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The dynamics of a probabilistic neural network is characterized by the distribution v(x'|x) of
successor states x’ of an arbitrary state x of the network. A prescribed memory or behavior pattern
is represented in terms of an ordered sequence of network states x",x®, ..., x". A successful
procedure for learning this pattern must modify the neuronal interactions in such a way that the
dynamical successor of x' is likely to be x**1, with x"/*!=x'". The relative entropy G of the

probability distribution 8 (,+,) , concentrated at the desired successor state, evaluated with respect

to the dynamical distribution v(x'|x'®), is used to quantify this criterion, by providing a measure of
the distance between actual and ideal probability distributions. Minimization of G subject to ap-
propriate resource constraints leads to “optimal” learning rules for pairwise and higher-order neu-
ronal interactions. The degree to which optimality is approached by simple learning rules in
current use is considered, and it is found, in particular, that the algorithm adopted in the Hopfield
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model is more effective in minimizing G than the original Hebb law.

I. INTRODUCTION

For the physicist, the novelty of neural networks as
dynamical systems lies in the adaptive modification of the
basic interactions between the neuronal units in response
to the activity of these units. Thus the temporal develop-
ment of the interactions depends on the dynamical states
recently visited by the system. In more anthropomorphic
terms, the neural network learns by example, or gains
knowledge from experience. This aspect of neural net-
works is of course much more than a mere novelty: it en-
dows them with remarkable potential for practical appli-
cation in a wide range of information processing tasks in-
cluding content-addressable memory storage and recall,
constrained optimization, and pattern classification.

The choice of a suitable learning rule is essential to the
design of a system which is to perform some useful pseu-
docognitive function. It is likewise of great interest to ex-
plore the properties of various hypothetical learning rules
in the context of models of biological nerve networks.
The literature on learning rules is large and diverse. The
seminal notion is due to Hebb:! if neuron i is postsynaptic
to neuron j, and neuron j repeatedly or persistently pro-
motes the firing of i, then the efficiency of the synaptic
coupling from j to i increases. Notable contributions to
the theory of learning algorithms have been made by
Rosenblatt,” Widrow and Hoff,’ Caianiello,* Anderson,’
Cooper,® Grossberg,” Kohonen,® Sutton and Barto,’
Palm,'® Hopfield,!' and Peretto,'*> among many other
workers. Some systematic discussions of learning rules
may be found in Refs. 10 and 12-14.

The purpose of this article is to point out that the rela-
tive entropy'®> G (P,,P,), an information-theoretic mea-
sure of the distance between two probability distributions
P, and P,, may be used to assess the effectiveness of pro-
posed learning rules in approximate realization of a given
set of attractors by a noisy neural network of binary
threshold neurons. In general, the desired attractors may
be terminal cycles as well as fixed points, permitting a
richer memory map to be achieved than in the standard
Hopfield model with symmetrical couplings.''

The analysis is based on the probabilistic neural net-
work specified in Sec. II. To make the presentation more
concrete, we adopt the stochastic, parallel updating
scheme of the Little model.!® The problem of adjusting
the probabilistic dynamical map to conform, as closely as
possible, with the desired attractor mapping is stated as a
problem of minimization of the relative entropy of the
two associated probability measures. In turn, it is seen
that the latter problem reduces to the maximization of a
certain set of functions involving the altered neuronal in-
teractions. In Sec. III, an optimal solution is given for
the case of pairwise interactions between the neuronal
units, assuming that increments in these interactions due
to learning remain bounded. This solution is local in the
sense that the optimal change in the coupling from the
presynaptic neuron j to the postsynaptic neuron i in-
volves only the state of i at the given time ¢ and the state
of j one update earlier. We go on to consider the extent
to which optimality is achieved by four simple local
learning rules that have appeared in earlier work. These
cases include (i) the original Hebb rule, which is symme-
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trical in 7/ and j and is only effective if both i and j are ac-
tive at the relevant times; (ii) the symmetrical learning
rule implemented in the Hopfield model of content-
addressable memory,'! which produces positive or nega-
tive increments in the j—i coupling if the firing states of
i and j are respectively correlated or anticorrelated at the
relevant times; and (iii) two asymmetrical rules, one of
which comes into play if and only if the postsynaptic neu-
ron is active, the other if and only if the presynaptic neu-
ron is active. Among these, the symmetrical rule of the
Hopfield model and the presynaptic asymmetric rule
(studied, for example, in Ref. 17) are the most effective in
minimizing G.

The analysis is generalized to higher-order interactions
in Sec. IV. The important question of the effect that
learning new information has an older knowledge is ad-
dressed in Sec. V, where we establish a condition under
which an incremental learning rule of the class examined
does not disturb previously learned attractors. The im-
plications and limitations of our results are discussed in
Sec. VI. In the Appendix we compare our conclusions
regarding the relative merits of proposed learning rules
with the findings of earlier analytic and computational
studies carried out by Peretto.!?

II. ATTRACTOR NETWORKS
AND RELATIVE ENTROPY

We consider a system of N two-state neurons, the state
of neuron i being denoted by a variable x; (or y;) which
takes the value 1 when i is firing and O when it is silent.
The states x =(x;)=(x,,x,,...,xy) available to the sys-
tem form the set of vertices of an N-dimensional hyper-
cube X ={0,1}". [An alternative description may be
framed in terms of Ising-spin state variables 2x; —1 (or
2y; —1).] In the deterministic, noiseless case the time de-
velopment of the system state x is governed by a parallel,
discrete-time threshold dynamics ¢ on X, where ¢ is a
mapping from X into itself. The dynamical mapping ¢ is
generated by the neuronal interactions through a firing

function, or activation,'* F(x)=[F;(x),i=1,...,N], in
accordance with the threshold conditions
(¢x);=O(F;(x)), i=12,...,N (1)

where ©(u ) is the usual step function (taking the value 1
for u 20 and O otherwise). The firing function F involves
the couplings and thresholds of the neurons in a manner
that we need not specify at this point.

