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Although large, spherical surfactant vesicles are generally unstable to either lamellar or micellar
phases, mixtures of two surfactants can lead to spontaneous vesicle formation. We show theoreti-
cally how the energetic stabilization of mixed vesicles can occur by considering the curvature elasti-
city of the surfactant bilayer. Interactions between the two species (of the proper sign and magni-
tude) are crucial to stabilizing these vesicles. These interactions lead to composition asymmetries
and effective spontaneous curvatures of the inner and outer layers that are of equal and opposite
signs. The vesicles have a Gaussian distribution about an average size determined by the effective
spontaneous curvature; the width of the distribution is calculated as a function of concentration.
The stability of these vesicles with respect to a flat lamellar phase is estimated. The predictions of
the ranges of stability of the various phases as a function of the three concentrations (solvent, e.g.,
water—and the two amphiphiles) are in qualitative agreement with recent experiments.

I. INTRODUCTION

Unilamellar vesicles consist of a surfactant bilayer that
separates an inner region of a fluid (usually water) from a
continuous phase of the same fluid. Industrial and bio-
logical applications such as cleaning, catalysis, and mi-
croencapsulation for drug delivery depend on a simple
and controlled method for the generation of vesicles with
a well-defined average size. In addition, vesicles are often
studied as models for biological membranes. Although
vesicles often form spontaneously in vivo, they rarely
form as the equilibrium structure of simple surfactant-
water systems. Nonequilibrium methods, such as sonica-
tion of lamellar, liquid-crystalline phases, are usually
necessary to obtain a metastable phase of vesicles,! which
may reequilibrate back into the multilamellar, liquid-
crystalline structure. Recently, however, Kaler et al.’
have reported a general method for producing equilibri-
um phases of vesicles of a controlled size. The vesicles
form spontaneously upon mixing simple surfactants with
oppositely charged head groups. Most previous reports
of spontaneous vesicle formation have also involved sur-
factant mixtures.>”® Using the charge as a control pa-
rameter has both chemical and physical advantages since
a wide variety of head group, counterion, and salt chem-
istries can be prepared and studied.

This experimental development motivated a new look’
at the theory of vesicle formation using the concepts of
curvature elastic theory.® In systems composed of a sin-
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gle surfactant, the curvature energy of a bilayer dictates
that the energy of a phase of spherical vesicles is never
lower than that of a multilamellar, liquid-crystalline
phase. This is because the bilayer is composed of two
amphiphilic monolayers which, in the single surfactant
case, have the same spontaneous curvature.® Since the
two layers have curvatures of opposite sign (e.g., the
inner one being concave with respect to the water and the
outer one convex), the system is frustrated. If, for exam-
ple, the vesicle radius is chosen so that the outer layer has
matched its curvature to the monolayer spontaneous cur-
vature, the curvature energy cost of the inner layer with
the curvature of the opposite sign is higher than the cor-
responding energy cost of a lamellar phase composed of
flat bilayers. The only way that the lowering of the cur-
vature energy by the outer layer can exceed the gain in
energy of the inner layer is if the outer layer has
significantly more molecules than the inner layer. How-
ever, this is not the case for large vesicles, whose radii are
much greater than the surfactant size. Small vesicles,
where the vesicle radius is of the order of the surfactant
size, can be of lower energy than flat bilayers, as dis-
cussed in Refs. 9—11. However, they may be of higher
free energy than small micelles. In this work we consider
the case of large vesicles and discuss their stability with
respect to lamellar phases; this feature can be compared
with the experimental phase diagram.

While large vesicles composed of a single surfactant
have higher free energy cost than flat bilayers, they can
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still be stabilized by their larger entropy of mixing. How-
ever, in the limit of large (with respect to the temperature
kg T) bending moduli,® these entropically stabilized vesi-
cles’ are extremely polydisperse and are only stable at ex-
ponentially small volume fractions. We have recently
suggested’ that mixtures of two surfactants can behave
qualitatively differently. The additional degree of free-
dom of the composition of each monolayer of the bilayer
allows the formation of an equilibrium phase of vesicles
with an effective negative bending energy so the vesicles
have lower curvature energy than the lamellar phase. Be-
cause the vesicles are energetically stabilized, a well-
defined size is selected and the distribution is fairly mono-
disperse. In addition, we find that the stabilization of
vesicles by surfactant mixtures only occurs when interac-
tions of the surfactants are considered; ideal mixing of
the two components does not yield vesicles as the ground
state. These results can be used to see how the interac-
tions can be exploited to control and stabilize the vesicle
phase.

