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Calculation of temperature dependence of interbase breathing motion of a
guanine-cytosine DNA double helix with adenine-thymine insert
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The modiIIied self-consistent phonon approximation is generalized to calculate the critical temper-
ature of a DNA double helix with block inserts of difFerent base pair sequences. An iterative
method based entirely on the Green s function is developed to compute efBciently the self-consistent
anharmonic force constants and thermal mean-squared vibrational amplitudes in hydrogen bonds.
The calculation is carried out for a long guanine-cytosine (G-C) type helix with an insert of d(A)4-
d(T)4. The melting-associated behavior is predicted to initiate in major groove bonds in the inserted
adenine-thymine (A-T) base pairs at 349 K. This temperature is above the mean-field melting tem-
perature of poly(dA)-poly(dT) due to stabilization of the A—T bonds by the G-C helix and below
the mean-field melting temperature of poly(dG)-poly(dC), where dA refers to repeating ade-
nine bases on one strand and dT the repeating thymine bases on the other strand.

I. INTRODUCTION

In an earlier work, ' we studied the breathing modes in
a DNA double helix with adenine-thymine (A-T) type in-
sert. We found that the vibrational amplitude of the
average hydrogen bond stretch is enhanced around the
inserted A-T block. We suggested that such enhance-
ment in thermal vibrational amplitude could be the phys-
ical basis for the low stability at A-T-rich regions in
DNA double helices. In natural DNA, local A-T-rich re-
gions are believed less stable and therefore melt at lower
temperatures than guanine-cytosine (G-C)-rich re-
gions, which leads to initiation of melting from A-T-
rich sites. Such open regions offer potential interaction
sites. They play important roles in various biological
processes involving DNA.

As a continuation of this work, we generalized the
modified self-consistent phonon approximation (MSPA)
to study the stability of a DNA double helix mediated by
"large" defects such as the inserted A-T block in a long
G-C-type helix. We report here the estimated melting
temperature of a G-C-type DNA double helix with an in-
sert of four A-T base pairs.

MSPA has been used to predict a critical temperature
associated with interbase hydrogen bond softening in a
DNA double helix. This softening and even apparent
breaking of the interbase hydrogen bonds was associated
with helix melting and the critical temperature with the
strand separation melting temperature. Calculations
have been done for a wide range of difFerent sequence
DNA homopolymers ' and copolymers as well as defect
mediated melting of DNA double helices. ' In the
MSPA theory, the interbase hydrogen bonds are modeled
by a nonlinear Morse potential. " An iterative method is
used to compute the mean-squared vibrational amplitude
and anharmonic force constant in the hydrogen bonds
self-consistently. For DNA homopolymers or copoly-
mers which possess helical symmetry, ' a set of normal

modes of the system can be computed by diagonalizing
the dynamic matrix in each stage of calculation, then the
mean-square stretch in the hydrogen bonds can be ob-
tained by summing up the contribution from each of
these normal modes. In the presence of a defect which
breaks the helical symmetry, a Green "s-function
method ' ' has been developed to compute the mean-
square stretch. However, when the degrees of freedom
directly affected by the defect are relatively large, this
method can be very time-consuming and inefricient. The
algorithm we develop here eliminates the calculations of
the eigenvalues and eigenfunctions except for generating
the initial harmonic Green s functions. All further calcu-
lations are entirely based on the Green's-function
method. This drastically reduces the computing time and
increases the accuracy in numerical calculation. It could
be used to efficiently compute the self-consistent solution
for a DNA double helix with large defect.

As in Refs. 1 and 14, the effects due to bending and
possible conformation change' at the A-T block are not
taken into account due to the complexity of the problem
and will be investigated in further studies.

II. GREEN'S FUNCTION AND MSPA

As described in Ref. 1, the helix is constructed from a
perfect double helix, poly(dG)-poly(dC) in the 8 confor-
mation, and a finite section of double helix with the same
conformation but consisting of A-T base pairs. The in-
sertion is done by cutting a section from the perfect G-C
helix and replacing it with the A-T block (Fig. l). The
standard 8 conformation is assumed for the final system.
Structural distortion which may occur around the A-T
insert are neglected in our calculation due to complexity
and will be investigated in further study. Therefore, only
the sequence is altered in a standard 8 conformation. We
choose to cut the O(5)—C(5) bond so that the number of
valence forces involved is a minimum.
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consistency which is indicated by a convergence in the
force constant for each hydrogen bond into a stable value
within a common small tolerance.