In general, the dynamics ¢ possesses several attractors
a,CX,m=1,2,...,n, each with its own area (or basin)
of attraction A4,,. The attractor sets a,, may be stable

fixed points or invariant sets (limit cycles). For all
x€a,,
¢x€a,, m=12,...,n ()

while for all x € 4,,, there exists an integer g,,(x) such
that

0" Yxea,, m=1,2,...,n . 3)

The information or knowledge stored in the network is
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embodied in its system of attractors. Thus each attractor
is considered to represent some memory or behavior pat-
tern which has been learned or otherwise acquired by the
net. To recall a particular memory or elicit a particular
response, the system is given a stimulus that places its
state in the area of attraction of the corresponding attrac-
tor.

To add a new item of information to the store requires
the creation of a new attractor a, ,; by a suitable altera-
tion of the dynamics ¢ to a new dynamics ¢. This will in-
volve manipulation of the neuronal couplings and thresh-
olds to produce a suitably revised firing function, denoted
F(x). For example, if a,,; consists of a single
configuration x'®, the new dynamics should satisfy
#x©=x'9. More generally, if a, ,, is a periodic attrac-
tor specified by the ordered set {x'V,x®, ... x"}, one
would require ¢x=x"*V for s=1,2,...,], with
xUtV=xD_ " However, it is not always possible to
achieve learning goals of this kind, which involve the
realization of associations of the form éx =y, correspond-
ing to specified transitions x —y. In general, the most we
can expect is that ¢x® is close to x'?, or the ¢x ') are
close to their target states x* !, according to some use-
ful criterion for “closeness.”

We shall now introduce and examine such a criterion,
within a probabilistic generalization of the network mod-
el. The successor ¢x to state x becomes random with a
probability distribution given by!®!?

Vox (X )=P(dx =x")

P(
N

EI’I{1+exp[—/3F,-(x)(2x,~'—1)]]_1 . 4)
i=1

The deterministic case

P[(¢x),=O(F,(x)),i=1,2,...,N]=1 (5)

is regained in the noiseless, zero-temperature limit
B— oo, T=B"1-0, provided none of the F; vanishes ex-
actly.

Consider again the problem of creating an additional
attractor {x'V,x@®, ... x"}. In the presence of noise
and the original attractors, the ideal behavior

P(¢xW=x*t)=1, s=1,2,...,1 6)

cannot be expected. However, we can insist that the
probability measure v, (,(x"), the distribution of ¢x ', is
as close as possible to the measure SX(H.)’X, concentrated
at x“*Y fors=1,..,1L

To characterize the distance between two probability
measures v and u we adopt the relative entropy!® (also
called the asymmetric divergence or information gain).
Assuming that the measure p is absolutely continuous
with respect to v, the relative entropy of u with respect to
v is defined by

G lpv]= [ e pudx’) . @)
dv
[Absolute continuity of u with respect to v implies that

there is no event e for which v(e)=0 and u(e)70; if this
condition fails, then G= + «.] The quantity G is posi-
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tive semidefinite and vanishes if and only if the two mea-
sures coincide. As framed, the definition is quite general
and includes the case that the space of states x is continu-
ous. For a countable number of mutually exclusive states
a, and probability distributions P,(a) and P,(a) over
these states, the relative entropy of P, with respect to P,
assumes the more familiar form

P (a)
Py(a) ’

G[P,,P,]=3 P,(a)ln 8)

This form is seen, for example, in the Boltzmann machine
learning algorithm.!® A similar version of the relative en-
tropy has been employed by Hopfield in developing learn-
ing procedures for analog perceptrons as well as recipro-
cally connected statistical networks.?’ It may be noted
that in the @ summation of expression (8), the logarithm
of the ratio of the two probabilities is weighted with the
“primary” probability P,(a). In the present application,
we use G to compare the probability distribution of suc-
cessor states ¢x ¥ of a given network state x‘*, with the
desired probability distribution ‘Sx““’,x"

The effectiveness of a proposed learning rule may be
judged by the extent to which the corresponding modified
firing function F(x)=F(x)+A(x) minimizes the relative
entropy G [Bx‘”'),x""$x*"’(x’)]' Here A(x)=[A;(x),i
=1,...,N]is the change F(x)—F(x) in the firing func-
tion due to the learning rule. To state the optimization
prescription in a less cumbersome and more generic
form, we rewrite x'*’ as x and the target successor state
x5 %D as y. Then, for the probabilistic updating law as-
sumed in Eq. (4), it is seen that §, ,. is absolutely continu-
ous with respect to v$x(x’) and that the integral in (7) or
the sum in (8) reduces to the single contribution corre-
sponding to x’=y. [The other contributions, behaving
like 0In(0), vanish in an appropriate limiting process.]
Thus we have

G=G[8, vy, (x")]

N
=—In[] (1+exp{ —B[F;(x)+A;(x)](2p;—1)}) !

i=1

N
=3 In(1+exp{ —B[F;(x)+A;(x)](2p;—1)}) . 9)
i=1
To minimize G, we need only maximize A;(x)(2y;,—1),
fori=1,2,...,N.

