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A new type of diffraction effect, different from the standard semiclassical ones (rainbow, glory,
forward peak, orbiting), takes place near the critical angle for total reflection at a curved interface
between two homogeneous media. A theoretical treatment of this new effect is given for Mie
scattering, e.g., light scattering by an air bubble in water; it can readily be extended to more general
curved interface problems in a variety of different fields (quantum mechanics, acoustics, seismic
waves). The relatively slowly varying Mie diffraction pattern associated with near-critical scattering
is obscured by rapid fine-structure oscillations due to interference with unrelated “far-side” contri-
butions. These contributions are evaluated and subtracted from the Mie amplitudes to yield the
relevant “near-side” effects. A zero-order transitional complex angular momentum (CAM) approxi-
mation to the near-side amplitude is developed. The most important contributions arise from par-
tial and total reflection, represented by two new diffraction integrals, designated Fresnel-Fock and
Pearcey-Fock, respectively. The total reflection contribution is strongly affected by tunneling, giv-
ing rise to a generalized version of the Goos-Héanchen shift. In terms of short-wavelength asymptot-
ic methodology, in a generalized Huygens-Fresnel-type integral representation, the new diffraction
features arise from nonanalyticity of the integrand amplitude function within the range of a saddle
point. Also discussed are the WKB approximation, a known physical-optics approximation, and a
modified version of this approximation: they are compared with the “exact” near-side Mie ampli-
tude obtained by numerical partial-wave summation, at scatterer size parameters (circumference di-
vided by wavelength) ranging from 1000 to 10000. It is found that the physical-optics approxima-
tions lead to large errors in the near-critical region, whereas the zero-order CAM approximation is
in good agreement with the exact solution, accounting for the new diffraction effects in near-critical
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scattering.

I. INTRODUCTION

The standard critical situations in semiclassical scatter-
ing, where primitive semiclassical approximations fail
and diffraction effects become important, are associated
with near-forward diffractive scattering, rainbow scatter-
ing, forward and backward glory scattering, and orbiting,
usually related with resonance scattering.!

In the present work, we deal with a new type of
diffraction effect, which takes place in the vicinity of total
reflection from a curved interface (a plane interface, for
which the theory has already been partially developed, is
included as a limiting case). The effect was identified long
ago by Pulfrich,? who believed it to be connected with the
rainbow, through a sort of reciprocity relation. Pulfrich
observed scattering of white light from a cloud of air bub-
bles in water, rather than a cloud of water droplets in air.
He saw pale colors near the critical scattering angle
0, =2 cos~ !N at which incident light is totally reflected,
where N is the relative refractive index (for air bubbles in
water, N=~0.75 and 0,~82.8°). According to Pulfrich,
6, would play a role analogous to the rainbow angle.

However, although it is tempting to draw analogies be-
tween the two phenomena, in reality they are quite
different. In geometrical optics (or classical mechanics), a
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rainbow scattering angle is a caustic direction, corre-
sponding to an infinite discontinuity in the scattered in-
tensity, while the critical scattering angle is connected
with a weaker singularity, which one may call a weak
caustic: a continuous scattered intensity with an infinite
discontinuity in slope. This singularity arises from the
behavior of the Fresnel reflectivities at the critical angle:
their slope shifts from vertical to horizontal, producing a
cusp.® The diffraction pattern to which this gives rise has
a superficial similarity with that for the rainbow: ‘“‘super-
numerary” oscillations on the total reflection (‘“bright”)
side, and rapid decay on the partial reflection (“dark™)
side. Like the rainbow, the pattern is modulated by
much more rapid fine-structure oscillations, arising from
interference with paths that are entirely unrelated with
the effect under consideration.

As a theoretical model, we choose light scattering by a
homogeneous sphere with relative refractive index N <1,
such as an air bubble in water, because the availability of
the exact Mie solution* allows us to perform precise nu-
merical tests of the accuracy of the proposed approxima-
tions. The Mie solution is in excellent agreement with ex-
periment, as was verified in high-resolution observations
by Langley and Marston.’

However, like the rainbow (but unlike the glory), the
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effect is structurally stable, being preserved even under
large deformations, e.g., from spherical to cylindrical
geometry. Actually, observations with cylindrical “bub-
bles” were made both by Pulfrich and by Marston and
co-workers (including photographs of colors).® As will be
pointed out in the concluding section, the theory
developed in the present paper can be carried over with
only trivial changes for the cylindrical case.

The results also apply to nonrelativistic quantum
scattering by a two- or three-dimensional square potential
barrier (conceivably of interest in connection with quan-
tum electron devices), as well as to acoustic scattering by
a homogeneous sphere or cylinder. In geophysics effects
associated with near-critical reflection are of considerable
importance in the theory of head waves.””® For a planar
interface, results closely related to a limiting form of
those derived here (when the radius of curvature tends to
infinity) are known.!°

In the geometrical-optic approximation to the theory
of light scattering by an air bubble in water,!! the cusp-
like singularity of the Fresnel reflectivities is reproduced
in the scattering pattern at the critical angle. It is impor-
tant to distinguish geometrical optics, in which contribu-
tions to the intensity from different paths are added in-
coherently, from the WKB zero-order approximation, in
which due account is taken of the phases associated with
the corresponding geometrical-optic terms, so that in-
terference effects are included. The WKB approxima-
tion, also known as primitive semiclassical approximation
in the quantum context, is the analog of Young’s interfer-
ence theory of the rainbow.'? It plays an important role
in the present problem, because it allows us to define the
near-critical domain as the angular neighborhood where
the WKB approximation departs significantly from the
“exact” Mie results. The departures, due to diffraction,
are the new effects that must be accounted for by the
theory.

A physical-optics approximation, constructed by
analogy with Airy’s theory of the rainbow, predicts a
Fresnel-like diffraction pattern in the far field modified by
interference with direct transmission. It explains the
fine-structure oscillations in terms of interference with
rays transmitted along a different path.> In the domain
of total reflection, not very close to the critical scattering
angle, it is in fair agreement with the Mie coarse-
structure pattern regarding the locations of maxima and
minima; it also predicts the angular spacing of fine-
structure modulations. These features agree with mea-
sured intensity patterns.” In the vicinity of the critical
scattering angle, as well as in the partial-reflection
domain beyond it, the physical-optics approximation
does not agree with the Mie results, substantially un-
derestimating the scattered intensity.” Detailed compar-
isons have been hindered by the difficulties associated
with removing the contribution from the superimposed
(but totally unrelated) fine-structure pattern.

The near-critical region is also excluded from con-
sideration in treatments based on the geometrical theory
of diffraction.!®> The physical effects responsible cannot
be determined from Mie summations involving a large
number of partial-wave terms. Thus no satisfactory
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quantitative theory of the new diffraction phenomena in
this region is available.

In the present work, we employ complex angular
momentum (CAM) theory!® to deal with near-critical
scattering, taking advantage of the physical insights
developed in its applications to both classical and quan-
tum scattering problems. Recent developments in CAM
theory'”!® have shown that it can yield extremely accu-
rate asymptotic approximations to exact results.

Here, we do not aim at high accuracy, but rather at a
basic understanding of the new diffraction effect. Thus
we develop just the lowest-order transitional asymptotic
approximation, keeping only dominant terms and disre-
garding uniformity. As a consequence, the domain of ap-
plicability of the approximations is restricted to large size
parameters and to a limited neighborhood of the critical
scattering angle. However, the most sizable diffraction
effects are confined to this neighborhood, and no
difficulty is anticipated in improving the accuracy and ex-
tending the domain of validity of the results.

Several shortcomings in the earliest CAM treatment!®
were corrected later,°~?? yielding preliminary versions
of results reported here. These versions have also been
employed to derive an asymptotic approximation to the
scattering amplitudes at exactly the critical angle.?3~2°

After introducing the CAM representation, we discuss
the effective potential concept and its application to the
selection and physical interpretation of dominant contri-
butions (Sec. II). In order to isolate the diffraction effects
in near-critical scattering, one must begin by removing
the distracting fine-structure modulation. This is accom-
plished by subtracting out the interfering terms (Sec. III).

The first relevant contribution, arising from partial
reflection, is evaluated in Sec. IV. In Sec. V, we evaluate
the effects due to transmission through the sphere, which
yield a relatively minor, but still non-negligible contribu-
tion to diffraction. The most significant contribution,
originating from total reflection, is analyzed in Sec. VI.

It turns out that the curvature of the scatterer plays
two very different roles in this problem. One is just to
spread out the range of angles of incidence; when only
this trivial role is taken into account, while neglecting the
effects of curvature on reflection amplitudes at the inter-
face, one obtains a “planar-limit approximation” (Sec.
VI). The results found in this approximation are closely
related to those obtained in the total reflection of a diver-
gent beam at a plane interface,'” including the well-
known Goos-Hinchen shift.?® The spherical analog of
this shift appears as an angular displacement that may be
interpreted as a tunneling effect.

The CAM approximation, defined in Sec. VII, includes
the dynamical effects of curvature, which modify the in-
terface reflection amplitudes. It contains new diffraction
integrals, the Fresnel-Fock and Pearcey-Fock integrals.
In the planar limit, in a small neighborhood of the criti-
cal angle, the new diffraction contributions are approxi-
mated by a function related to Weber parabolic cylinder
functions.

Other approximations discussed in Sec. VII include the
WKB approximation; the physical-optics approximation;
and a modified version of this approximation, with im-
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proved features in the domain of partial reflection. Nu-
merical comparisons and plots of the Mie results with all
these approximations are presented in Sec. VIII. It is
found that, in contrast with physical-optics approxima-
tions, CAM theory fully accounts for the new diffraction
effects in near-critical scattering.