In Sec. IT we discuss the free energy and distribution of
large vesicles in systems consisting of a single amphiphile.
We then consider mixed systems in Sec. III where we
present our model and explore its implications. We pre-
dict the sign and magnitude of the interactions which will
stabilize spontaneous vesicles in mixed surfactant sys-
tems!? and estimate the stability of these mixed vesicles
with respect to the lamellar phase, taking into account
the excluded volume interactions of the vesicles. The re-
sulting phase diagram (discussed in Sec. IV) as a function
of the concentrations of the solvent (e.g., water) and the
two amphiphilic species is qualitatively similar to that ob-
served experimentally.!> In Sec. V a Gaussian approxi-
mation is used to predict the distribution of vesicle sizes
which is peaked at the effective spontaneous curvature of
the mixed layer ¢ *, a quantity which depends on the con-
centrations of the two species as well as the interaction
strength. The width of this distribution also depends on
c*, and we discuss the conditions under which the distri-
bution is broad or narrow.

II. SINGLE SURFACTANT VESICLES

A. Curvature elasticity

We begin with a review of the curvature elasticity of
surfactant films and consider a single monolayer!* at a
water/oil interface.!> In the limit of large vesicles, with
radii much larger than the surfactant size 8, the energy to
deform the monolayer by shape or size changes can be
written phenomenologically as an expansion in the two
local curvatures ¢ and c,; the small parameter in this ex-
pansion is ¢, where c is of the order of either ¢ or c;.
Keeping terms up to quadratic order and noting that the
curvature energy per unit area f, must be symmetric in
¢, and c, if there is no orientational order of the surfac-
tant in the surface of the film, one finds®

fe=1K'(c)+c;—2¢/)*+K'cic . (1)

This expression accounts for the energy cost for bend-
ing a surface; deviations of the average curvature from
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the spontaneous curvature, ¢, raise the energy of the sys-
tem by an amount proportional to K’. The second term
in Eq. (1) accounts for the energy cost for creating
saddle-typg deformations (e.g., ¢, >0, ¢, <0), and the
modulus K’ is termed the saddle-splay modulus. If the
interactions between surfactant molecules are short
ranged, K, K', and ¢, are all independent of the concen-
trations of water, oil, and surfactant. They are, however,
dependent upon the chemistry of the surfactant mole-
cules, the oil chain length, the salinity, and temperature
in a manner that is not included in the phenomenological
curvature expansion. Thus, chemical trends are not pre-
dicted by the interfacial theory except by the dependence
of the properties of the system on the “lumped” quanti-
ties, K', K', and ¢,. The microscopic origins of the
modiilii K’ and K’, and the spontaneous curvature c;,
have been discussed in Ref. 16.

The spontaneous curvature describes the tendency of
the surfactant film to bend towards either the water
(¢, <0 by convention) or the oil (¢, >0). It is taken—in
the absence of long-range interactions—to arise from the
competition between the packing areas of the polar heads
and hydrocarbon tails of the surfactant molecules. If the
interactions between the polar heads (as mediated
through the intervening water and electrolyte) favor a
smaller packing area than that dictated by the tail-oil-tail
interactions, the surfactant film will tend to curve so that
the heads (and the water) are on the ‘“‘inside’ of the inter-
face. The bending modulii, K’ and K', arise from the
elastic constants determined by the head-head and tail-
tail interactions. It is expected that these modulii are
mostly sensitive to the surfactant chain length.!® %,

Since we limit our discussion to spherical and lamellar
structures, where ¢ =c ;=c, it is convenient to rewrite
the curvature energy as

fe=1K(c,+tc,—2¢,?+K(c,—c,)*, @

where K, K, and ¢, are related to the standard K’ by
K'=K +2K, K'=—4K, ¢,=(K /K')c,. In this form for
f., the term proportional to the saddle splay, K, vanishes
for spherical and lamellar structures and ¢, is the curva-
ture of the minimum energy sphere. We note that the
two forms of the curvature energy [Egs. (1) and (2)] differ

by a constant term that is independent of curvature.