II1. MINIMIZING G
FOR PAIRWISE INTERACTIONS

With pairwise interactions among neurons, the firing
function of neuronal unit / is traditionally written in the
form? 416,18

J

where V;; represents the ‘“two-body” synaptic coupling
through which neuron j influences neuron i, and Vy; is
the threshold assigned to i. As is customary, we consider
only the couplings as modifiable, the thresholds being re-
garded as fixed. Thus

A(x)=3 AVx; . (11)
J

Under the restriction that any changes in the couplings
are bounded in the sense that

—a=AV;x;=b (a,b>0), (12)

the optimal solution of the above G-minimization prob-
lem is

b if x;(2y; —1)=1
—a if x;(2y,—1)=—1 (13)
A if x;=0,

AV, =

ij

where A represents an arbitrary value. Condition (12)
may be viewed as a constraint on the available resources
(biological or technological). Note that the presence of x;
as a factor in this condition implies that when neuron j is
inactive there is no restriction on the change in V;;. (If
we choose to remove this factor, the arbitrary increment
A in (13) is restricted to the range [ —a,b].) In general,
the parameters b and a may be synapse dependent and
may even depend on the individual transitions in the be-
havior pattern that is to be learned. However, we do not
make these dependences explicit [omitting corresponding
indices such as ij, n +1, and (s)], and we ignore this com-
plication entirely in Sec. V.

An important feature of the optimal learning rule (13)
is its locality. It is local in “‘space,” since the change in
the pairwise coupling V;; depends only on the states of
the synapsing neurons i and j and not on the states of any
other neurons. It is also local in time, since the indicated
dependence is on the current state of the presynaptic neu-
ron j and the target successor state of the postsynaptic
neuron i.

Four simple learning algorithms in common use are
specified in the Table I (Rules 1-4). They are not only lo-
cal, but also of separable form in the state variables of
neurons i and j, being proportional to a presynaptic fac-
tor x; or 2x;—1 and a postsynaptic factor y; or 2y; —1.
The first rule listed is just the original Hebb law, and the
last is the one adopted by Hopfield!! and used in the ma-
jority of works on content-addressable memories that ex-

TABLE 1. Modes of action of local learning rules. The se-
parable rules are numbered 1-4 as in the text. Opt.(10) and
Opt.(20) denote the optimal rules derived from the minimization
of relative entropy G based on the respective expressions (10)
and (20) for the firing function. The symbol @ indicates that the
corresponding neuron is firing and O that it is not firing. The
parameters b >0, a >0, and 7> 0 specify the learning rates as-
sociated with the four possible configurations j—i.

AV
Jj—i -0 ®-o0 o —@ O —0

Rule 1 n 0 0 0
Rule 2 n 0 -7 0
Rule 3 n -7 0 0
Rule 4 7 -7 - n
Opt.(10) b —a

Opt.(20) b —a —a b




1064

ploit statistical physics and the spin-glass analogy.?"?> A
mean-field analysis of the memory-storage properties of
all four rules (and indeed of the general local learning
rule for pairwise couplings) has been given by Peretto!?
(see the Appendix). He also calls attention to neurophy-
siological evidence that the second rule is implemented at
certain excitatory synapses in vertebrate brains. The
third learning algorithm has been employed in neural-
network simulations of classical conditioning.!” We note
that the first and fourth rules are symmetrical in i and j,
while the other two are not. We may further note that
the Hebb rule is only effective in producing a synaptic
change if both presynaptic and postsynaptic neurons as-
sume active states. Changes via rule 2 are contingent on
activity of the postsynaptic neuron, while rule 3 requires
presynaptic activity.

The G-minimization criterion developed above pro-
vides the basis for a useful assessment of the efficacy of
the four “separable” learning algorithms. How close do
these rules come to the optimal rule (13)?

1. Hebb rule. The symmetrical rule

AV;=nx;y;, >0 (14)

conforms to (13) when b=m% and a =0. Hence this rule
minimizes G under the restriction of pairwise interactions
and the resource constraint

0<AV;x;<n. (15)

It is incapable of producing negative increments in the
couplings ¥;; and is correspondingly limited in its ability
to decrease G.

2. Postsynaptic asymmetrical rule. The asymmetrical
rule

AV, =n(2x;—1)y;, 7>0 (16)
implies

n i x,(29,—1)>0
AV, x(2p,—1)= 17
5% (2 =D 0 otherwise , a7

maximizing AV;;x;(2y;—1) subject to 0=AV;x;=n.
Thus it is seen that the rule (16), like (14), minimizes G
under the resource constraint (15) [or (15) with the factor
x; removed]. The negative increment of V;; produced by
(16) in the case x;=0, y;=1 has no effect because of the
presence of x; as factor in the generic form of A;.

3. Presynaptic asymmetrical rule. The other asymme-
trical rule

AV, =nx;(2y;—1), >0 (18)

corresponds to the special case b =a =7 in the optimal
solution (13). This algorithm is “‘nearly’’ optimal. It does
permit the reduction of G through negative increments of
Vi;» but the upper and lower bounds on the change AV
are constrained to have the same magnitude. For arbi-
trary a and b, the best choice that can be made for 7 is
min(a, b).
4. Hopfield rule. The symmetrical rule

AV, =mn(2x;—1), 7>0(2y;—1) (19)
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is just as effective in minimizing G as the presynaptic
asymmetric rule, changing V;; by +7 in the case
x;=y;=1, and by a numerically equal but negative incre-
ment —7 in the other pertinent case x; =1, y,=0.

Thus, with respect to the G-minimization criterion pro-
posed in Sec. II, the separable local rules 1 and 2 are
equivalent, as are 3 and 4. These features are clear from
Table I, since the behavior of AVij in the fourth and fifth
columns is irrelevant. By virtue of their ability to imple-
ment appropriate negative shifts of V; (see entries in the
third column of Table I), rules 3 and 4 are preferred over
rules 1 and 2.