In the presence of a defect which breaks the helical
symmetry, one cannot solve the secular equation for the
normal modes by simple diagonalization. However, if the
defects are confined within a finite region in the DNA
double helix, we can use the Green's-function method to
compute the above quantities.

In our approach only the matrix C depends on temper-
ature. We may define a Green's function for the system
at fixed temperature with only structural defect (i.e.,
C =0),

G=(co I F C—)—
and a Green's function for the complete system,

G=(co I F C —C—)—
It can be shown that'

FICx. 1. The construction of the helix is illustrated. The in-
sertion is done by cutting a section from the perfect helix,
poly(dG)-poly(dC), and replace it with an oligomer d(A)4-d(T)4.

6=6+6 T 6,
where

T=(C ' —G)

(4)

The DNA double helix can be described by the eigen-
problem

(F co I+C+—C )q =0
where I' is the matrix of force constants for the helix sys-
tem we start with, which consists of the homopolymer
poly(dG)-poly(dC) and an oligomer d(A)4-d(T)4. The ma-
trix C is the change in I' necessary to bring about the sev-
ering of the homopolymer and the reconnecting of the
A-T block to the two semi-infinite strands, the matrix C
is the change in F due to anharmonicity in hydrogen
bonds which are allowed to soften as temperature in-
creases, co and q are the eigenvalues and eigenfunctions.

We are interested in the hydrogen bond stretch force
constants, thermal mean-square stretch amplitudes, and
other quantities at a given temperature. These quantities
may be directly obtained from the normal-mode frequen-
cies and eigenfunctions if the secular equation can be
solved. In the current problem, however, such equations
cannot be solved for normal modes of the system because
of the anharmonic force constants.

In the MSPA theory, an iterative method is introduced
to compute the above quantities self-consistently. In this
calculation, an initial set of force constants for the hydro-
gen bond stretch is obtained by fitting to the Lippincott-
Schroeder potential' for hydrogen bonds. Then for
DNA homopolymers or copolymers, the secular equation
is solved to obtain the normal-mode frequencies and
eigenfunctions from which an anharmonic force constant
is calculated for each hydrogen bond based on the Morse
potential. These force constants are then used to calcu-
late a new set of normal-mode frequencies and eigenfunc-
tions. The process is repeated until it reaches the self-

The Green's function 6 is temperature independent and
needs to be calculated only once from the Green's func-
tion of the initial helix system. This can be found from
the normal-mode frequencies and eigenfunctions. "'
Then Eqs. (4) and (5) can be used to compute the Green's
function 6 of the complete system at any iterative step
for a set of trial anharmonic force constants in hydrogen
bond stretches. The thermal mean-squared vibrational
amplitude for the ith hydrogen bond may be obtained

14, 18

D; =—f den lm[G;;(co )]coth
Ado

77 2kT

The anharmonic force constant corresponding to this
stretch amplitude is then calculated from

f —u'i2D d Vaue
du

where

y(&) y (e
—2a((R)+u) 2e

—u((R)+u))
p e

is the Morse potential. Here Vp and a are parameters
which characterize the potential, (R ) is the displace-
ment of the center of the distribution function
exp( —u l2D) from the equilibrium position due to
thermal expansion. It is assumed to be a function of the
mean-squared stretch amplitude. The determination of
(R ) has been given in earlier publications.

The computed force constant P is expected to differ
from the initial value but be closer to the true effective
anharmonic force constant of the hydrogen bond. We
may then use this force constant in Eqs. (4)—(8) iteratively
to calculate another force constant which is even closer
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to the exact anharmonic force constant. The process may
be repeated until the force constant converges to a stable
value. This stable value is the self-consistent anharmonic
force constant.

III. NUMERICAL CALCULATION
AND APPROXIMATIONS

As pointed out in the preceding section, self-consistent
anharmonic force constants can be calculated at a given
temperature by using the standard iterative method
which uses the calculated anharmonic force constant of
the current iteration as the initial force constant for the
next iteration. The method, however, is very slow in
reaching the convergence. A large number of iterations
is required in order for the relative change in force con-
stant to be less than a given small tolerance. In this cal-
culation, we used a different approach in computing the
self-consistent anharmonic force constant, which can im-
prove the speed of convergence appreciably.