B. Vesicle stability

We consider the curvature energy of spherical vesicles.
Neglecting terms in the small quantity ¢c6=58/R, the cur-
vatures of the inner and outer layers have the same mag-
nitude but opposite signs. The total bending energy per
unit area of the midplane between the two monolayers
which comprise the bilayer is

fe=2K[(c+c,)*+(c—¢;)?], (3)

where ¢, and c; are the spontaneous curvatures of the
inner and outer monolayers and c is the actual curvature
of the inner layer. We use the convention that the inner
monolayer of the vesicle has positive curvature and the
outer monolayer, negative curvature. For the case of sin-
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gle surfactant systems, in the limit of small curvatures,
¢, =c;. In this case, the minimum of f, with respect to ¢
implies that ¢=0, or flat bilayers, are the lowest bending
energy state.

Of course, the two layers do not have curvatures that
are exactly equal and opposite. Such corrections, which
scale as 8¢ are of the same order as the higher-order
terms in the curvature expansion that are neglected here.
They can, however, be important for vesicles whose size
is comparable with the surfactant size, § and their study
depends on a microscopic model for the bilayers.!%!
Qualitatively, one can imagine a vesicle where the outer
layer has a curvature ¢ = —c, so that it has a minimum
(zero) value of its curvature energy. The inner layer, with
spontaneous curvature c¢; =c, is, however, frustrated and
fe =8Kc02. A flat bilayer, with ¢=0, has an energy
f.=4Kc? and is thus energetically preferred. In this ap-
proximation, we compare the energy per unit area, since
we assume that the inner and outer layers have the same
numbers of surfactant molecules. If, however, the outer
layer had a significantly large number of molecules than
the inner layer, we would have to compare the free ener-
gy per molecule. For small enough vesicles, it can hap-
pen that the lowering of the free energy by the outer layer
matching its curvature to the spontaneous curvature can
compensate the gain in f, due to the frustration of the
inner layer and the vesicle can have a lower bending ener-
gy than the lamellar phase. However, these differences
between the inner and outer layers can be significant only
when the vesicle size is comparable to the surfactant size.
In that case, a microscopic model is needed, since the
curvature expansion breaks down.'®!° In addition, the
stability of these small vesicles has to be compared with
that of a phase of micelles. This regime is outside the
scope of the present work and appears unrelated to the
recent experiments on mixed systems, where typical vesi-
cle sizes are > 500 A, much greater than 6~ 10 A.

Thus, for large vesicles composed of a single amphi-
phile, the lamellar phase has lower curvature energy than
the vesicle. However, the vesicles have an entropy of mix-
ing that is much larger than that of the lamellar phase.?’
As a bound on the stability of the vesicle phase, we con-
sider the dilute limit where the excluded volume interac-
tions of the vesicles can be neglected. We thus include
the translational entropy and calculate the distribution of
vesicle sizes obtained by minimizing the total free energy
per unit volume in units of kz T, which is

> nylIn(nyv)—1]+nyk+nyNu . (4a)
N

Here, v is the surfactant molecular volume, ny is the
number of vesicles per unit volume of aggregation num-
ber N (N ~c ~2), k=327K /ky T is the energy per vesicle,
and p is a Lagrange multiplier that accounts for the con-
servation of surfactant and is determined from

S vnyN=¢, , (4b)
N
where ¢, is the surfactant volume fraction.