An exemplification of these general conclusions may be
found in recent computer simulations of Witt and
Clark.!” In particular, it is demonstrated that the simple
presynaptic asymmetrical rule (18) has a strong stabiliz-
ing effect in consolidation of classically conditioned
responses of networks of threshold neurons containing
multiple feedback loops, and is markedly superior to the
original Hebb law (14).

The form (10) of the firing function F;, which corre-
sponds to a simplified description of the response of the
dendritic tree and cell body of a neuron to impinging
synaptic stimuli, goes back to the very inception of
neural-network theory in the 1943 paper of McCulloch
and Pitts.?> As documented (for example) in Refs. 14, 24,
and 25, it has been used in most of the studies of digital
neural-network models predating the recent surge of ac-
tivity?!?2 based on modern statistical methods developed
for the treatment of analogous spin systems involving
mixed ferromagnetic and antiferromagnetic interactions.
In this later work, the firing function F; is regarded as a
local field acting on the spin representing neuron i and is
commonly expressed (in our notation) in the form

Fi(x)=3 Vi(2x,— 1) =V}, . (20)
J

The new threshold parameter V,, which corresponds to
an external magnetic field in the spin analogy, is often
taken to be zero. The two formulations (10) and (20) are
equivalent if

vi=1v,

2Vij

Vi=Vo—1+3 V- 21)

J

On the other hand, in developing learning rules we
may—as above—choose to leave the thresholds V, or
Vo intact while allowing the synaptic interactions V;; or
Vi, to undergo modification. The two formulations are
then no longer equivalent, since the second relation of
(21) cannot be maintained.

It is therefore of interest to see what solution to the G-
minimization problem emerges when (20) is adopted in
place of (10), while keeping VY, fixed. For this case we
assume that changes in the couplings obey the constraint

—a=AV;=b (a,b>0) (22)
in place of (12), with AV};=AV;;/2 in accordance with
the convenient definition V;;=V,; /2. The optimal rule is
now
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b if (2x; —1)(2y;—1)=1
AV,

i | —a if 2x;— 1)(2p;,—1)=— 23)

Inspection of Table I shows immediately that among the
familiar separable local rules, the Hopfield rule (rule 4)
comes the nearest to (23). It falls short of optimality only
in that it corresponds to the specialization a =b =7 and
thus is incapable of taking advantage of any difference in
magnitude that might exist between upper and lower
bounds on the change AV,-j. Given a¥b, the best match
of the Hopfield rule with the optimal solution is achieved
with 7=min(a,b). The Hebb algorithm (rule 1) is unam-
biguously the worst of the four separable prescriptions.
Whereas (23) implies synaptic changes in all possible
combinations of the presynaptic and postsynaptic firing
states of the two neurons / and j, rule 1 produces a
change only for the case that both neurons are active.
The other two simple rules (2 and 3) are intermediate in
quality, yielding appropriately signed synaptic changes in
two of the combinations of firing states and no changes in
the other two. In those firing configurations where they
are effective, these algorithms coincide with the Hopfield
rule and thus do not distinguish between the magnitudes
of positive and negative corrections.

IV. OPTIMAL LEARNING
WITH HIGHER-ORDER INTERACTIONS

The foregoing analysis may be extended to a more gen-
eral form of the firing function F(x) that allows for
higher-order or multiple-neuron interactions. For in-
teractions of order K, where 2 <K =< N, the form (10) gen-
eralizes to

2 Xt 2 Vit X, t
J1dy

+. X 2 I/vigjljz"'j](_]]lesz T

JiJ2 Ik -1

(24)

the quantity A;(x) taking a similar form with V... re-
placed by AV ... and V; omitted. It is readily seen that
an optimal solution of the G-minimization problem under
the resource constraints

—a =AV, {!1!2 ]xll Ja T xjk Sbk
(k=1 K—-1) (29
is given by
by ify=x; =" =x; =1
—ax (26)
Al/i[jljz"'jk;= lfy,=07 le=xj2= e =xjk:1

A otherwise ,

where i and the j indices range over 1, ..., N and k runs
from 1 to K —1. In the special case a; =0, b, =1, for all
k, this solution can be achieved by the generalization
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AVijiy i d =M%, %), " % Vi (1<k=K-1) (27)

of the Hebb rule, or by a corresponding generalization of
the postsynaptic asymmetric rule of Table I. Likewise, in
the special case a;, =b; =, the solution is matched by
the rule

AVU].IZ : f

=nx; X, " xjk(2y,»-—1)

(1<k<K-—1), (28)

which extends the presynaptic asymmetric rule of Table
I, or by a corresponding generalization of the Hopfield
rule.

A parallel generalization of the analysis to multiple-
neuron interactions may readily be performed based on
the alternative form (20) for the firing function F;.

V. SUCCESSIVE LEARNING

In models of learning, it is usually assumed that altera-
tions of the synaptic interactions are simply cumulative.
More spemﬁcally, in learning r transitions x M
—yH) x‘”—»y 2. .., x>y the presynaptic asym-
metric rule is 1mp1emented additively or incrementally,
resulting in a net change of the form

AV =13 x}l"’x}f) .- -x}l‘j’_l(Zy,-“”-—l) (29)
g=1

in the case of Kth-order interactions, with A some posi-
tive constant. A similar expression applies when any of
the other simple learning rules of the preceding sections
is chosen, or when one or another optimal solution [e.g.,
(13), (23), or (26)] is adopted.