Let P; be an initial guess for the anharmonic force con-
stant for a particular hydrogen bond and Pf be the force
constant calculated from Eqs. (4)—(8). Due to the fact
that Pf is always closer to the true anharmonic force con-
stant than P, , the function defined by the difference be-
tween Pf and P,

is a monotonic function of t)), and the self-consistent
anharmonic force constant is given by f (Po) =0.
f (P; ) )0 indicates that the initial guess for the anhar-
monic force constant is too small, while f(P;) (0 indi-
cates the initial guess is too large. Then any root finding
algorithm may be used to find the self-consistent force
constant Po. We choose the secant' method in our calcu-
lation because it does not require initial guesses to brack-
et the root. The effect of collective motion is neglected in
writing Eq. (9). In fact, both Pf and f should be func-
tions of P, for all of the hydrogen bonds considered self-
consistently. However, the effects from changes in force
constants of other hydrogen bonds are secondary and Eq.
(9) is valid at least in the lowest-order approximation.

Two initial guesses for the anharmonic force constant
are required for each hydrogen bond in the secant
method. The harmonic force constant obtained from the
Lippincott-Schroeder potential is chosen to be the first
one. At room temperature, the anharmonic force con-
stant can be determined self-consistently by any reason-
able second choice. For example, the calculated force
constant Pf from the first choice (harmonic force con-
stant) is taken to be the second guess in our calculation.
At higher temperatures, we use an extrapolation scheme
to predict the anharmonic force constant from the self-
consistently determined force constants at previous tem-
peratures. This predicted force constant is usually very
close to the true self-consistent force constant and serves
as the second choice in the secant method.

All bonds are treated simultaneously in each step of
the iterative calculation. The secant method is only used
to predict values to start with. Once we pick these initial

values, they are used in Eqs. (5)—(7) to obtain a new set of
force constants. The final outcome is independent of the
trial values as any self-consistent solution should be. But
only a few steps are required to achieve self-consistency.
As a criterion for self-consistency, we require that the rel-
ative changes from the previous iteration and from the
trial values for each hydrogen bond be less than a com-
mon small tolerance. This ensures that convergency is
achieved for all of the hydrogen bonds considered. This
is necessary because converging speeds are different for
different hydrogen bonds. The new criterion is more
strict than those used in previous self-consistent calcula-
tions. " '

As discussed in Ref. 14, a set of effective forces is used
to replace the long-range interactions across the inter-
faces, which are too complicated to be treated exactly.

The calculation of the Green's function 6 for the sys-
tern involving only structural defects has been described
in detail in Refs. 1 and 14 for in-band modes. In the
current self-consistent calculation, however, the integral
in Eq. (6) has to be done repeatedly. To calculate the in-
tegral accurately is a challenge because the imaginary
part of the Green's function 6, which includes the densi-
ty of states implicitly, is an irregular function of frequen-
cy. This is particularly true around the discrete A-T
modes which are shifted in frequency as the force con-
stants change. To overcome this difhculty, we assign a
relatively large imaginary part to co for all modes, in-
cluding local modes. Besides smoothing the density of
states as a function of frequency, this also enables us to
treat the entire spectrum uniformly as in-band modes. In
this calculation, an imaginary part of y =co /100~ is in-
troduced to co, while the mesh size of the integral in Eq.
(6) is chosen to be hco =y/2=co /200vr. The integral is
done using the trapezoid rule.

The dispersion branches of poly(dG)-poly(dC), which
lie between 10 and 300 cm ' are treated exactly. These
include bands 1—31. The high-frequency modes are treat-
ed as dispersionless and their contributions to the
thermal mean-square amplitudes are assumed to be con-
stants. The contribution from the very low-frequency
(below 10 cm ') vibrations is expected to be very small
and is neglected in the calculation.

The hydrogen bonds in the four inserted A-T base
pairs and two G-C base pairs next to the A-T block on
each side of it are treated self-consistently. This brings
the total number of hydrogen bonds treated self-
consistently to 20, which specifies the dimension of the
matrix T. Hydrogen bonds in all remaining base pairs
are considered harmonic. The Morse potentials for these
20 hydrogen bonds are the same as these for the corre-
sponding hydrogen bonds in the respective homopoly-
mers.

IV. RESULTS AND DISCUSSIONS

We carried out the self-consistent calculation as de-
scribed above for a long G-C helix with a d(A)4-d(T)4 in-
sert. Starting from room temperature (293 K), we com-
puted the self-consistent anharmonic force constants of
the hydrogen bonds stretch and the thermal mean-
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squared vibrational amplitudes for the 20 hydrogen
bonds mentioned in the preceding section. The condition
for self-consistency used in this calculation is

I

& 0.0001,
0j

for each of the 20 hydrogen bonds, where Pf is the calcu-
lated force constant at the last iteration.