Minimizing the free energy of Eq. (4a) with respect to
ny yields the vesicle distribution

nN=%e—“—“N . (5)

The Lagrange multiplier, u is proportional to (¢ e*) 172
This distribution, previously discussed in Refs. 9 and 10
is not a Gaussian about some average size (usually deter-
mined by the energetics), since the minimum energy state
is a vesicle with curvature ¢=0 corresponding to the
infinite aggregation number of a flat bilayer. The average
vesicle size N is proportional to 1/u and diverges ex-
ponentially as the bending stiffness increases. Of course,
at finite surfactant volume fraction, the average size is
finite. However, the value of ¢, at which these vesicles
can still remain dilute is exponentially small. To see this,
we determine the volume fraction enclosed by the vesicles
&, which scales as

O~ S N¥ny~¢ N . (6)
N

Since N~ (¢,e*)'”%, we see that the vesicles are over-
packed, i.e., ®>1, unless ¢, is exponentially small. For
stiff membranes, where «>>1, this implies that the vesi-
cles can only exist as a dilute solution for surfactant
volume fractions, ¢, <e ™ *; for larger volume fractions,
the lowest free-energy state is probably lamellar.

We therefore conclude that for single surfactants the
lamellar phase is usually more stable than the spherical
vesicle phase. Exceptions to this behavior can occur for
(i) the case of small!! vesicles, comparable to the surfac-
tant size, where the energetics may stablize the system —
although the micellar phase may ultimately be even more
stable—or for (ii) the case of extremely small surfactant
volume fractions, where the entropy of mixing can stabi-
lize a polydisperse distribution of large vesicles. In con-
trast with the trend for single surfactants, mixed surfac-
tants can form a phase of large vesicles with a well-
defined average size which is determined by the curvature
energy of the interacting system.

III. MIXED VESICLES

In contrast to the situation for single amphiphiles,
where large vesicles are usually not energetically stable in
comparison with flat bilayers, vesicles composed of two
amphiphiles can have lower curvature energies than flat
films. The curvature energy of the vesicle is given by Eq.
(3) supplemented by constitutive relations for the effective
spontaneous curvatures of the inner and outer layers, c,
and c,, respectively. We denote the spontaneous curva-
tures of films composed of each single surfactant as c,
and c,, and define i as the volume fraction of surfactant
type “2” in the system. As a first approximation we
neglect the polydispersity in the system (see Sec. V). In
addition, we define ; and ¥, as the volume fraction of
surfactant “2” in the inner and outer layers, respectively.
The composition difference between these two layers is
¢=1(, —,;), with the constraint ¥=1(3, +¢,) being
fixed.

With these definitions, we can phenomologically write
the effective spontaneous curvatures as a power series in
the composition difference ¢, assumed to be small. Keep-
ing terms to second order in ¢, one has
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c;=c(P)+a(P)¢—BY)¢* , @)
¢, =t(P)—alP)p—PB(P)p* . (8)

The signs of the terms involving ¢ are chosen so that
¢;—c, when ¢ changes sign; this is required by symmetry
since ¢ represents the composition asymmetry of the
inner and outer layers. In a phenomenological theory,
the coefficients C,a,B are unknown functions of . To
obtain physical insight into these functions, we consider a
slightly more detailed model.

We assume that the spontaneous curvatures are deter-
mined by the local bond distances and thus the local com-
positions of the interface. We then use a mean-field ap-
proximation to write that the effective spontaneous cur-
vature in a given layer is related to the probabilities that
a nearest-neighbor pair consists of two surfactants of type
“1” (““1-17), or of type “2”” (“2-2”), or a mixed pair ““1-2.”
One then finds

¢;=(1—1)%c; +lc, +(c,+c,+Ac)y;(1—1;) , 9

with a similar equation for c¢,. The first two terms indi-
cate that “1-1” or “2-2” pairs have the same spontaneous
curvatures as films composed of the single amphiphiles.
If Ac=0, the last term in Eq. (9) dictates that the spon-
taneous curvature of a ““1-2” pair is the average of the
two spontaneous curvatures. The term proportional to
Ac represents the effects of interactions between the two
surfactants and the fact that the effective spontaneous
curvature is not simply the average. With this model, the
coefficients ¢,[3,a of Egs. (7) and (8) are identified as

e=c,(1— ) +c,p+B1—9) , (10a)
a=(C1_C2)_ﬁ(1_2¢) ) (IOb)
B=Ac . (10c)

With this model, we find that 3 is the two-body interac-
tion parameter that is independent of 1.