The main conclusions and a physical discussion of the
results, including the connections with general semiclassi-
cal approximations and catastrophe theory, are given in
Sec. IX. Readers who are primarily interested in such
general features may proceed directly to this section.

II. THE CAM REPRESENTATION

A. The Mie solution

The Mie scattering amplitudes S, (perpendicular po-
larized) and S, (parallel polarized) in the direction 6 for
the scattering of a linearly polarized plane monochromat-
ic wave with wave number k by a homogeneous sphere of
radius @ and relative refractive index N (assumed real and
less than unity in the present work) are given by?’

S;(B,0)=13 {[1—S(B)]t;(cosb)
I=1
+[1—5/2(B)1p,(cosB)} ,
Lj=12, i#j (2.1)

where B=ka is the size parameter; our convention for the
time factor is exp( —iwt).

The S functions S|/, associated with magnetic (j =1)
and electric (j =2) multipoles of order /, are given by

_ EP(B) | In'EP(B)—Ne,In'¢y(a)

S(j)( )= 2.2)

PE=T e |8~ Nenw (@) |
where

e;=1, e,=N"?% a=NB, 2.3)

¥, and &2 are the Ricatti-Bessel and Ricatti-Hankel
functions, respectively, and In’ denotes the logarithmic

|

where
. HP(B) [ {2B} —Ne;{a
sV B)=— i P (26}~ Ney Lo 2.10)
Hl (B) {IB}_NGJ{(Z}
and H'"? are the Hankel functions, with
; 1 1
) =1n' ) 1 =1n’ — .
{jz}=IMHY (2)+ 2’ {(z}=In'J,(2)+ 2 (2.11)

In these expressions, we have employed the relationships
among Ricatti-Bessel and Ricatti-Hankel functions and
ordinary cylindrical functions.

As discussed in Sec. I, we want to evaluate only the
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derivative.
The angular functions are defined by
Pv_l(x)—PVH(x)
D (x)= 2 5
1—x
2.4)

t(x)=—xp, (x)+(2v+1)P (x)

where P, is the Legendre function of the first kind (a
Legendre polynomial when v=1is an integer).
The scattering data are the polarized intensities

i(B,0)=[S;(B,0)% j=1,2 (2.5)
and the phase difference
d=argS, —argS, . (2.6)

Instead of (2.5), we shall mainly plot the gain functions
relative to an isotropic scatterer, given by'?

G,(B,0)=4i,(B,6)/B" .

The G; are the ratios of the polarized intensities to their
limiting geometrical-optic values for scattering by a total-
ly reflecting sphere.

2.7

B. CAM representation

The first step in the CAM method?® is to apply to (2.1)
the Poisson sum formula

S fU+h)=3 (_l)mfowf(k)exp(ﬂmvk)d?»
=0 m=—o0

(2.8)

where the interpolating function f(A) reduces to

f (I +1) at the physical values of the angular momentum
A. This requires adding and subtracting a fictitious / =0
term, with

Polcosf)=ty(cosf)="1sec’(6/2)
[cf. (2.4)], so that we get

(2.9)

dominant terms in the asymptotic behavior of S; for large
B and for 6 belonging to the near-critical region. Taking
into account previous discussions of the CAM method
for scattering by a penetrable sphere,!® this enables us to
work with a considerably simplified version of (2.9),
through the following steps.

(i) We neglect the fictitious / =0 contribution. Since
|S§’| =1, this term is O (1) in the near-critical region, in
contrast with dominant contributions that are O ()
[leading to G; =0 (1) in (2.7)].

(i) We keep only the m =0 term in (2.9). The dom-
inant contributions!® will arise from integrals containing
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stationary-phase points (which are associated with
geometrical-optical rays) or from limiting forms of such
integrals in the near-critical region. Extra factors
exp(2immA) with m0 remove the stationary-phase
points and introduce additional rapid oscillations that
render such contributions negligible relative to the dom-
inant ones.

Physically, contributions with m70 are associated
with paths taking one or more turns around the origin.
While such paths may yield important contributions!'®?°
for N > 1, they give rise only to small correction terms in
the present problem.

(iii) It follows from (2.4) and from the asymptotic ex-
pansions of the Legendre functions® that

|ps_1,2(c0s8)/ty_1 (cosO)|=0((|Alsind) 1),

[A|sin@>>1. (2.12)

It will be seen below that |A|=0(a) for the dominant
contributions in the near-critical region, and we assume
that both 8 and a are >>1. Thus terms in p,_,,, are
O(a™!) as compared with those in ¢, _, /,, and will there-
fore be neglected. This approximation amounts to the
neglect of cross-polarization effects,!? so that only mag-
netic (electric) multipoles contribute for j =1 (j =2).

For similar reasons, in the second equation of (2.4), we
can neglect the first term on the right-hand side with
respect to the second one, employing the approximation

ta—1,2(cosO)=2AP; _, ,,(cosB) . (2.13)

(iv) In (2.10), the last terms of (2.11) are O(a™'),
whereas the first terms, as will be seen below, are O(1).
Thus we may neglect the last terms, employing the ap-
proximations'®

(jz}=In'HY (2)=[jz], {z}=In'J,(2)=[z] . (2.14)

Finally, as a result of (i)-(iv), the CAM representation
(2.9) is reduced to the much simpler form

Sj(B,G)zfow[l—S”’(A,B)]Pl_l/z(cose)kdk ,

ji=12 (.15

where S is given by (2.10), with the approximations
(2.14). It is interesting to note that, in this approxima-
tion, S, is related with the dimensionless amplitude f for
scalar scattering by a transparent sphere treated in Ref.
19 by

S1(B,0)=—iBf(B,6)

so that the results found for S apply also to nonrelativis-
tic quantum scattering by a square potential barrier or to
acoustic scattering.

(2.16)

C. Localization principle and effective potential

One of the most useful concepts in CAM theory is the
localization principle,'® according to which, in the short-
wavelength limit, contributions with angular momentum
A are associated with incident rays having an impact pa-
rameter

b(AM)=A/k . (2.17)

Another basic CAM concept!® is the effective potential
U.4(A,r) for the radial equation, obeyed, in the present
case, by the Debye electromagnetic potentials.>! In terms
of the well-known analogy between optics and mechanics,
at a given wave number X, a transparent sphere with re-
fractive index N <1 corresponds to a square potential
barrier of height (1—N?)k? (in units #=2m =1) extend-
ing out to the radius of the sphere r =a. The effective po-
tential is the sum of this barrier with the “centrifugal po-
tential” A2/r? (in the Langer sense).! For magnetic po-
larization, as pointed out above, there is a strict
correspondence with quantum scattering; for electric po-
larization, the boundary conditions at » =a are slightly
different, but this does not affect the ensuing qualitative
analysis.

As illustrated in Fig. 1(a), the effective potential for
this problem is a rounded potential step. In contrast with
the situation®? for N > 1, it does not lead to any sharp
resonances, which immediately explains why the ripple
fluctuations'??’ that are ubiquitous in Mie cross sections
for N >1 are not present for N <1. Also shown in Fig.
1(a) (where A is fixed) are four different values of k2, at
different heights relative to the potential step: by the lo-
calization principle (2.17), they are associated with
different impact parameters. The corresponding incident
rays are shown in Fig. 1(b).

Situation 1 (Fig. 1), with 0<A<a [cf. (2.3)], corre-
sponds to angles of incidence 6, below the critical angle.
The incident ray is refracted into the droplet, where it
undergoes multiple internal reflections. The radial turn-
ing point (classical distance of closest approach to the
center) for an impact parameter b is at » =b /N.

Situation 2, with A=qa, corresponds to incidence at the
critical angle 6., with impact parameter b =Na. The in-
cident ray is totally reflected, but we expect it to generate
evanescent waves within the sphere. In terms of the
effective potential picture [Fig. 1(a)], this corresponds to
a tunneling effect. A similar interpretation applies to sit-
uvation 3, where a<A<p, with the evanescent wave
penetration depth decreasing monotonically as A in-
creases.

In situation 4, with A=p3, the “energy level” lies at the

3. a<i<f 4. 2=
(a) (b)

FIG. 1. (a) The effective potential Ug(A,r)=(A2/r?)
+(1—N?)k2H (a —r), where H is the Heaviside step function.
Four different levels for k2, corresponding to different impact
parameters, are shown. (b) Ray paths associated with the four
situations in (a). 1, subcritical incidence; 2, critical incidence; 3,
supracritical incidence; 4, edge incidence.
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bottom of the step [Fig. 1(a)], and the incident ray is
tangential to the sphere [Fig. 1(b)]. Taking into account
the vertical wall in the effective potential at » =g, this sit-
uation is very 51m11ar to that found at A=p for an impe-
netrable sphere!® and we expect the physical effects to be
also very similar: external surface waves (‘“creeping
modes”) are launched. The “edge domain”

IA—Bl=0(B'")

contributes significantly to diffraction within the penum-
bra region 0<65B '3 however, for 6>>B7 173,
reflection becomes dominant and this contribution can be
neglected. We can also neglect contributions from
A—pB>>B3, arising from rays that pass outside of the
sphere, far from the edge domain.