The softening in the major groove bond is largest for
each base pair as is observed in homopolymers and other
DNA polymers. Therefore, close attention is paid to the
major groove bonds in observing the softening of the
helix. In Fig. 2, the self-consistent mean-squared vibra-
tional amplitudes for the major groove bonds are shown
as functions of temperature. The amplitudes are all in-
creasing functions of temperature. The two A-T base
pairs in the middle have the largest amplitudes and
fastest increase as temperature goes up. The amplitudes
in the next two A-T base pairs are smaller because they
are closer to the G-C base pairs and more stabilized by
the G-C base pairs. On the other hand, the amplitudes in
the two G-C base pairs next to the A-T block are slightly
larger than in other G-C base pairs due to destabilization
by the A-T block.

The self-consistent anharmonic force constants for the
major groove bonds are shown in Fig. 3. The force con-
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FIG. 3. The self-consistent anharmonic force constants in the
hydrogen bonds near the major groove are shown as functions
of temperature. The legends are the same as in Fig. 2.

stant decreases as temperature increases as a result of
bond softening. Here again the stabilization of the A-T
base pairs by the G-C helix and the destabilization of G-
C base pairs close to the A-T block by the A-T insert are
obvious.

In Fig. 4, we show the average potential energy in each
of the major groove bonds at diferent temperatures. The
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FIG. 2. The thermal mean-squared vibrational amplitudes in
the hydrogen bonds near major groove are shown as functions
of temperature. The labels indicate (curve a) A-T base pairs in
the center; (curve b) A-T base pairs adjacent to G-C base pairs;
(curve c) G-C base pairs nearest to the A-T insert; (curve d) G-C
base pairs next nearest the insert. Since this helix does not have
inversion or C~ symmetry, the behavior of the bonds on either
side of a line between the central A-T base pairs is slightly
diA'erent. The dashed line is for the base pair in the direction of
3' to 5' in A and G strands from the center line. The solid line
is the base on the other side of the center line.
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FIG. 4. The average potential energies in the hydrogen bonds
near the major groove are shown as functions of temperature.
The legends are the same as in Fig. 2.
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average potential energies increase with temperature for
G-C base pairs in the temperature region considered
here, while the average potential energy in the A—T
bonds starts to drop after 349 K, which indicates the
breakdown of solid behavior in the A-T base pairs. It is
this breakdown that is associated with melting of the sys-
tem and we define this temperature as the lowest turning
point in average potential energies. ' ' The average po-
tential energies in the minor groove bonds and the middle
bonds in G-C base pairs are not shown here. They either
do not exhibit decrease when temperature increases in the
temperature range considered or start decreasing at a
temperature higher than 349 K. Therefore we can con-
clude that melting is likely initiated in the A-T insert re-
gion and the major groove bond should be first broken at
the melting temperature.

Besides the small softening effect in the G-C base pairs
close to the A-T block, nothing extraordinary is observed
in the G-C part. The calculation suggests that the in-
duced melting could be local. The presence of a local de-
fect like the A-T insert may have only a small effect on
the global behavior of the helix. The nearest G-C base
pair could likely melt before bulk G-C but not by too
much. Due to the limitations of the current MSPA cal-
culation, which is only expected to provide some indica-
tions of strand separation by associated phenomena, we
cannot exactly determine when the hydrogen bonds in
the G-C base pairs break because the self-consistent solu-
tions at higher temperatures are unphysical.

Melting is initialized in the inserted d(A)4-d(T)4 block
around 349 K, which is about 30 K above the mean-field
melting temperature for poly(dA)-poly(dT) (Ref. 21) and
below the mean-field melting temperature of poly(dG)-
poly(dC) which is believed above 400 K using the current
model. ' ' This is qualitatively in agreement with exper-
imental observations. The helix melts at a higher temper-
ature than poly(dA)-poly(dT) due to the stabilization
effect by the G-C helix. The G-C base pairs close to the
A-T block are destabilized by the A-T block but the effect
is not strong enough to induce melting in the G-C base
pairs.

The pattern seen here is similar to the results in our
most recent mean-field calculations. ' ' In these calcula-
tions, no complete breakdown of self-consistency above a
critical temperature is found. Self-consistent solutions
are found at high temperatures but they are unphysical
and cannot represent a correct solution to what is an
effective harmonic system. The decrease in energy in the
hydrogen bonds with temperature indicates that no phys-
ical solidlike MSPA solution exists. This breakdown of
solidlike behavior is assumed to be correlated to the melt-
ing of the physical system.
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