. (22) becomes

f , k—.+2,4, + 0f—,', ~—'f—,'h—'f—f.

By Bg
Bz Bx

(13)
(24)

Noting that V' y=0 and using y= g ozjp. we set

(z)
o (2j)! (14)

where the superscript (2j) accounts for the 2jth derivative
with respect to x. On the other hand,

We now nondimensionalize all variables as follows:

O=Ph8, g=ag, t =r&6/Co, x =ly,

aCOf= —&6 V,

i=0

The simplest choices to fit the BC are

No=0 fi =V o,

and $2=$3= . =0 or

(15)

g, + V +3egV +3@V/ —
—,', 5 V =0 (25)

with Co =2gh, @=a/h, and 5 = h /l. We always consider
the "shallow water" limit e(& I and 5 ((1. Introducing
the Bond, %=pgh /pro, Marangoni, JR= (dc»—/
dT)Ph /rt~, and Reynolds numbers, %=Col/v, we ob-
tain

4=zmo, . (16) and

The subscripts x, z, and t denote derivatives with respect
to those variables. Thus

$2 $2
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(18) At zeroth order we have

V+V =0,

(840+31,) V
315

(26)

Introducing the coordinate expansion

0=00+z 0& +z 6I2+

into the heat equation and its BC, one finds that even
powers disappear and furthermore 0& =03 =0. Thus

O=z 05=z 07+. . .

so that the general solution can be of the form

V V(P) +@V())+6 V(2) +y V(3)

with

y = (840+JR),
v'6

315

(27)

and the solution satisfying the BC is given by

H=z ( —'h —z )8+. (19)

Differentiating (3) with respect to z and using the con-
tinuity equation gives v8„,=Pu, at z =h, so that finally
(19) becomes

which is considered to be small either because J7 is large
or A4 is near —840. The latter is the case of interest here
as we just like to identify the threshold value for KdV
solitary-wave excitaion due to the Marangoni effect.

Introducing (27) in (25) and (26) and subtracting the
latter two equations yield

O=z( —'h —z ) ''+
5

(20) 30—S
g, +g»+ ', eQ» — —5 g (28)

The nonlinear kinematic BC (6) then yields

h g +2h +
izoh +eh (21)

x $ 2 xxx $ t l2 fxx

=2v( f„„+f /h ), (22)

Using (17) and (18) together with (8) in the horizontal
component of (2) taken at the open surface, and denoting
f =go' ', gives

where g» can be removed by a Galilean transformation.
Thus we see that upon setting y =0, Eq. (32) provides the
Korteweg —de Vries equation. ' @=0 demands either
v=0, i.e;, an inviscid liquid, which is not of interest in
the present analysis or Jk= —840. The latter result indi-
cates that for such a negative value of the Marangoni
number the open surface of the liquid layer is excitable in
the form of a KdV soliton. Whether or not the soliton is
stable can be decided only by studying the role of the
omitted nonlinear part in Eq. (3). However, we can safely
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say that, due to surface-tension gradients, At= —840
defines the onset of a possible soliton excitation in a
quiescent shallow liquid layer subjected to a transverse
thermal gradient.

When AL is positive, one has Benard convection and we
know ' that at A, =48 there is the onset of steady Benard
convection with a polygonal (mostly hexagonal) plan-
form. Thus an experiment with a liquid layer heated
from below could provide a clear-cut test of our predic-
tion. One only requires a liquid having a minimum in the
surface tension versus temperature curve. ' Before the
minimum, we expect steady convection and past the
minimum the present analysis suggests the possibility of a
traveling solitary wave. Note that since the KdV equa-
tion corresponds to a genuine nonlinear excitation, the ex-
perimenter must abruptly excite the liquid with, say,
quite a sudden jump in the temperature gradient or with
strong adsorption or evaporation in the case of a volatile
surfactant as done many years ago by Linde. Unfor-
tunately, there is not enough quantitative information in

Linde's results to compare with our predictions. Yet a
recent analysis of his old film and pictures qualitatively
support our findings. ' Another possibility is to mechani-
cally excite the interface, then with heat or mass transfer
the Marangoni effect is expected to help sustain this exci-
tation.
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