We conclude that, for the domain of scattering angles
of interest (near-critical region), we may cut off the in-
tegral (2.15) at A=pf. Furthermore, the resulting contri-
bution from the first term within the square brackets in
the integrand, namely,

fBPk_l/z(cose))» dr

nges rlse to the classical Airy forward diffraction pat-
tern,'® which is also negligible in the domain of interest.
Finally, we see that, in the near-critical region, (2.15) may
be replaced by

$/(B,0)=— ['SV(ABPs_, p(coso)ndA . (2.18)

D. Near-side and far-side contributions

The asymptotic expansion®® of P (cosf) for
|v|sin@ >>1 shows that it has the character of a standing
wave in 6. We may decompose it into running waves by
setting?®

Py _1,,(c0s0)=0" | ,(cos0)+ Q> | ,,(cosh) (2.19)
where, for |A|sind>>1,
(1,2) exp{ —T—z[k@—(ﬂ'/4)]}
25 ;2(cosf) =
Qa=inlcos (2772 5inB)172
X[1+0(|Asing| ™ "] (2.20)

so that Q" , travels clockwise in @ and Q§?),,, coun-
terclockwise.
Corresponding to this decomposition, (2.18) becomes

S;(B,0)=S;~(B,0)+S"(B,6) (2.21)
with

ST B,0)=— [PSUMBQLY plcosondh  (2.22)
where the superscript (—) is associated with the super-
script (1) and (+) with the superscript (2).

In applications of semiclassical scattering to nuclear
physics, the (—) component is known as the near-side
amplitude and the (+) component as the far-side ampli-
tude.*® The reason for this nomenclature is that dom-
inant nearside contributions arise from “‘repulsive” paths,
with negative classical deflection angles © = —6, conven-
tionally represented by incidence on the upper hemi-
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sphere (near side), whereas far-side contributions arise
from “attractive” paths, with positive classical deflection
angles, such as ©=46, represented by incidence on the
lower hemisphere (far side). Thus direct reflection at the
surface is a typical near-side contribution, whereas Fig. 2
below illustrates a far-side contribution.

The diffraction effects of interest in the near-critical re-
gion arise entirely from near-side contributions, to be dis-
cussed in Secs. IV-VIII. However, far-side contributions
cannot be neglected in this region: though appreciably
smaller than near-side ones, they interfere with them to
produce, in view of the large phase difference, the rapidly
oscillating modulation of the angular pattern known as
“fine structure” (Sec. I). Examples may be seen in Figs.
3-6 below.

In order to bring out the relevant effects and to allow
meaningful comparisons with the numerically summed
Mie series, it is essential to subtract out far-side contribu-
tions, so as to eliminate, as far as possible, their obscuring
effect on the pattern of interest. This is the main purpose
of the evaluation of far-side terms undertaken in the fol-
lowing section.

III. REMOVAL OF FAR-SIDE CONTRIBUTIONS

A. The Debye expansion

Far-side contributions arise from rays transmitted
through the sphere after one or more internal reflections.’
In CAM theory, they are associated with terms in the
Debye multiple-internal reflection expansion!® of the far-
side amplitude. The Debye expansion of the S function
(2.10) is given by!®3*

SY,B)=S§ (A,B)

P )
+ 3 SY(A,B)+ASY(A,B), (3.1)

p=1

j=1,2

where P is the order of the last term that one wants to re-

FIG. 2.
20,+2(7—26,)=m+6.

Lowest-order (p =2) far-side ray path, with
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0.8 L
0.4 - -
] it
1 (a) B |
750 77.5° 80° 82.5° 85° 87.5° 90°
0
25 1« .o PR S PR B ST S
2
1.5
]
G, (Mie)
0.5 G, (P=2) + 0.6
N=0.75, B=10000 G, (P=4)+09
b G, (P=10) + 1.1 0
(b) G, (P=100) + 1.2 t
o4+——rr———vt ]
78° 80° 82° 84°

6

FIG. 3. (a) Comparison of exact polarization 1 gain function G (Mie) with subtracted gain functions to orders P =2 and P =100,
for N =0.75, B=1000. (b) Effect on G, (Mie) of increasing number of subtractions, for N =0.75, =10000. To avoid overlap, the
curves have been offset by varying amounts.
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1 N
N=0.75, B=5000
s G, (Mie) +12
—— G, (P=2)
G, (P=100) T

T
80° 81° 82° 83° 84° 85° 86°

FIG. 4. Same as Fig. 3(a) for polarization 2, with = 5000.
The curve for P =2 is plotted at a different scale (indicated on
the right) to facilitate the comparison.
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ASY(AB =SSP} (L,B)/[1—pY(A,B)] . (3.4)

In the direct-reflection term (3.2), RY) is the external
spherical reflection coefficient, given by [cf. (2.11)]

{2B} —Ne; {2a}

) —
REB)= = {15 "N (2] (3.5)
In (3.3), we have
) H(l)(a) )
p‘f’(x,3)=-m1z W) (3.6)
A

where R ) is the internal spherical reflection coefficient

(18} —Ne;{1a}

() = J
R (2.B) {1B} —Ne; {2a}

(3.7

The inwards and outwards spherical transmission
coefficients T%) and T4 in (3.3), respectively, are given
by

(3.8)

Substituting (3.1) into (2.22), we finally obtain the De-

tain and
. HYPB) - ;
ng’(k,B)=Ffr(g—)R F.B) , (3.2) TH(LB=1+RL(.B) ,
H();)(B) T (4B =1+R{(4,B) .
s;f)(x,ﬁ)z;I—ﬁmrg@(x,mﬂg)(x,m
A The Debye term (3.3) is associated with transmission
0 o—1 H &”(a) after p —1 internal reflections, and (3.4) represents the
X[p”(2,B)] HP(a) 4 remainder after P — 1 internal reflections.
p=12,..., (3.3) bye expansion of the far-side scattering amplitude
1.5 PRI NSRS EN B USROS S NSNS ST RS S B S S RS 1
1
0.5
o 4
-0.5
N=0.75, B=100
-1 4 cos & (Mie)
cos d (P=2)
cos & (P=100) Gt
-1'5 LA AL A L AL L LA AL AL |
40° 60° 80°

FIG. 5. Same as Fig. 3(a) for the cosine of the phase difference, with 8=100. For P =2, a different scale (indicated on the right) is

employed, to facilitate the comparison.
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FIG. 6. Exact and subtracted (P = 100) scattering data, with N =0.75 and B=1000. (a) G,; (b) G,; (c) cosd.
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FIG. 6. (Continued).

B. Evaluation of far-side amplitude

We want to evaluate the dominant asymptotic contri-
butions to (3.9) for large values of both 8 and a=Np, in a
neighborhood of the critical scattering angle 6,,

,=7—20.=2sin" M, 6,=sin" N (3.10)
where 8, is the critical angle of incidence and
M=(1-N»)'2. 3.11)

Under these conditions, as will appear below, the main
contributions arise from values of A well below «, so that,
for all Hankel functions involved in (3.9), we may apply
the Debye asymptotic expansion®

H&I’Z)(x)z(2/7r)1/2(x2—kz)_1/4
Xexp{ti[(x2—A%)12—Acos HA/x)
—(r/4)]} (3.12)
together with the approximation (2.14), that leads to
RY(A,B) (B2— A2 —¢ (a?—A2)1/2
; ~+ .
R(ljl)(A"B) (32_12)1/2+ej(a2_k2)1/2

(3.13)

where upper and lower signs correspond to the upper and
lower reflection coefficients, respectively. We may also
employ the asymptotic expansion (2.20) in (3.9).

The dominant contributions to the far-side amplitude
arise from geometric-optic rays, which, in the A plane,
are associated with stationary-phase points, i.e., real sad-
dle points.!® To look for such points in the various terms
of (3.9), we set

(3.14)
with 0=<w, <7 /2 along the path of integration. By the

A=Bsinw; =a sinw,

localization principle (2.17), w; can be interpreted as the
angle of incidence of rays associated with the representa-
tion (3.9), while w, is the corresponding angle of refrac-
tion.

With the above approximations and transformations,
the dominant phase factor in the integrand of S}O+ ) in
(3.9) is found to be

7+0 .
cosw,; — | ——— —w |sinw,

exp [—21’3

] . (3.15)

Differentiating the exponent with respect to w,, we find
that there is no stationary-phase point within the path of
integration (direct reflection is associated with repulsive
paths, not with attractive ones).

The dominant phase factor in the integrand of S}p“ is
found to be

exp [21’3{ Np cosw,—Np —;L——wz sinw,
—cosw; + 1;-—0——w1 sian’]. (3.16)

Differentiating the exponent with respect to w,, we find
that a stationary-phase point @, =6,,, ,=6,, must
satisfy the simultaneous equations

20y, +p(m—20,,)=m+6, sinb;,=N sinb,, ,
(3.17)

With N <1, these equations have no solutions for
p =1: all directly transmitted ray paths are repulsive.
But there are solutions for p >2. The lowest-order far-
side path that contributes, p =2, is illustrated in Fig. 2.

p=L12,....
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The saddle-point evaluation of S|;"’ yields, as the dom-
inant term,

1/2
Ney,s1,¢4,

S5 B0~ (—iv B

2sinf(pc, —Ncy,)

4Nejc,,cy,

— p—1
Nejc,, —cy,
2
(Nejcy, +cy,)° | Nejey, ey,

Xexp[ZiB(Npczp——clp)], p=23,...
(3.18)

where

Conp =€080,,,, S, =5in0,,,, m =1,2 (3.19)

p

and 6, » and Gzp, determined by (3.17), are, respectively,
the angles of incidence and of refraction of the far-side
geometrical-optic ray that emerges in the direction 6
after p — 1 internal reflections.

The result (3.18) represents the dominant contribution
to the WKB approximation of S }p+). Its modulus squared
yields the geometrical-optic contribution'! to the intensity
from this term. However, the sum of several amplitudes
of the form (3.18) goes beyond geometrical optics by tak-
ing coherence and interference effects into account.

The square root in (3.18) is the beam divergence factor
D, for a multireflected beam!? and the two factors that
follow it represent, respectively, T5/ T} and (R} )},
where T, T\), and R} are, respectively, the Fresnel
transmission and internal reflection amplitudes at a plane
interface’! associated with the angles 6,, and 6,, and po-
larization j. The phase factor (—i)” *! represents the cu-
mulative delay arising from the crossing of focal lines.!?