In judging the performance of a memory system, an
important consideration is the extent to which the ac-
quisition of new items of information interferes with
items engrammed previously. Upon learning a new at-
tractor a, ., some of the fixed states or cycles a,, stored
earlier may be ‘‘forgotten,” i.e., no longer recalled by the
network under approximate stimulus. It is natural to ask
under what conditions the a,, with m <n do remain at-
tractors of the modified network dynamics ¢. A partial
answer to this question is offered below.

Suppose the system has previously learned the assoc1a-
tlons defined by the transitions xV—y x@
—y? ., x5y in the sense that a dynamlcs ¢ has
been reahzed such that in the noiseless limit ¢x (@=yp?
for all g =1,...,r. Suppose further that an additional
association x 7 11, "+ has been learned by means an
incremental presynaptic asymmetric rule (29), so that
(again in the noiseless limit) the new dynamics yields

éx"*V=pr+D  Then the older memories (or associa-
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tions) x‘q’—>y‘q) can still be recalled, i.e., ¢x“’)—y
g=1,...,r, if and only if
7»<min{q,i:y;q,;&y;,+1)}kq,i N (30)
where
|Fi(x(q))|
7\"1”'— ((x(q),x(r+1)))K : G1

Here we have introduced a scalar product

Fi(x9)2p{9—1)= |F,.(x‘q’)| +A;(x9)(2p{?—1)
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((x, )= }_‘,xjyj-i- > xj Jzyllyfz+ cee
J10dy
+ X

B . ViYi Y
JiJy " Uk -1

XiXi " Kk K —

(32)
Noting that the indicated storage of the old memories in
¢ implies 2y ?—1=sgn[F;(x'?)], for all i and for
qg =1, ...,r, the condition (30) is established by perform-
ing the following sequence of manipulations (for i and ¢
such that /95y "+ 1)

>M(x r+1) +A zx q)x(r+1)+ 2 x(q)x(q)x(r+l)x}2r‘+l)+ V.
J J1da
(@ ... (@ Lr+D), (r+l) (9)_ (r+HD_1y>
+‘ 2 x;! x; & xj xje 2y 1)(2y; HN=0. (33
J17 Ik —1

In reducing A;(x'?), we have made use of the definition
A;(x)=F;(x)—F;(x), the higher-order expression (24) for
the firing function, and the assumed incremental learning
rule. This analysis suggests that the parameters A, ; may
be used to measure the strength of a previously stored as-
sociation q relative to a new association » +1.

VI. DISCUSSION

Considering networks of two-state neurons. governed
by a noisy dynamics, we have studied some variational
aspects of the problem of learning a given behavior pat-
tern, a process which, in the absence of noise, would cor-
respond to the acquisition by the system of an associated
attractor. In general, an attractor consists of a definite
sequence of state transitions. The learning process will be
enhanced if the probability distribution of successors of
an arbitrary state x* on the attractor is brought as close
as possible to the desired distribution localized at x*1.
An appropriate scalar measure of the distance between
these distributions is the relative entropy G. The learning
problem is then reduced to a problem of adjusting the in-
teractions among the neurons in such a way as to mini-
mize G. We have presented explicit solutions of this op-
timization problem for the cases of pairwise (two-neuron)
and arbitrary higher-order (multiple-neuron) interactions.
The analysis is performed without any restriction on the
symmetry of the interactions, but resource constraints
have been imposed in the form of upper and lower
bounds on changes in the synaptic couplings. The op-
timal solutions provide a basis for the assessment of four
well-known separable local learning rules.

The formal development has been couched in terms of
the Little model, which involves synchronous updating of
all units in the assembly of neurons. However, it is easily
seen that the results for the optimal learning rule and for
the optimization properties of the common separable ex-

[

amples of Table I are considerably more general. In par-
ticular, the same analysis applies to the asynchronous dy-
namics of the Hopfield model,'!! with the sole
modification that the state transitions involve single-
neuron updates, so that the product over i in Eq. (4)
reduces to a single factor. It may further be shown that
the results generalize to continuous-time Markov models.

The generality of our approach also extends in other
directions.

(a) As already indicated, the patterns to be learned may
be ordered sequences of states {x,x®, ..., x"} as well
as single configurations x ‘%, corresponding respectively
to the acquisition of limit-cycle and fixed-point attractors
in an idealized noiseless case.

(b) Our main arguments based on G minimization en-
tail no restrictions on the architecture of the system prior
to a given learning attempt, i.e., the original couplings V;
may be arbitrary.

(c) The system may operate at an arbitrary noise level
B
The generality of applicability of the principle of
minimum relative entropy is tempered by its broad char-
acter: This principle is based on an overall evaluation,
through the single quantity G, of the likehood that the
modified system will make correct transitions when
placed in states belonging to an arbitrary candidate at-
tractor. Accordingly, our analysis serves to illuminate
only limited aspects of learning theory. Within the con-
text of attractor networks,”? such important practical
matters as the sizes of areas of attraction and the rates of
recall of acquired patterns have been left untouched, and
nothing has been said about the actual learning time in-
volved in the stepwise application of one or another algo-
rithm. We have, in Sec. V, stated a simple result on the
destablization of old patterns by newly acquired ones.
However, the argument presented there is quite indepen-
dent of the primary development based on the G-
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minimization criterion. We have not sought to derive
systematic, explicit results for the accuracy of recall of
specific memories or for the storage capacities that might
be allowed by the various learning rules.