Further insight into the meaning of these expressions is
obtained by considering the specific case of two surfac-
tants with identical chains,?! but different head groups.
The spontaneous curvature is proportional to the
difference in local head spacing compared to the tail
packing.!® If there were only steric interactions between
the head groups, the polar bond distances in a mixed film
would be a simple average of the bond distances in the
pure monolayers. As shown below, this would result in
vesicles that had a larger value of the bending energy
than flat, lamellar structures. We therefore consider
more generally the case where interactions between the
polar groups result in a bond distance (and hence a local
spontaneous curvature) whose value is not simply given
by the average of the “1-1” and ‘“2-2 bond distances.
For short-range interactions,”> a random mixing?® ap-
proximation for the average distance a; between polar
heads in the inner layers yields

a;=a,(1= ¢, P+a, 3 +(1—y)a; +a) g, (1—¢;) , (1)

with a similar equation for the average distance between
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polar heads in the outer layer. In Eq. (11), @, and a, are
the distances between polar heads in monolayers com-
posed of only surfactant “1” or ““2,” respectively. The
term proportional to ¥ represents the effects of interac-
tions of the two surfactants,?* which can either increase
(y <0) or decrease (y >0) the distance between a mole-
cule of type “1” and one of type ‘“2,” compared to the
average bond distance (a;+a,)/2. The case y=0
represents an ideal mixing where the bond distances fol-
low the average, e.g., for the inner Ilayer,
a;=a;(1—1;)+a,y;. With the convention that the cur-
vature of the inner layer (heads on the inside, tails on the
outside) is positive, the spontaneous curvature is propor-
tional'® to the product of a positive constant and the
difference between the chain packing distances (which are
the same for both surfactants and hence are composition
independent) and a;. This leads to Egs. (7)-(9), with 8
proportional to ¥ with a positive constant of propor-
tionality. If the bond distance between the polar heads in
a ““1-2” pair is smaller than the average of the “1-1” and
“2-2” bond distances, >0 and the interaction term
(~¢? in the expression for the spontaneous curvature
tends to reduce the values of ¢; and c,,.

This reduction is just what is necessary to stabilize the
vesicle so that the effective spontaneous curvatures of the
inner and outer layers have the same magnitude but are
of opposite sign, thus relieving the frustration present in
the single surfactant case. Imagine, for example, that
both surfactants “1” and ‘“2” tend to form monolayers
that tend to bend with the water on the outside (c,,c, <0
by our convention that the inner layer is water internal
and has positive curvature). For ideally mixed, or nonin-
teracting, surfactants (3=0), a vesicle composed of a sin-
gle surfactant has an outer layer which satisfies the spon-
taneous curvature, but a frustrated inner layer. Interac-
tions between the two surfactants, however, can result in
a contribution to the spontaneous curvature which is op-
posite in sign to both ¢, and c¢,. If more of these pairs are
placed on the inner layer, one can stabilize the vesicle so
that when ¢ =c; = —¢,, the system is at its lowest curva-
ture enegy state and the frustration is relieved.

This is seen quantitatively from Egs. (7) and (8) where
the choice

d==(c/B)'"? (12)

results in ¢;= —c,. Note that this stabilization is only
possible if the interaction terms are considered. Thus,
vesicles of curvature ¢ =c¢; =¢a minimize the curvature
energy when the composition asymmetry is chosen as in-
dicated by Eq. (12). Within this model, the curvature free
energy of Eq. (3) is zero for such vesicles and is lower
than the curvature free energy 4Kc(1)? of flat (c=0),
mixed? (¢ =0) bilayers.

A more complete accounting of the free energy of the
mixed vesicles must consider curvature-independent
terms. Such contributions, which can be both ¥ and ¢
dependent, arise from the statistical mechanics of a layer
of surfactant molecules and exist even in the absence of
curvature.”” One part of this additional free energy
comes from the entropy of mixing, f,,, which resists the
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composition asymmetry responsible for the stability of
the vesicles with respect to the flat, mixed bilayers. In a
mean-field approximation, the entropy of mixing of a sin-
gle layer with composition 1 is proportional to

Ylogy+(1—y)log(l—19) .