For p >>1, we find that

2
o g N[00 _x (oo
™% ey P »™ 2p
(p>1) (3.20)

where 6., 6,, and M are defined by Egs. (3.10) and (3.11).
It follows that

R ~—1+Ne;[(6,+6)/(Mp)] (p>>1) (3.21)

so that one approaches total reflection when the number
of internal reflections increases. This leads to a relatively
low convergence rate of the far-side Debye terms for
large p.

Indeed, at 6=6,, (3.18)-(3.21) yield

S, (B,6,)~2Be;(N6,/M)**exp(—2Ne;0, /M)
Xexp[2iB(NG,—M) (it /p?) (p>>1)
(3.22)

which converges only like p 2. Note, however, that suc-
cessive contributions differ in phase by 7/2, so that
corrections to |S; | after p terms vary as (p +2) %

The convergence is somewhat faster for polarization 2
(parallel), as may be seen from (3.21) with e, =N ~2. This
effect is enhanced, for N =2, by the accidental proximity

between 0,, and Brewster’s angle, making the number of
far-side subtractions needed to remove most of the fine-
structure oscillations from the Mie amplitudes much
smaller for polarization 2 than for polarization 1, as will
now be seen.

C. Subtracted Mie amplitudes

We define

P
S{AB, 6P =S;(B,0)— 3 S;,F(B,0)

p=2

(3.23)

where S; is the “exact” Mie amplitude, given by (2.1),
and the subtracted terms are given by (3.18). Note that
far-side contributions are not removed completely by this
subtraction procedure, both because P is finite and be-
cause (3.19) contains only the dominant asymptotic far-
side contribution to the Debye term of order p (e.g., it
does not include higher-order WKB corrections). Never-
theless, we refer to (3.23) as the subtracted Mie amplitude
to order P.

In Fig. 3(a), with N =0.75, we compare the ‘“‘exact”
polarization 1 gain function [cf. (2.7)] G, for B=1000
and 75°=<6=<90°, with the subtracted gain functions ob-
tained from (3.23) to orders P =2 (only one term sub-
tracted) and P =100. We see that the fine-structure oscil-
lations in polarization 1 are quite large, and that subtrac-
tion of the p =2 far-side term alone still leaves a lot of
fine-structure ‘‘beats” to be removed. With P =100,
most of the fine structure has been removed.

Figure 3(b) shows the effect of “peeling away” succes-
sive layers of fine structure from G, for =10000 and
78°<60=84°. We see that sizable beats remain even after
three subtractions, and a careful comparison between
P =10 and P =100 still reveals some differences.

For the polarization 2 gain function G,, plotted in Fig.
4 for =15000 and 80° =< 0 < 86°, we see that the amplitude
of fine-structure oscillations is a good deal smaller (be-
cause of the proximity to Brewster’s angle). Subtraction
of the p =2 far-side term alone already removes most of
the fine structure, as illustrated by the upper curve in Fig.
4 (note the different plot scale), and the main effect of go-
ing to P =100 is to introduce some additional smoothing.

Since both S| and S, contribute to the phase difference
S [cf. (2.6)], one needs to go to large values of P to remove
fine structure in this case. This is illustrated in Fig. 5,
which shows cosd for =100 and 40° <6 <130°, exhibit-
ing large fine-structure oscillations, some of which persist
for P =2 (upper curve, with different plotting scale), but
are practically eliminated for P =100. The far-side sub-
tractions reveal a dip around 106° that was masked by the
fine-structure oscillations [cf. also Fig. 6(c)].

In Fig. 6, we compare the “exact” Mie results for G,
G,, and cosd for B=1000 and 65°=<6 = 105° with their
subtracted counterparts to order P =100. We see that
the distracting effect of fine structure is indeed removed
by the far-side subtractions, allowing us to proceed to-
wards our purpose, the explanation of the much broader
diffraction pattern around the critical scattering angle
that is apparent in these figures. According to the above
discussion, this pattern must arise entirely from the
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near-side terms S}_’ in (2.21), so that we now evaluate
these terms.

IV. THE DIRECT REFLECTION SUBCRITICAL TERM

A. Subcritical and supracritical contributions

We split the near-side amplitude [cf. (2.22)] into two
parts,

S\ 7UB,0)=S(B,0)+S; (B,6) @.1)
where
scB.o=—[ O“s(f’(x,ﬁ)gglll nlcos®hdr  (4.2)

will be called the subcritical near-side amplitude and

S7B,0)=— [’SV0LBQY, s(cosOrdA  (4.3)

will be called the supracritical amplitude. The reason for
these names is that, with the substitution (3.14), the sub-
critical (supracritical) amplitude arises from incident rays
with angles of incidence w, below (above) the critical an-
gle 0, [cf. Fig. 1(b)].

The subcritical amplitude is associated with ray paths
of the type illustrated in situation 1 in Fig. 1(b), for which
it is useful to separate contributions from varying num-
bers of internal reflections by applying the Debye expan-
sion. Substituting (3.1), with P =1, into (4.2), we find

S7(B,O)=S;5 (B,0)+S;5 (B,0)+ASS (B,0)  (4.4)
where
< aH(A'Z)(IB) (f) (1)
SjO (B,0)= — fo “I}W‘R 212 (K,B)QA_I/Z(COSO)KdK

4.5)

is the direct reflection subcritical term,
|

—im/4033/2 6
S3( ,e)ze_f_j_
0B O~ ing) 72

where RY) is given by (3.5) and (3.14). Note that the
phase factor in (4.10) differs from that in (3.15) only by
the substitution 6 — — 6.

The integrand of (4.10) has a saddle point at

W, =60,=(7—0)/2 (4.11)

which lies within the domain of integration if 8 is in PR,
and outside (beyond 6, ) if 6 is in TR [cf. (4.8)]. In either
case, assuming that the main contribution to the integral
arises from the neighborhood of the saddle point (i.e.,
from the neighborhood of the upper limit, for 6 in TR),
we expand the integrand around this point, as one would
in the saddle-point method, yielding

fo “(sinw,)!"2cosw, R ) exp {—2i[3

JHP(B) )
st mo=— [l opio.p

o H{V(B)
H{"(a)
X—)Q(;Llll/z(cos())kdl

4.6
H?(a “.0

is the direct transmission subcritical term, and

H?(B)
H{(B)

g | HY (@)
1—p(A,B) | H?(a)

X QS »(cosOAdA

ASj; (B,0)=—[* TYALBTH(AB)

(4.7)

is the remainder subcritical term.

Each of these terms will be separately discussed. The
supracritical amplitude (4.3) is associated with rays that
undergo total reflection at the geometrical-optic level [sit-
vations 2—4 in Fig. 1(b)], for which the Debye expansion
is not suitable, so that it requires a different treatment.
In the present section, we discuss the direct reflection
subcritical term.

In terms of scattering angles, we must also distinguish
between the domain of partial reflection, referred to as PR
from now on, and the domain of total reflection, referred
to as TR:

0=60=6, for TR,
0,<6=w for PR .

(4.8)

The deviation from the critical scattering angle 6, will be
measured by the parameter

e=1(0,—0) . 4.9)

B. The WKB approximation

With the approximations (2.20) and (3.12) and the sub-
stitution (3.14), (4.5) becomes

cosw; — %e—wl sinw, )dwl (4.10)
f
. 172
e—mr/4 3o | 0
S5(B,0)= W B sin—-
.no. B
Xexp —ZzBsmE
- (i) ips 0 5
><f R (A, Blexp ifsin—v° |dv
-, 2
(4.12)

where ¢ is given by (4.9), A is given by (3.14), with
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w1=LT)1+1/ (4-13)

and we have assumed that

Blv|? <1 (4.14)

in the portion of the domain of integration that contrib-
utes significantly to the integral.

In the PR domain, sufficiently far from critical scatter-
ing, (4.12) should just yield the WKB result associated
with the directly reflected geometrical-optic ray. As was
done in Sec. III B, we may then employ the approxima-
tion (3.13) for RY). From (4.12), we see that the range of

iB sin(9/2)—ej[Nz—-cosz(G/2)]1/2

SS(B,0)~—
o (B 2 |sin(6/2)+e,[N2—cosX(6/2)]'/

The expression within large parentheses is the Fresnel
external reflection amplitude®' associated with the angle
of incidence (4.11). For j =1, the result is related by
(2.16) with the corresponding result!® for scalar scatter-
ing. The first-order WKB correction 8S;5 for both the
scalar and electromagnetic’* cases satisfies

855 (B,0)/85 (B,0)=0{B™'[N*—cosX(6/2)] >/} .
(4.17)

This correction does not become very large within the
domain (4.15), but it blows up at the critical scattering
angle (3.10). Thus, even though the zero-order WKB ap-
proximation remains well behaved as 6—0,, the diver-
gence of the first-order correction signals the breakdown
of this approximation outside of the domain (4.15), aris-
ing from the cusp singularity in the Fresnel reflectivities.
We now deal with the near-critical domain, where

le|=0[(MB)"1?].

From now on, it is therefore assumed that |e| << 1.

C. The Fresnel-Fock integral

It follows from (4.9) and (4.11) that, in the A plane, the
saddle point A=psini0, is such that

A—a=B[M sine—N(1—cose)]=MBe+0(Be?) (4.18)

so that the saddle point coincides with the upper limit of
integration of (4.12) at the critical scattering angle and is
close to the upper limit in the near-critical domain. This
invalidates the approximations employed following (4.14)
in two ways.

(i) The Debye asymptotic expansion (3.12) that led to
(3.13) can no longer be employed to evaluate {la} and
{2a} in (3.7) [cf. (2.14)]. Physically, this means that the
effects of the curvature of the spherical surface become
important, so that the reflectivities can no longer be ap-
proximated by their planar-interface Fresnel limits.
Correcting the reflectivities eliminates the cusp singulari-
ty and the divergence at the critical angle.

exp[ —2iBsin(6/2)] .