The latter aspects of the learning problem —accuracy
of recall and capacity wunder different learning
algorithms—have been addressed in some detail by
Peretto,'? who has used mean-field theory to evaluate the
memory storage capabilities of networks of two-state
threshold neurons. Some very important differences from
our approach are apparent. On the one hand, as stressed
above, the principle of minimum relative entropy pro-
vides a very broad measure of the quality of proposed
learning rules, applicable in a very general setting. On
the other hand, Peretto’s mean-field analysis is quite
specific, involving (a) stochastically independent, single-
configuration memory patterns, (b) a fully connected net-
work architecture, containing an asymptotically large
number of neurons, and (c) low noise. Consequently, his
treatment leads to more incisive results for a much more
restricted problem. Considering these important
differences, there is essential agreement of the two ap-
proaches in indicating superior performance for the
Hopfield rule (or something close to it) and the prob-
lematic nature of the original Hebb law. The Appendix
contains further discussion of the Peretto study, together
with an explicit comparison of its conclusions with those
derived in Sec. III.

In connectionist language, the present work bears on
the “credit assignment problem”? of multilayer nets or
nets with feedback loops, although it does not attempt a
full solution. Within this context, Hopﬁeldm has exam-
ined the role of relative entropy in the construction of
learning rules that enable such nets to capture probabil-
istically specified input-output relations. (Two restrictive
cases were considered, both of which involve an architec-
ture having three layers of neuronal units, with connec-
tions only between neurons in adjacent layers. One case
is a feedback perceptron with analog units; the other is a
symmetrically wired Boltzmann machine with noisy
binary threshold units.) It is also important to recall that
relative entropy plays an essential role in the original
Boltzmann machine learning algorithm,'® which provid-
ed one of the first solutions of the credit-assignment prob-
lem.

ACKNOWLEDGMENTS

This research was supported in part by the Chinese
National Science Foundation and by the U.S. National
Science Foundation, under Grant No. DMR-9002863.
One of us (M.Q.) thanks the Department of Mathemat-
ics, Washington University, for kind hospitality during a
leave from Peking University. We thank J.M.C. Chen for
useful discussions.

APPENDIX: COMPARISON
WITH PERETTO’S ANALYSIS

In this appendix, we outline Peretto’s investigations'?

of local learning rules and examine his findings as they re-
late to corresponding conclusions derived from the prin-
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ciple of minimum relative entropy.

In Ref. 12, the primary criterion adopted for evalua-
tion of the relative efficacies of various learning rules is
maximum storage capacity consistent with accurate re-
call of particular memories. In contrast to our treatment,
special assumptions are made regarding the nature of the
patterns to be learned and the architecture of the net-
work, and explicit analysis is mostly confined to the low-
noise limit. The number N of neurons is taken to be
asymptotically large, so that the analytical results ob-
tained refer strictly to the thermodynamic limit. The ex-
pression (20) is adopted for the firing function (local field)
of neuron i, with ¥V, =0.

A set of M single-configuration patterns is to be
learned by the network, pattern p being specified by
0,=&M i=1,...,N. Here we follow Peretto’s use of
the conventional notation in which the state variable of
neuron i is denoted 0"’ and takes the value +1 if i is ac-
tive and —1 if it is not. Ideally, under a proposed learn-
ing rule all the nominated collective states {£*’} should
become fixed points of the dynamics. In the presence of
noise at temperature B, this condition is translated into
the statistical statement

(o;)Y={tanh(BF,)) , (A1)

where the angle brackets indicate a large-time average
over a statistical ensemble, and a simplified description of
synaptic noise (corresponding to that of Little!'®) has been
implemented. An assumption crucial to the subsequent
development is that the patterns u are stochastically in-
dependent, the choices +1 and —1 for each component
£¥) having equal probability (random patterns).

Peretto considers the most general class of learning
rules for pairwise synaptic interactions:

AV =N"YAEMEW+BEM+CEM+D) . (A2)
Saturation of synaptic strengths is not taken into ac-
count, and the full network couplings V,-'j are obtained
simply by summing (A2) over all patterns u, and adding
an extra pattern-independent term N 'D° as a
nonmodifiable (“nonplastic”’) component. This construc-
tion implies that, in general, every neuron interacts,
asymmetrically, with every other neuron, and also experi-
ences a self-interaction. The learning parameters A4, B,
C, and D, as well as the nonplastic parameter D°, may in
principle be synapse dependent and should then carry la-
bels ij. Indeed, natural learning may well involve
different rules of modification at excitatory and inhibitory
synapses.'? Such complications are not explored formally
in Peretto’s work.

Within the indicated framework, the limits of memory
storage are investigated (i) for the case of a finite number
M of patterns, M /N =O(1/N); and (ii) for an infinite
number of patterns, with the desired scaling
a=M/N =0(1), where a is called the load. In both
cases, the strong connectivity assumed for the network is
used to justify the application of the mean-field approxi-
mation, which (for example) allows the fixed-point condi-
tion (A1) to be replaced by (o;)=tanh(B(F;)). The
analysis in both cases focuses on the order parameter cor-



1068

responding to a particular pattern, say pattern 1:

m(l)___N—lzg‘(il)(o.j) . (A3)
J

For good performance of the system as a content-
addressable memory, this quantity should be as near to
unity as possible, or the retrieval error fraction
(1—m'") /2 should be close to zero—indicating that the
system relaxes to a collective state near pattern 1 if it is
initiated in that pattern. In pursuing mean-field theory,
the specialization to random patterns allows one to
neglect destabilizing terms arising from the other pat-
terns u71 in case (i) and to invoke the self-averaging hy-
pothesis (see below) in case (ii). Thereupon explicit cou-
pled equations may be derived for the order parameter
m'" of Eq. (A3) and the order parameter m'®
=N"'y (o j ), corresponding to the uniform field aris-
ing from MD + D#0 [and for two additional order pa-
rameters in case (ii)]. The assumption that a given £* is
equally likely to be +1 as —1 is exploited in the deriva-
tion of these coupled equations, and has the consequence
that the learning parameters 4, B, C, and D (together
with the nonplastic parameter D° of V};) enter only in the
combinations

s=B+MD+D° r=C+4,

(A4)
u=—B+MD+D° v=C—4

in case (i) and in these combinations and 4%+ C?, MB?,
A, and C? in case (ii).