Expanding this expression with respect to the composi-
tion asymmetry ¢, one writes the ¢-dependent part of the
entropy of mixing, f,,, as
2

_# U
P(1—9) ¥ (1—9y)
where @ is a molecular size, related to the area per mole-
cule on the interface, and 7=T /(wKa?).

Another contribution to the additional free energy is
the direct interaction between surfactant molecules in a
single layer. An attraction between the two different sur-

factants, for example, results in a contribution to the free
energy per unit area, f;, of the vesicle of the form

fi=—2J¢9(1—)+2J 4%,

where J is proportional to the strength of the interaction
as discussed in detail in Ref. 19. Including the contribu-
tions from the curvature free energy f,, the entropy f,,,
and the interactions f; enables the determination of both
the curvature and composition asymmetry by minimizing
the total free energy per unit area with respect to ¢ and c.

Minimizing first with respect to the curvature deter-
mines the minimum energy curvature c* as c*=ad.
With this value of ¢ *, the free energy f is

fo=Kr +1g* , (13a)

(13b)

F=2K(—le*+14¢%), (14)
where

e=8Bc—%/[(1—9)], (15a)

A=832+—;—[1/¢3+1/(1—¢)3] , (15b)

where 7 includes both the interactions and entropy terms
and is defined by

F=[T+JyY(1—y)]/(wKa?) . (15¢)

Equation (15) indicates that the sign of € dictates the
vesicle stability; when €>0, the vesicle phase is stable
with respect to the lamellar phase. Considering the case
where v is a number of order unity and similarly neglect-
ing the numerical factors in Eq. (15), one sees that € >0
when

L <1. (16)

pc
In principle, this occurs for stiff systems, where K is
large, as long as ¢ @ is not too small. (For a discussion of
a microscopic model and the relevant limits, see Ref. 19.)
For simplicity, we consider the limit of small values of 7
where the curvature energy dominates and &> O; the vesi-
cle is then stable and the vlaue of ¢ that minimizes f is
¢*==+(c/B)!/?, where the correct sign is obtained by the
requirement that ¢* =¢*a be positive by convention. In

this case, the vesicle free energy is lower than the lamel-
lar®® free energy by an amount f = —4Kc>. These values
of ¢* and c* are precisely what is needed so that
c*=c;= —c,; the compositions of the two surfactants in
the two monolayers are such that the effective spontane-
ous curvatures of the inner and outer layers are equal and
of opposite sign. If the complexing is absent (that is,
B=0), this can only occur for the special case of ¢=0,
and flat bilayers and vesicles are energetically degenerate.
However, the lowest free-energy state would be the flat
bilayers (€ <0) due to the entropy of mixing. When the
terms arising from the in-plane entropy and interactions
are non-negligible (finite 7), the value of € can be positive
and the vesicle phase is unstable with respect to a flat,
mixed, lamellar phase.

IV. RANGE OF STABILITY AND PHASE DIAGRAM

For € <0, the minimum free-energy state is composed
of flat bilayers where the two monolayers have identical
compositions (¢=c=0). When €>0, the free energy is
minimized by a nonzero value of ¢ and hence a nonzero
curvature. However, for this to happen, the product
Bc>0. This condition, together with the requirement
that the composition asymmetry not exceed the actual
composition, ¢ < 3%, constrains the allowed ranges of the
parameters ¢, ¢,, 3, and 3. For example, if ¢;=c, <0
(that is, the surfactants tend to form micelles in water),
then 8 must be positive, implying that attractive interac-
tions are necessary to stabilize vesicles. This occurs be-
cause the attractive interactions tend to decrease and
even reverse the sign of the effective spontaneous curva-
ture. For negative values of ¢, and c,, putting more pairs
on the inner layer would tend to relieve its frustration
with respect to the bare spontaneous curvature, which
prefers water-external monolayers.

The constraints for the stability of the vesicle phase,
¢*2 <4? and &> 0, restrict the values of the parameters of
the model. In addition to these constraints, one requires
that the expansion for small curvatures be applicable—
i.e., c* <<1/8, where 8 is a molecular size related to the
thickness of the bilayer. Figure 1 shows the range of in-
teraction strengths which obey these constraints. For il-
lustrative purposes, we consider the case where the cur-
vature elasticity dominates (r<<1) and where
¢, =c,=1/26 (which would tend to make small micelles
for each individual surfactant). The allowed range of in-
teraction strengths has <0 in agreement with the previ-
ous discussion. In addition, the interaction strength is
bounded from above. For these graphs, we required that
¢*8<0.2. We note that we have chosen the case 7<<1
for simplicity; a more realistic discussion is presented in
Ref. 19.