FIEDLER-FERRARI, NUSSENZVEIG, AND WISCOMBE 43

the saddle point, i.e., the domain in v that contributes
significantly, is

lv|=0([Bsin(6/2)]"17?) .

In order that the saddle-point method may be applied,
the full range of the saddle point (4.11) must be included
within the domain of integration in (4.12). This requires

£<0 and |e| > MpB)~1/? (4.15)

where we have employed (3.10).
Assuming the validity of (4.15), the saddle-point evalu-
ation of (4.12) leads to the zero-order WKB result

(4.16)

(ii) Although the dominant contributions to (4.12) still
arise from the neighborhood of the saddle point (in view
not only of the usual saddle-point arguments, but also of
the sharp peaking of the reflectivities at the critical an-
gle), the saddle-point method is no longer directly applic-
able, because part of the range of the saddle point lies
outside the range of integration.

The most thorough procedure to deal with point (i)
would be to employ the uniform asymptotic expansions
of the cylindrical functions.'®* However, our goal is to
find the lowest-order approximation that will allow us to
explain the new diffraction effects in the near-critical re-
gion. Thus we sacrifice uniformity and high accuracy, by
employing a transitional asymptotic approximation to the
cylindrical functions: the Schobe approximation, which,
to lowest order, ! is

H{" (x)=2exp( Fim/3)(2/x)'3
X Ai[exp(+2im/3)(2/x)3(A—x)],
IA—x|=0(x'?) (4.19)
where Ai denotes the Airy function. Applying this to

{2a} in (3.5) [but still employing (3.12) for {B} and
{2B}], we find

147"V [Ny (A—a)]

) ~ 4.20
RZZ(A)B) 1_‘)/’\1/][N;’}/'(}\,_a)] ( )
where
y'=2/a)? (4.21)
and we have introduced the new notation
V,[N;X]=e ™ "%Ne; /M)In'Ai(e “*73X) .  (4.22)

Within the domain of applicability of the Schobe approx-
imation, according to (4.20), the deviation of |R%)| from
unity (total reflection) remains O (y’).

Replacing v by

u=[Bsin(8/2)]' v (4.23)
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in (4.13), and taking (4.14) into account, we find that, in

(4.20),
y'(A—a)=y'{Blcos(8/2)—N]+[Bsin(6/2)]'*u
—lcot(6/2)u?} .
For 6~ 6,, by (4.14) and (4.22), we have
v'lul>~ (B |v]? <1

so that the last term of the above expression may be
neglected. Thus, substituting these results into (4.12),%

—im/4

S (B,G)zfi—‘/—;—ﬂexp

fo=O

— o0

im0
213sm2

1+1/'\Pj[N;X]

.2
[ S —— — d
1—y'¥,[N;X] exp( —iu")du

(4.24)
where the lower limit has been replaced by — o« and

X=y'{Blcos(6/2)—N1+[Bsin(8/2)]"*u} . (4.25)

If the deviation € from the critical scattering angle (4.9)
satisfies €] << 1, we have

X =~y'(MBe—LNBe*+V' MBu) .

As will appear below, |e|=0(B7!/2) in the near-critical
region, so that ¥’Be? << 1 can be neglected in this expres-
sion. Thus

~y'VMB(VMBe+u) (4.26)

so that the upper limit of integration (4.24) corresponds
approximately to u = —V Mpke.

The integral in (4.24) resembles a Fresnel integral, ex-
cept for the first factor in the integrand, arising from
(4.20), which is similar to that appearing in Fock-type
functions.?® We therefore call (4.24) a Fresnel-Fock in-
tegral. For its numerical evaluation (see Appendix B), it
is convenient to proceed as follows.

(i) In PR, where the stationary-phase (saddle) point
u =0 falls within the domain of integration, we deform
the path of integration to go from e3™“c to the origin
(this deformation is allowed), then from the origin to w
along the real axis (where u =w is the upper limit).
Along the first part of the path, the integrand has the fast
Gaussian decay characteristic of a steepest-descent path.

The second part is a definite integral along a piece of a
stationary-phase path, so that it has an oscillatory
(Fresnel-like) character, but w remains of order unity
within the near-critical region, so that the number of os-
cillations is small. It is interesting to note that a similar
mixed steepest-descent-plus-stationary-phase path was
useful in CAM approximations to near-forward
diffraction.!®

(ii) In TR, where the upper limit w is negative, the path
is deformed onto a straight line from e37#o0 to w, paral-
lel to the steepest-descent path. The integrand is still
dominated by Gaussian-like decay at large |ul; there is
also some oscillation, but this is rapidly damped by the
Gaussian factor.

D. Discussion

The following physical effects are incorporated into
(4.24): (a) The Fresnel-like character associated with the
existence of a stationary-phase point within the domain
of integration (PR) or outside it, but close to its edge
(TR); (b) the incomplete character of the Fresnel-like in-
tegral, since only part of the range of the stationary-
phase point falls within the domain of integration (the tail
end of the range, in TR); (c) the deviation of the spherical
reflection coefficient RY) from its limiting Fresnel value
for a plane interface, due to the effect of curvature.
These features are missing in the WKB approximation, as
was discussed at the beginning of Sec. IVC. Although
(4.24) will not match very smoothly with the WKB ap-
proximation outside of the near-critical domain (because
we did not apply uniform asymptotic approximations),
we can employ it to estimate the angular width of this
domain.

In the PR region, by (4.26), we require

le| >(MpB)~172 4.27)

in order for a substantial part of the range of the
stationary-phase point u =0 of (4.24) to be included
within the domain of integration. This agrees with (4.15).
In the TR domain, since (4.24) resembles an incomplete
Fresnel integral, we expect |S jé | to fall off roughly like

(VMPBe)~! for ez (MB)~172 .

Deviations from the WKB approximation should there-
fore be small when (4.27) holds. We conclude that the
angular width of the domain where diffraction effects are
significant (near-critical domain), for the direct-reflection
subcritical contribution, must be of the order of a few
times (MB)~ 172,

V. TRANSMITTED SUBCRITICAL CONTRIBUTIONS

A. Direct transmission subcritical term:
WKB approximation

The direct transmission subcritical term is given by
(4.6). At the geometrical-optic level, it gives rise to two
angular domains:!° an illuminated region €<, that
coincides with TR, singly covered by directly transmitted
rays; and a shadow region 0> 6, that coincides with PR.
For this term, the near-critical domain is a typical Fock-
type transition,'® associated with the disappearance of
one real ray.

Well within the illuminated region TR, one may apply
the WKB approximation, treating S;7 like S};"’ in Sec.
III B, i.e., employing (2.20) and (3.12). Thus the saddle
point is given by (3.17) for p =1, with 6— — 6 (because
02, —05 ), yielding

A=a[1—2N cos(8/2)+N?]1"%in(6/2) (5.1)
provided that y'(a—A)>>1, in order that (3.12) with
x =a may be employed. From (4.9) and (5.1), we find
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that, for € << 1, this condition is equivalent to
e>>y’ . - (5.2)

The saddle-point evaluation of (4.6) yields, as its dom-
inant term, the zero-order WKB approximation

ij(B,G)z _ig . Ncys,¢4 172
2(sinf)(c; — Nc,)
Xmexp[—ﬁﬂ(c, —Ne,)],
(Nejc,+c; )
06,—6>>y" (5.3)

where

¢,, =cos,,, s, =sinb,,, m=1,2 (5.4)
and 6, and 0, are related to 6 by

tanf; =N sin(6/2)/[1—N cos(6/2)] ,

6,=sin"!(sin6, /N) >

allowing us'® to express (5.3) directly in terms of 6. The
expression within large parentheses in (5.3) is the beam
divergence!? factor D, and the following factor is the
product of the internal and external Fresnel transmission
amplitudes, so that, by (3.8) and (3.13), the WKB result

|

FIEDLER-FERRARI, NUSSENZVEIG, AND WISCOMBE

43
may be rewritten as
S;5 (B,0)~—iB(D,)X(1—72)
Xexp[ —2iB(c;—Nc,)], 6,—6>>y" .
(5.6)

We note that (5.3), if continued to the shadow boundary
6=20,, would vanish there.

The first-order WKB correction,!® similarly to (4.17),
would blow up if continued to the critical scattering an-
gle; the condition for it to remain small is equivalent to
(5.2), namely, 6, —0>>y'.

B. Fock-type approximation

According to the above discussion, the near-critical
domain where diffraction effects are significant for the
direct transmission subcritical term should be given by

e=0(y’) . (5.7)

Since the saddle point (5.1) would approach A=a for
6—6,, we expect that the main contribution to (4.6) in
this region will arise from the domain y’'|A—a|=0(1),
where the Schiobe approximation (4.19) may be applied
for x =a.

Thus [cf. (4.12)], (4.6) becomes

o~ in/Ag3/2 1 D(a) 0 ) T—0 .
1 (8,0 Wf “(sinw ;)" *(cosw, )T(”mTﬂzexp —2if3 |cosw, — 5w [sinw, dw, (5.8)
where, by (3.8) and (4.20),
2
(_1) —
(MLB)Y=1+RY) (A,B)= PNy h—a)] (5.9)
with A=fsinw;,.
By (3.7) and (3.8),
HiN@) 8= YNy (5.10)
H2 () 7" ga[HY (a)]z({lﬁ} [2a}) '

where we have employed the Wronskian®® of H{!, H{?