In Table II we collect the particular choices of the con-
stants A4, B, C, and D of the general form (A2) that corre-
spond to the separable learning rules 1-4 defined in Sec.
III, and to the optimal rule (23) given by G minimization
for the relevant form (20) of the firing function. The la-
beling of rules in this table should not be confused with
that used in Table II of Ref. 12.

In the case of a finite number of nominated memory
patterns, Peretto finds that |m‘|=1 and m®=0 are
solutions of the fixed-pointed equations of the zero-noise
problem if and only if the conditions t =C + 4 >0 and
v=C—A4 <0 are met, which requires 4 >0 and
|C| < A. The other solutions of the zero-noise equations
do not yield acceptable memory properties. From Table
II it is seen that rules 3 and 4 as well as the optimal rule
satisfy the stated conditions (with =4 and v =— 4 in
all three cases). Rules 1 and 2 yield v =0 and therefore
must be excluded, although any small decrease of C rela-

TABLE II. Characterization of learning rules displayed in
Table I in terms of the general representation (A2) used by
Peretto. A ‘“‘normalizing” factor N /2 has been removed from
each entry.

A B C D
Rule 1 7 n 7 n
Rule 2 n -0 7 0
Rule 3 7 n 0 0
Rule 4 7 0 0 0
Opt.(20) (b+a)/2 0 0 (b—a)/2
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tive to A would eliminate this defect. The next impor-
tant question is that of stability around acceptable fixed-
point solutions. In the zero-noise limit stability is
guaranteed, but more generally it is desirable that the ei-
genvalues of the relaxation matrix be real and negative
over the largest possible domains of any remaining ad-
justable parameters, for given fixed points m®* and
mD* and noise level B~!. As far as dependence on the
learning parameters is concerned, the sizes of these
domains are governed entirely by the parameter combina-
tions X =s+t+u —v and Y =ut —sv. The actual ex-
pression for the eigenvalues takes the form

As=k[X —k 'H(X2—8V)?) /7, (AS5)

where « is a positive constant determined by B and the
fixed-point solutions m ®* and m‘V*, and 7 is the ele-
mentary time step. Thus reality requires X>—8Y >0,
and negativity is favored by a more negative value of X.
It is interesting that the two viable separable algorithms,
namely the presynaptic rule (rule 3) and the Hopfield rule
(rule 4), produce identical values for the key parameters
X and Y, namely X =2( 4 +D°) and Y=24D° Hence
they must be judged equally effective in the present con-
text. It may be recalled that according to the minimum-
G criterion, the Hopfield rule is more nearly optimal than
the presynaptic rule, when form (20) is used for the firing
function. The optimal rule itself, which has a D admix-
ture in the amount D=N(b —a)/4, gives X =2(4
+D%)+2MD and Y =24D°+2M AD. If the bounds a
and b appearing in the resource constraint (22) happen to
coincide, one obtains the same behavior as for rules 3 and
4. However, if b > a, the optimal rule must be regarded
as inferior to these in Peretto’s problem, since the corre-
sponding values of X and Y are larger algebraically by
positive amounts 2MD and 2M AD, respectively; while if
b <a, the converse holds and the optimal rule is superior.
For the sake of completeness, we quote the values of the
key stability parameters of the other two separable rules:
X=24+D°+2MA, Y=24D°+2(M —1)A? (Hebb
case, rule 1) and X =2( 4 +D%), Y =2 AD° (postsynaptic
case, rule 2). Even if we could ignore the issue of accept-
able fixed-point solutions for m'! and m'?, the Hebb
rule would still suffer from unfavorable stability proper-
ties when compared to rules 3 and 4 (and also rule 2).

Considering only the signs of s, ¢, u and v, Peretto as-
serts that the most favorable situation for stability is
—,+,—,—. The second and fourth sign conditions are
automatically met for presynaptic, Hopfield, and optimal
rules. To satisfy the other two sign conditions, parameter
choices D°< — 4, D°<0, and D° < —MD must be made
in the respective cases. For |MD|> A, the last is the
strongest constraint of the three if b > a and the weakest
if b <a.

We now turn to Peretto’s assessment of the efficacy of
learning rules of the class (A2) for the problem in which
an infinite number of patterns M is to be stored. This
problem has been thoroughly studied by Amit and co-
workers?!"?2 for the case of symmetrical Hopfield cou-
plings, by adapting methods developed for the equilibri-
um statistical mechanics of spin glasses, notably the repli-
ca trick. However, the general learning rule (A2) induces
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asymmetrical interactions, precluding the direct transfer-
ence of these techniques. Accordingly, Peretto adopted a
mean-field approach in conjunction with the self-
averaging hypothesis. The latter ansatz amounts to the
strong assumption that all statistical observables are sam-
ple independent in the thermodynamic limit, or, more to
the point, that the memory storage capacity of a large
neural net of the type under consideration can be found
by averaging over a large number of realizations of the
nominated patterns. The formal treatment based on the
mean-field description and self-averaging was supple-
mented by rough scaling arguments and by computer
simulations involving 200 and 400 neurons.