In addition to these constraints on the allowed values
of the interactions, packing constraints on the vesicles re-
strict the allowed values of both the relative () and total
(¢5) concentrations of the surfactants. This enables an es-
timate of the phase diagram at fixed values of tempera-
ture, B, ¢;, and c,, as a function of concentration.
Neglecting polydispersity, the volume fraction of the sys-
tem occupied by vesicles is
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FIG. 1. Range of interaction strength where vesicles are
stable (shaded area) as a function of the relative composition .
The figure is drawn for the case where the spontaneous curva-
tures of the two surfactants are positive (tending to make mi-
celles in oil), ¢, =c,=1/28, where 8 is of order the surfactant
size.

@Z%EnR3, a7

where R =1/c* is the vesicle radius and » is the number
density of vesicles. For large vesicles, the volume frac-
tion of surfactant is

¢, =8mndR? . (18)

Eliminating n, we find that 66/R =¢,/®. The vesicles
cannot be overpacked (® must be less than one); we take
the value of ®=1 as the bound of stability of the vesicles
with respect to the lamellar phase where steric con-
straints are much weaker. An approximation to the
phase boundary as a function of ¢ (the total volume frac-
tion of surfactant) and ¢ (the fraction of surfactant that is
type “2”) is then given by the locus of points which satis-
fy

¢, =68c*(¢) , (19)
where
c*=aly)Ne/p)?, (20)

and a, B, and € are defined above. The resulting phase di-
agram is shown in Fig. 2. Again, for illustrative purposes

1.0
(o} 05 -
0.0 ! L I L
0.0 1.0

FIG. 2. Stability boundary for the vesicle phase as a function
of the composition asymmetry 1 and the water volume fraction
¢,. Curves are shown for three values of the interaction param-
eter 3. The figure is drawn for the case where the spontaneous
curvatures of the two surfactants are positive (tending to make
micelles in oil), ¢, =c¢, =1/28, where § is of order the surfactant
size.
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we consider the case where the curvature elasticity dom-
inates, 7 << 1, and the two individual spontaneous curva-
tures are equal. As the magnitude of the interaction
strength |B| is decreased, the range of stability of the
large vesicles decreases. The shape of the stability
boundary is in qualitative agreement with recent experi-
ments.!> Also in agreement is the observation that for
surfactants where c¢;=c,, the lamellar phase is more
stable than the vesicular one in the neighborhood of
y¥=1. Note that there is a value of ¢ at which the vesi-
cles are most stable (i.e., a minimum in the stability curve
as a function of ¢, =1—¢,). This minimum arises from
the fact that the smallest vesicles occur at a finite value of
; at smaller ¢ there is too little of the cosurfactant to
stabilize a vesicle, while at values of 1)~ 1, the vesicles
grow in size and are similar to lamellae.

V. POLYDISPERSITY

The preceding sections predicted the equilibrium vesi-
cle radius in a mean-field approximation where all the
vesicles have (i) the same size ¢* and composition asym-
metry ¢* and (ii) the same ratio of the two surfactants
(i.e., the same value of ). We now consider fluctuations
of these quantities which contribute to the polydispersity
of the system. We consider an ensemble of vesicles each
of which has the same value of ¥, but a distribution of
sizes and composition asymmetries. We do not consider
here the polydispersity in {y—namely, fluctuations in the
relative proportions of each surfactant in different vesi-
cles. Such fluctuations are suppressed by the attractive
in-layer interactions considered here. Repulsive interac-
tions could lead to large fluctuations in 3; they would
also lead to phase separation of the two components
within a single layer—even in the lamellar phase, a case
that is outside the scope of the present work.?