2117/3Ne ,y

. Again in the Schobe approximation, this becomes

27TM[1—‘ "W,[N; y(x a)lJAi[e 2By (A—a)]

(5.11)

Since the main contribution to (5.8) in the domain (5.7) arises from the neighborhood of the upper limit where the
Schobe approximation is valid, we expand the integrand around this point, setting

w, Eec—g’ §=0(7'2)
so that (5.8) becomes, with the above approximations,
. N3¥2,. 172
S;i(B,0)=—e'™? 7TM] 277-fin6 exp[ —2iB(M —N¢) ]f

(5.12)

exp[ —2i(e/y" )]
0 AIZ(eITr/3t)[1_e—11T/6(Ne /M) In’Ail 17r/3t)]2

(5.13)
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where we have set

t=Mvy'B¢ (5.14)

and t,>>1 is the boundary of the domain that yields
significant contributions.

In order to convert (5.13) into an integral with fast-
decreasing integrand, we rotate the path of integration to
the straight line t =e'™3x. This is allowed, because the
path stays away from the Regge-Debye poles!® [roots of
the integrand denominator in (5.13)]. The final result is

172
3/2,.

—~p —TiT/12 J
Sji(B,0)me T

B

27 sin@

Xexp[ —2iB3(M —Ne)]

© exp[2e "™ %(e/y")x]
X - d.
fO Ai2(e2lﬂ/3x) x

(5.15)

where we have neglected the O(y') correction in the
denominator of (5.13) and, in view of the fast decrease of
the integrand [dominated by a factor®® exp( —%x” 2) for
x >>1], the upper limit has been extended to infinity.
Since the result is valid within the domain (5.7), no
significant contributions arise from x >>1, in agreement
with the assumptions made in the derivation.

The integral in (5.15) is an incomplete Fock-type func-
tion [cf. Ref. 19, Eq. (5.85)]. The integrand decays ex-
ponentially with € in the shadow region PR (£ <0) and
grows exponentially with € in the illuminated region TR
(e>0), where the exponent, however, is limited by (5.7)
to values of order unity. Thus (5.15) interpolates smooth-
ly (but not uniformly) between the illuminated and sha-
dow regions associated with the  disappearance of the
directly transmitted ray, as is typical for Fock-type tran-
sitions. !

Comparing (5.15) with (4.24), we see that the direct
transmission contribution in the near-critical region is
O (B~ '/?) times smaller than that of direct reflection,
which has the typical O(B) magnitude associated with
geometrical-optic terms. This suppression effect has a
simple explanation. The zero-order WKB approximation
goes to zero like (co0s0,)’/2 as ,—m/2 (e—0). A factor
cosf, arises from T} in the Fresnel (plane interface) ap-
proximation, and an additional factor (cos@,)!’? arises
from the beam divergence factor D, in (5.3). However,
for a curved surface, T} does not vanish as 6,—/2:
we see from (5.11) that it becomes O(y’), so that the
(cos8,)!”? behavior is changed by the curvature into a be-
havior like y"3/2=0 (87!/2), exactly the suppression fac-
tor found.

e —i71/4B3/2

S7(B,0)~ —F——
i (B9 (27 sin@)'?

f;/zdwl(sinwl )2(cosw, Jexp l—ZiB
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C. The remainder term

The remainder subcritical term (4.7) differs from (4.6)
by the additional integrand factor

Aj(A-’B)Epj(}",B)/[l_pj(A')B)]

where p; is given by (3.6). In the Debye expansion (3.1),
within the near-critical domain (5.7), a term of order
p =2, in the WKB approximation, would have a saddle
point Xp approaching A=a more and more closely as p
increases [cf. (3.20) with 6— —0], so that A=a is an ac-
cumulation point of saddle points for the Debye terms. It
follows that, within the near-critical region, the dominant
contributions to (4.7) should still arise from the neighbor-
hood of A=a.

We see from (3.6) that p; contains the internal spheri-

(5.16)

cal reflection coefficient R |}, which decays relatively rap-
idly as the internal angle of incidence

w,=sin"(A/a)

decreases from its limiting value 7/2. Also, within the
domain of validity of the Schobe approximation, along
the same path of integration3® that led to (5.15), we find
that (5.16) contributes another fast-decaying factor [cf.
(3.6)]

H{(a)/H? (a)=~e  ¥"3Ai(x)/Ai(e? ™ *x) (5.17)

which decays like exp(—4x3/?) for x >>1.

For both of these reasons, we expect that the contribu-
tion from the remainder term (4.7) is substantially smaller
than that from ﬁ, given by (5.15). Numerical estimates
confirm this expectation. Since the contribution from S 7
is already O (B8~ '/?) times smaller than that from direct
reflection, and we are retaining only the lowest-order
dominant contributions, we shall neglect the remainder
term (4.7) within the near-critical region.

VI. THE SUPRACRITICAL AMPLITUDE

A. The WKB approximation

The supracritical amplitude S;” is given by (4.3), with
S defined by (2.10). Comparing these expressions with
(4.5), we see that the only differences with respect to the
direct-reflection subcritical term are in the limits of in-
tegration and in the replacement of R (212) by

{2B] —Ne,{a}
{18} — Ne;{a}

which, for real A, is a pure phase factor. Thus (4.10) is re-
placed by

RY,B)=— =exp[2i4;(A,B8)] (6.1)

sinw, (6.2)

+2i¢j] .

COSW . — {#__f’_w
1 1
2
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If we can treat ¢; as a slowly varying phase, the in- . e~ o 6 1/2 e
tegrand still has a stationary-phase point (saddle point) at S;7(B,6)= v B sin—>- exp |—2iB sin~-
[cf. (4.9) and (4.11)]
w150l=(ﬁ'—9)/2=00+8 . (63) Xfe R(j)()\,,B)CXp _iBSin—g_’Vz ydv (69)
—E&

However, in contrast with (5.10), this point lies within the
domain of integration if @ is in TR, and outside if 0 is in
PR. The range of the saddle point is still given by

|8w,|=0([Bsin(6/2)]71/?)

(cf. Sec. IVB). In order for it to be included well within
the domain of integration in (6.2), we must have

e>>(MB)™ 12,
With |g| <<1, (6.3) yields
A—a=MpBe

(6.4)

so that, when (6.4) holds, one can generally apply the De-
bye asymptotic approximation (3.12) to evaluate (6.1),
with the following results:

(BZ_}\’Z)I/Z_iej(}\'Z_al)I/Z

RYAB) =~ ,
( B (BZ_}\.Z)l/2+i€j(}\,2‘—a2)l/2

(6.5)

¢jz—tan_‘[ej(sinzw,—Nz)l/z/coswl] . (6.6)

We see that (6.5) is the continuation of (3.13) to A>a«,
with

(a2_k2)1/2_)i(}\’2_a2)1/2 .

With A=Psinw,, (6.5) is just the Fresnel reflection ampli-
tude at a plane interface in the total reflection domain,
and (6.6) is the well-known phase shift associated with to-
tal reflection,®! for an angle of incidence w).

Under these conditions, applying the saddle-point
method to (6.2) yields the zero-order WKB approxima-
tion

Sﬁ(ﬁ,e)z——ifexp[—iaj(e)]exp —ZiBsin—g ©.7)
where
5;(0) [cos’(8/2)—N?]'?
J —=e.
tan ] e; sin(6/2) (6.8)

This result is the continuation of (4.16) to the TR region,
and it has the same physical interpretation.

B. The Pearcey-Fock integral

In the near-critical domain, the saddle point (6.3) is
close to the lower limit of integration of (6.2), and the
WKB approximation breaks down for the same two
reasons discussed in Sec. IV C (but interchanging PR and
TR).

We expand the integrand of (6.2) around the saddle
point (6.3), just as was done for (4.12), with the same no-
tation (4.13) and the same assumption that (4.14) holds in
the relevant portion of the domain of integration. The re-
sult is

where R is given by (6.1).
Employing the Schobe approximation (4.19) to evalu-
ate {a}, and retaining the Debye approximation (3.12)

for {18} and {28}, we find [cf. (4.20)]
1+iy'®,[N;v'(A—a)]

RN\ B) = 6.10

A B~ e, [Ny )] 6.10
where [cf. (4.22)]

@;[N;X]=(Ne;/M)In’Ai(X) . (6.11)

Again with the change of variable (4.23) and with the
same approximations that led to (4.24), we find that (6.9)
becomes

e iT/4

S; (B,0)= < —=Bexp

X fxio

.0
2iB
1 Sll’l2

14iy'®;[N;X]

—iy?
=iy ®, [N X] exp(—iu“)du

(6.12)
where X is still given by (4.25) and the upper limit
[Bsin(0/2)]'/20~V'MBO, >>1

has been replaced by «. In terms of the phase angle ¢;
defined in (6.1), this approximation to R/’ corresponds to

¢;~tan"'(y'®@;) . (6.13)

The result (6.12) is the counterpart of (4.24), and its nu-
merical evaluation (Appendix B) follows a procedure en-
tirely similar to that outlined at the end of Sec. IVC,
with the roles of PR and TR interchanged.

(i) In TR, where u =0 lies within the domain of in-
tegration, we integrate first along the real interval [w,0],
where

u=w=[N —cos(6/2)][B/sin(8/2)]'/*<0

is the lower limit of integration in (6.12), and then from
u=0 to e "%, an allowed path deformation. This
combines a piece of stationary-phase path having few in-
tegrand oscillations with a steepest-descent path having
Gaussian decay, leading to fast numerical convergence.

(ii) In PR, the path is rotated onto a straight line from
w (now >0) to e "™ *e0, parallel to the steepest-descent
path, leading to Gaussian decay of the integrand (with a
few superposed oscillations) and again fast convergence.