The scaling arguments are based on the elementary sta-
bility conditions needed to ensure that an arbitrarily
chosen memory pattern (pattern 1) is a fixed point of the
noiseless dynamics:

EVF (") >0, i=1,...,N . (A6)

For random candidate patterns, destabilization of pattern
1 due to the local-field contributions from the other pat-
terns pu#1, or due to the uniform field arising from
MD +D?° is predicted to occur when the combination of
parameters

M B cl’ 1 [mMp+D° ? C 2

- _ —_— - —_— + —

N I+ A + A +Ml A H A
(A7)

becomes of order unity or greater. The best choice of pa-
rameters is clearly 470, B =C =D =0, yielding the
Hopfield rule, with its characteristic scaling behavior?!??
M, ~N for the memory capacity M, (absent D%. A
nonzero value of any of the parameters B, C, or D entails
a degradation of memory performance of some kind and
in some degree, and hence the Hebb rule is obviously the
worst of those shown in Table II. Studying the effects of
the learning parameters B, C, and D individually relative
to the Hopfield case, the structure of (A7) implies that C
is the most destabilizing, and that a necessary require-
ment for stability is |C| < 4, where, as usual, A4 is taken
to be positive. This conclusion speaks against rules 1 and
2 of Table II, which were also found wanting in the
finite-M analysis. The parameter B is the least damaging
in that it does not destroy the scaling M, ~ N characteris-
tic of the Hopfield rule. However, its presence does
reduce the memory capacity from that of the Hopfield
model. In particular, rule 3, which corresponds to
A =B >0, C=D =0, yields the value 2M /N for (A7)
(again, absent D°) and is thus estimated to provide half
the capacity allowed by the Hopfield rule, although it was
seen to give a performance equivalent to that of rule 4
within the finite-M analysis. The parameter D is poten-
tially quite dangerous, since an uncompensated D term in
(A7) restricts the scaling behavior of the capacity to
M_,~V'N. Along with rule 1, the optimal rule of Table
II may suffer from this restriction, if ab; otherwise it
coincides with the Hopfield rule and is immune. Howev-
er, it is important to note that the effect of D is coupled
with that of the nonplastic synaptic parameter D®. The
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latter parameter has no impact on stability, unless it
scales like M”, with n = 1. But if n =1 it may in fact be
used to compensate the harmful influence of a D com-
ponent (as for the optimal rule), by choosing D°= —MD.

Using the mean-field approximation with self-
averaging, Peretto has constructed a set of coupled equa-
tions from which the order parameters m‘! and m©
may be determined at arbitrary 3, for any combination of
learning parameters. For the parameters of the Hopfield
rule, these equations reduce to those obtained by Amit
and co-workers?"?? based on the replica technique. A
systematic study of the coupled equations in their full
generality was not carried out. Rather, solutions were
only discussed in the zero-noise limit, for the special case
A >0, B=MD +D°=0. This case was chosen with the
intent of isolating the destabilizing effects of the parame-
ter C, putatively the most injurious to memory perfor-
mance. The principal finding is that the efficacy of recall
(as measured by m ‘") and the critical load a, =M, /N
(beyond which retrieval fails catastrophically) experience
steady degradation as |C|/ 4 rises from O to 1, at which
point all memory storage abilities are lost. The critical
value of m'!, i.e., the value of the order parameter at
a=a,, diminishes progressively from 0.97 to 0.5 as
|C| / A increases through the stated range. The results of
this analytical approach are in “fair”” agreement with the
corresponding computer simulations, but significant devi-
ations are evident, particularly at the larger values of
|C|/A. Available computer simulations also provide
some information on the effects of the other parameters,
particularly B and D. As predicted by the scaling con-
siderations, the harmful effect of B is weaker than that of
C, implying (once more) that rule 3, though worse than
rule 4, is better than rule 2 or rule 1. The deleterious
influence of D is not found to be as serious as expected, in
that it produces a selective destabilization of patterns in
contrast to the even degradation caused by B and C. Ac-
cordingly, the optimal rule (23), with a¥b, may not be
much inferior to the Hopfield rule, especially if b <a and
D is thus negative. Moreover, as pointed out above, the
auxiliary nonplastic parameter D° may be adjusted to
reduce or remove the destabilizing effect of the D com-
ponent.

In summary, the arguments presented in Ref. 12 point
to the Hopfield memory storage algorithm (our rule 4) as
the best rule of the general class (A2), at least within the
somewhat restricted framework of the memory model
considered. Of the four separable rules of Tables I and
II, rule 3 is judged to be better than rule 2, and rule 1 (the
simple Hebb prescription) is the worst of all. The relative
performance of the optimal rule (23) emerging from G
minimization for the corresponding firing function (20)
depends critically on the difference in the resource con-
stants b and a appearing in Eq. (22), since 2D /N =(b
—a)/2. In favorable circumstances, this algorithm is
equivalent to the Hopfield rule and in some cases it can
even be somewhat better (cf. Peretto’s analysis for finite
M).

Our results based on G minimization also favor the
Hopfield rule among the elementary separable examples.
The Hebb rule is again identified as the least effective, the
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presynaptic and postsynaptic rules being of equivalent,
intermediate effectiveness in reducing G. In comparison
with the optimal rule (23), the Hopfield rule is faulted
only in its inability to make full use of the available
synaptic resources as specified by (22). On balance, it can
be said that the two approaches to the assessment of
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learning algorithms are in qualified agreement. Differ-
ences in detailed conclusions may be attributed, on the
one side, to the highly specific assumptions necessary for
Peretto’s treatment and, on the other, to the comprom-
ises that must be struck by a criterion so general as the
principle of minimum relative entropy.
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