Discussions of size distributions of vesicles for single
surfactant systems can be found in (for single surfactant
systems) Refs. 8—10; the most probable vesicle size is
infinite, consistent with the fact that the minimum energy
state is lamellar as discussed in Sec. II. The distribution
has no sharp peak,?® in contrast to the situation for
mixed, interacting systems, where there is a well-defined
size, R =[c*(y)] !, which minimizes the curvature ener-
gy. Expanding the energy around c* yields a distribution
of vesicle sizes which is a Gaussian peaked at R.

To calculate the width of this distribution, we consider
the case where the ratio of the two surfactants is identical
in all the vesicles (each vesicle has the same value of ).
We use Eqgs. (3), (7), (8), and (10) for the effective free en-
ergy of the mixed, interacting system. The minima of the
free energy are at values of c*=a¢* and ¢*=(c/B)!/%
We define dimensionless quantities: x =c/c*, y=¢/¢*,
g=f/(2Kc*?),X=C/c*. We then have

x;=x(1—y)+y, 1)
xo=%X(1—y*)—y, (22)
and the reduced free energy is

g=(x +xy)?+(x—x;)?, (23)
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with only one parameter, X =¢ /c*=(8¢)!/?/a. Expand-
ing g about the minimum values of x =y =1 gives

g=g0+(x_1)(y~—1)gxy
+ g (x =1 +g, (y —1)*]+ -+, 24)

where g, =4, g, =4(1+4x?), and g,,=—4. In this
case, the constraint of fixed total area determines the
number of vesicles, so we can consider fluctuations of
each vesicle at the unperturbed area (proportional to
1/¢*?). Diagonalization of this quadratic form yields the
mean-square values of the polydispersity, {(x —1)*), and
composition asymmetry fluctuations, {(y —1)?):

((x—1)*)=¢ ‘“—gL*; , (25)
8xx8yy —8xy
8xx
(=2 =t|——-|, (26)
8xx8yy ~8xy

where t =T /8wK. Using the expressions for the deriva-
tives, we have

y— 1 (1+45%)

’
X-Z

((x —1)?

(27)

I =

t
<(y'—1)2>=z 5 -

=

When X is small, the polydispersity and composition
asymmetry fluctuations can be large. Since

(35)1/2

a

F=—= : (28)

the fluctuations may become large near the onset of the
vesicle instability, where B¢ is small. This can happen
even if the spontaneous curvatures of each surfactant, ¢,
and c,, are order one in units of a molecular size, if the
interaction is strong enough. Preliminary experimental
evidence!® indicates that the typical range of sizes has an
rms deviation on the order of 10-40 %, so that fluctua-
tions are not anomalously large.

VI. DISCUSSION

We have shown how interactions between surfactants
can stabilize a phase of spherical vesicles with respect to
a flat lamellar phase. These interactions require that the
effective spontaneous curvature of the film have a term
quadratic in the composition. The physical origin of this
stabilization is the tendency of ““1-2” surfactant pairs to
have a different bond distance from the average of “1-1”
and ““2-2” pairs. It is then possible for the effective spon-
taneous curvature of a film composed mostly of *“1-2”
pairs to be quite different (even in sign) from the spon-
taneous curvature of the pure films. In the case where
the curvature energy dominates, the vesicle is then stable;
the outer layer, for example, may consist mostly of “1-1”
pairs and the inner layer of the vesicle may be mostly “1-
2.” The concentration asymmetry of the two layers is
such that the effective spontaneous curvatures of the
inner and outer layer have the same magnitude but are of
opposite sign; the frustration of one of the layers that des-
tabilizes vesicles composed of a single surfactant is thus
prevented.

Even within the context of this model, several out-
standing issues remain. The first is to explore the interac-
tions and mixing effects more generally; the case of mixed
amphiphiles of long and short chains should be studied.
Next, the microscopic interactions that determine the
different head spacings in ionic systems should be ex-
plored so that the interaction parameter 3 can be related
to charge and salinity. Finally, a self-consistent theory
that considers both the occupation energies as well as the
curvature energies due to pairing interactions is impor-
tant.”” Such a treatment will indicate under what cir-
cumstances the various limits (large bending energy, large
interaction strength, etc.) considered in our phenomeno-
logical treatment will apply.
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