To discuss the physical interpretation of (6.12), it is
convenient at first to introduce additional (more restric-
tive) approximations. Since ¥’ <<1 and it is assumed in
(6.10) that the main contribution comes from X =0 (1),
we may employ the further approximation

¢jz7/’<1>j .
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With the new change of variable

u +[Bsin(8/2)] ?e=¢ (6.14)
and the additional assumption
J
*11r/4
S (B,9)~ Bexp[ —2iB(M —Neg)]
Vi
0 1/
«© . 2_2 .U 2
Xfo exp 1[§ € /3sm2 g

In view of (6.15), we can make the additional approximation sin(6/2)

—117/4

s7 (/3,0)~ =B exp[ —2if(M — Ne)]f exp[—l

where we have introduced the notations
x(B,e)=2(MPB)'%e
y(ﬁ)E(4/M)3/4N1/ZB‘1/4 .

(6.18)
(6.19)

The reasons for these notations will become apparent
later.

The integral in (6.12), as well as its simplified version
(6.17), is a new type of diffraction integral. We call it a
Pearcey-Fock integral (the justification for this name is
given below). To clarify its physical interpretation, we
consider the behavior of (6.17) in a limiting situation, the
planar reflection limit.

C. Planar reflection limit and Goos-Hénchen shift
If B is so large that

B 1«1 (6.20)

(6.19) implies that y << 1, so that, apart from a very small
portion of the range of integration, the argument of the
Airy function in (6.17) is >>1. In that case,®

In'Ai(z)=—Vz, |z|>>1, |argz| < (6.21)

so that [neglecting the contribution from the domain
where (6.21) does not hold] (6.17) becomes

—117/4
Bexp[ —2iB(M —N¢)]
Vi

B;a)"’

><fo""exp[—i(gl—xg+ejyx/‘g)]d§. (6.22)
From (6.10), we see that (6.21) amounts to the approxi-

mation

172

RY(A,B)=~exp (6.23)

Zze%( (A—a)

and, with (A—a)/a <<1, this is equivalent to (6.5) and
(6.6). Thus (6.22) corresponds to the replacement of the
true spherical reflection coefficients by those associated
with a plane interface at the corresponding angle of in-
cidence w; in (6.2). In this “planar reflection limit,” the
curvature of the spherical surface is taken into account

1021

le| <y’ (6.15)

(whlch allows us to neglect terms of orders y’'Be* and
Be), (6.12) becomes

172

¢l tlde. (6.16)

v’ ﬁsing

ln Ai >

|

~ M within the square roots, yielding®’

4/3
§2-—x§—2L/3ejln Ai 24/3;5/—3 }dg 6.17)

r

only through the spread in the angles of incidence w,
that contribute to the result.
With the change of variable § =2, we find*’

—zrr/4

S/ (B,0)= £ —=Bexp[ ~2iBM —Ne)]
Vi
Xfowexp[——i(t4——xt2+ejyt)]t dr . (6.24)
The Pearcey integral P (x,y) is defined by 40
Px,y)= [T expli(t*+xt2+yndt (6.25)

which explains the choice of notations in (6.18) and

(6.19). We may rewrite (6.25) as
P(x,y)=P(x,y)+P(x,— (6.26)

where we have defined the “half-range Pearcey integral”

?(x,y)Efowexp[i(t4+xt2+yt)]dt ) (6.27)
In terms of this function, (6.24) becomes
Z(B,0)= _;_/4/3exp[ —2iB(M — Ns)] —x,e;y)
(6.28)

where the asterisk denotes the complex conjugate.

Pearcey’s integral (6.25) is the diffraction integral asso-
ciated with the cusp catastrophe,*' a caustic resulting
from confluences of up to three stationary-phase points.
In the present situation, only one stationary-phase point
is relevant. From (6.24), we find the stationary-phase
condition

2 x _ &Y
2 47
This can be solved by iteration, if the last term is a small

correction. The result is, in terms of the w; variable [cf.
(4.13), (4.23), and (6.3)]

T (6.29)

(N /2)" %,
(M8)3/2ﬁ €
(6.30)

o 72
0, =0,=0,+ o =0+ {
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It follows that, in this approximation, the relationship
between the angle of incidence 6, and the direction of ob-
servation 0 is

6=m—26,—86%" (6.31)
where
(2N)'%e;
GH(o)— J
867" (e)= age /2 (6.32)

represents an additional angular displacement undergone
by the reflected ray (stationary-phase path), as compared
with the geometrically reflected ray (Fig. 7). This dis-
placement corresponds to the well-known Goos-Hanchen
shift at total reflection.?®** Indeed, one can readily verify
that Artmann’s expression*’ for the linear shift

b5 GH— 2e;tan0,
J k(sin?0,—N?)172

(6.33)

reduces to a|80§3H| when 0,=6,+¢, |e| <<1. Physically,
this shift arises from the tunneling of light into the opti-
cally rarer medium (situation 3 in Sec. II C and Fig. 1), as
an evanescent wave. The linear shift is of the same order
of magnitude as the penetration depth.

The condition that the last term of (6.29) should
represent a small correction, assumed in the deviation of

(6.32), amounts to
e>>N'3/(MB*?) (6.34)
which, by (6.32), is equivalent to
1867 | << ,

i.e., the angular shift must be much smaller than the devi-
ation from the critical scattering angle. This condition is
violated as 6 approaches the critical angle 9,.

FIG. 7. An incident ray 4B with 0, > 6, is not geometrically
reflected as the ray BE: instead, it tunnels into the sphere and
travels the additional arc BC (associated with the Goos-
Hinchen angular displacement 86$") before reemerging at the
angle of reflection 6, (ray CD).
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To check that the displacement of the stationary-phase
point (6.30) from its geometrical-optic value (6.3) causes
an angular displacement of the whole pattern, we com-
puted the stationary-phase approximation to (6.28) in the
TR region € >0. We indeed found a Fresnel-like pattern,
with an angular displacement given by %86](-3“(8) at each
€ satisfying (6.34).

It should be stressed that the above discussion is based
upon the planar reflection limit, in which the only effect
of surface curvature is to spread the range of angles of in-
cidence. The dynamical effect of curvature, which
changes the reflection amplitudes from their planar
Fresnel values (6.23) to the spherical ones (6.10), is not in-
cluded. Thus, for a more accurate quantitative expres-
sion, one should go back to (6.12).

VII. APPROXIMATIONS
TO THE NEAR-SIDE AMPLITUDE

A. CAM and WKB approximations

The lowest-order, transitional CAM approximation to
the near-side amplitude is [cf. (4.1), (4.4)]

Sjcam(B,0)=S;5 (B,6)+S (B,0)+S; (B,6)  (7.1)

where S5 is given by (4.24), ;7 by (5.15), and S;” by
(6.12). What is the expected domain of validity of these
approximations?

To begin with, use of the lowest-order asymptotic ap-
proximations requires that size parameters be restricted
to large values. It has been assumed throughout that
y' <<1; thus the numerical comparisons in Sec. VIII will
be performed for 8> 10°.

For the Fresnel-Fock integral (4.24), according to the
discussion given in Sec. IV D, the angular domain of va-
lidity should be

lel<o[(MB)~17?] .

It is convenient to introduce the parameter

172
21

Mp

(7.2)

as a measure of the width of the near-critical region. In
terms of 7, the expected domain of validity of (4.24) is
given by

le/n|=0(1) . (7.3)

For the direct transmission contribution (5.15), in the
approximations that lead from (5.8) to (5.13), terms of or-
der |e/y’| are neglected compared with unity, so that one
should have |e| <<y’. Within the range of size parame-
ters we treat, this condition is still compatible with (7.3).
Actually, the accuracy of (5.15) is somewhat lower than
that of the other two CAM terms in (7.1) [comparable to
that of (6.17) as an approximation to (6.12)]; but this need
not concern us because, in the near-critical region, direct
transmission is suppressed by a factor O (8~ !/?) com-
pared to direct reflection, as we saw in Sec. V B.
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Finally, for (6.12), the approximations are essentially
the same as those employed in (4.24), so that the domain
of applicability is again (7.3). Thus the CAM approxima-
tion may be applied for |e/n|=0(1). Within the some-
what more restricted domain |g| <<y’, one may replace
(6.12) by (6.17), with some loss in accuracy.

The (lowest-order) WKB approximation to the total
near-side amplitude is given by

. S7(B,0)+S;5(B,0), 66,
S;wks(B,0)= S5 (8,0, 626, (7.4)
where S5 is given by (4.16), S, by (5.3), and S;” by (6.7).
According to (4.15), (6.4), and (5.2) [which, as noted
above, is consistent with (6.4)], a necessary condition for
the validity of the WKB approximation is

le| >>7 . (7.5)

One should remember, however, that the neglect of
higher-order internally multireflected near-side terms
(Sec. V) is justified only in the near-critical region; if
one goes much beyond this region, the WKB contribu-
tion from these terms also has to be included.

According to the above discussion, the domains of ap-
plicability of CAM approximation and the WKB approx-
imation are mutually exclusive and roughly complemen-
tary. However, we cannot expect a smooth matching be-
tween them, because of the transitional character of the
present (lowest-order) CAM approximation. A smooth
match and an extended domain of validity would require
a uniform CAM approximation (possible improvements
are discussed in Sec. IX).

It is useful to extrapolate the WKB approximation
(7.4) all the way to e=0. As was noted at the end of Sec
V A, the direct transmission contribution to (7.4) van-
ishes at 6=6,, and it is readily seen that (4.16) and (6.7)
approach a common limit, so that this extrapolated zero-
order WKB approximation is continuous at 6,. The
geometrical-optic cusp (discontinuous derivative) at 6,,
however, is preserved.

B. Asymptotic near-critical behavior
in the planar reflection limit

The planar reflection limit of the CAM approximation,
in which the spherical reflection coefficients are replaced
by the Fresnel ones, was employed in Sec. VI C to discuss
the physical interpretation of the Pearcey-Fock integral.
In the present section and in the following one, we apply
it both to the supracritical and the subcritical reflection
amplitudes. The motivation is twofold: (i) For very large
B and very small |e|, the resulting approximation is
simpler than the CAM approximation and reasonably ac-
curate; (ii) for smaller 8 or larger |e|, though the errors
get large, the qualitative behavior remains similar to that
of the CAM approximation and is much simpler to dis-
cuss, giving considerable insight into the structure and
behavior of the various CAM terms.

The combined reflection amplitude in the CAM ap-
proximation, given by the sum of (4.24) and (6.12), can be
written as

1023
S48~ e pen | —2iBsinl
jO j Vo p )
x f_o e~i(v+w>2R(2£)(V)dV

+f0we_“”+w’2R(j)(v)dv (7.6)

where we have set u =v-+w, with [see the comments on
numerical evaluation following (4.26) and (6.12)]

w=[N —cos(6/2)][B/sin(6/2)]'"? (7.7)

and RY) and R" are, respectively, given by (4.20) and
(6.10), where

X=y'[Bsin(8/2)]" v . (7.8)

Note that v=—uw is the position of the WKB stationary-
phase point, and that

w~—VMBe

for small enough |e].

We now assume that S is very large [condition (6.20) is
satisfied], so that we may employ (6.21) over essentially
the whole relevant range of integration in (7.6). This
amounts to taking the planar limit of the spherical
reflection coefficients, yielding

—im/4

e
Sjs +57 =<5 =

Bexp[ —2iBsin(6/2)]

. 1—lo;|
0 —i(v+w)? Jj
x fe.wﬁ/ztwe i 1+|Uj| dv
,—in/4 1—io;
e @ —ilv+w)? J
+J ¢ +io, |2V
(7.9)
where
J— 1/4
V2N |sin(6/2) Vo
U'j('V):ej M B v (7.10)

and where we have rotated the paths of integration so
that they are parallel to the steepest-descent paths, lead-
i|n\g to a Gaussian-like decay of the integrands for large
v|.

The expressions within the parentheses in the in-
tegrands of (7.9) are approximations to the Fresnel
reflection amplitudes near critical incidence [somewhat
more accurate than (6.23)]. Note that the below-critical
amplitude is obtained from the above-critical one by the
replacement

Vv—s—iVTy], v<0. (7.11)

In a small neighborhood of the critical angle, the results
are only affected by the behavior of these Fresnel ampli-
tudes close to critical incidence, where the reflectivities
are close to unity, so that
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1—-io, : 2 3
I+io, =1—2i0;—20;+0(lo;|°), lo;l <<1

(7.12)

with a corresponding expansion for the other integrand
in (7.9). Note that (7.12) preserves unitarity to second or-
der in |o|. Since the dominant contributions to the in-
tegrals in (7.9) arise from a neighborhood of the saddle
point v= —uw, the condition for applying (7.12) is

lo(—w)=e;(2N|e|/M)'? <1, (7.13)
which restricts its validity to a few degrees from the criti-
cal scattering angle for polarization 1 and an even nar-
rower domain for polarization 2. But we do obtain the
planar-limit asymptotic behavior within the domain pre-
viously excluded by condition (6.34).

Substituting into (7.9) the expansion (7.12) and its ana-
log for the other integrand, the first and third terms of
the expansion give rise to readily evaluated Gaussian in-
tegrals, and we find
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575 +57 ~—Lexpl—2ipsint0/2)]
J— 1/4
vV'N sin(6/2)
X [1—2%/7 Plw) |2t
M e;P(w) B
4 . (6 2) 172
+ 3N o2 (p) | S0NO/2) (7.14)
M B
where
imr/4 .
Pw)= e\/7_r (fi) e itvtw?y, [vldv
+if0°°e""<v+w’zx/$dv (7.15)

in which the paths of integration have again been shifted
back to the real axis.

It will be useful to evaluate separately the contribu-
tions from subcritical and supracritical reflection. To or-
der 8714, they are, respectively,

< iB . . ei7r/4
Sjo(B,B)z—Texp[—21/351n(0/2)] Yo
0 ivtw? sn VN sin(6/2) Yo —itvw T
X f_ e dv—2 Y, f_ e Vivldv+ - - (7.16)
and
iB o i/
Sf(B,G)z——z—exp[—ZtBsm(B/Z)]—;—_;—
S ) 1/4
x fowe——i(v+w)2dv_23/2i AJIV e, sm(Z/Z) fowe—i(v+w)2\/;dv+ ] . (7.17)

The first terms within large square brackets are Fresnel integrals. The second ones can be evaluated in terms of the
Weber parabolic cylinder function D,(z) (see Appendix A). According to Eq. (A1), the results are

< __iB i elm

S0 (B,0)= > exp[ —2iBsin(6/2)] Ve
_e—tw/sej‘;i\’

and

> __iB i el

S;7(B,0)= o exp[ —2iBsin(6/2)] 7
—im/8 N
A

where F(z) denotes the Fresnel integral.3

sin(6/2)

sin(6/2)

/4 o
[F*(V2/mw)—F*(— )]

1/4

28 e "W 2Dy (= VeI )+ - - l (7.18)

/4 R
[F*(0)—F*(V2/mw)]

1/4

25 ie W 2D, (V2elm )+ - - ] (7.19)

Adding up these results and using Eq. (A2), we recover the first term within large square brackets in (7.14) and we get

for the second one,

P(w)=2""4i"Bexp(—iw?/2)D ,,(V2e "™ *w) .

(7.20)

The cancellation between the w-dependent Fresnel integrals in the first terms of (7.18) and (7.19) should be noted.
The corresponding expansion for the direct transmission subcritical contribution (5.15) is obtained by expanding the
exponential in the integrand into powers of € /¢’ and integrating term by term, with the help of the integrals
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o 1 —niT/6
fO AiZ(eZiﬂ'/?:x ) dx =2me

and (evaluated numerically)
—im/3 % x

T 0 Ai2(82i7/3x )

e

mpy=

The result is

., —Sim/12 i
Sﬁ(B,G)~e ”T MY aB

dx =~1.23599—0.369 444 .

e — exp[ —2iBsin(6/2)]e ~iw?

(7.21)

(7.22)
2

1+my—+0 | = (7.23)
4 Y

Substituting (7.14) and (7.23) into (7.1), we finally get the planar-limit approximation to ij_) in the immediate vicinity

of the critical angle

. .
S{ 5 (B,0)~ —izﬁexp[ —2iBsin(6,2)] | [1—232 YN
,.2 im/12
+ by e
According to (7.7) and (4.9),
w==VMBe[1+0(eN]~~V2re/n (7.25)

which should be at most of order unity within the domain
of applicability of (7.24).

For |w|<<1, we can apply the power series expan-
sion* of D ,, to obtain

i Vi i
in/8p - R 4
e (w) (L) 1+2w +0(w*)
) i
b pmimsA |, L3 5
2‘/77_e w 6w +0(w?)

(7.26)

In particular, at the critical scattering angle (w =0),
(7.24) yields

B Vg VN
(—) ~__lﬁ —2iMpB _2 T in/8
YA L T Y
Y 1/4
Xej F]
+ -2 imm Ne,
Vo M3/2BI/2

(7.27)

which differs from previous results in the coefficient
of B712. For N =0.75, this expression leads to values
for G, and G, that agree with those obtained from the
CAM approximation (7.1), for 1000 <3=<10000, within
better than 1.5% and 0.5%, respectively.

2325

C. Discussion of planar-limit approximation

Although the planar-limit approximation (7.24) is
reasonably accurate only for very large 8 and for small

1/4

1/2
i in(0/2
o Plw) sm(g/Z) 2N sm(B/ ) J
e e ™’ 1+my— (7.24)
M32 31/2 Mo y' : .

deviations from the critical angle [cf. (7.13)] such that |w|
remains of order unity, it is nevertheless instructive to
employ it to show the qualitative behavior of the solu-
tion*’ even though extrapolating it to |w|>>1.

The asymptotic behavior of P(w) for |w|>>1 follows
from Egs. (A3)—-(AS):

Vo i —4
w 1+16w2 +Oo(w™) |, w>1 (1.28)
P(w)= —iw? )
. e 1 —4
l\/w] 1_W+W+O(w ) s
w<<—1. (7.29)

The dominant term in each of these expressions agrees
with the result of applying the stationary-phase method

25 L L L I L 1 1

IP(wW)]

FIG. 8. The function |P(w)| and its asymptotic limit V' w].
A Fresnel diffraction pattern is shown for comparison.
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to (7.15). The continuation of the w >0 expression magnitude of the first term within large square brackets

through the branch cut corresponds to the choice in (7.19). This well-known Fresnel pattern may be

— . thought of as the “Fresnel transform” of the Heaviside

Vw —ivTwl, w<0. (7.30) step function, whereas, according to (7.15), the function
The function |P(w)| is plotted in Fig. 8, together with

P(w) is the “Fresnel transform” of the square root func-
VTwl, its asymptotic limit for |w|>>1. This limit is ap- tion, Wl'fh 1ts branches defined })y (7.30). .

proached monotonically and quite rapidly for w >0, Substituting the asymptotic expansions (7.28) and
whereas the approach is oscillatory and slower for w <0,

(7.29), as well as (7.25), into (7.24), we find, in the partial-
in agreement with (7.28) and (7.29). Also plotted is the  reflection domain,
J

1/2
- iB e N N
S},pﬁ(ﬁ’,e)z—Texp[—2zﬁsm(0/2)] 1—2%2%; lﬁlef J +4ﬁej2 gl
2 . Ne; .
+7;T.—em/lzm 1—m0|yi,| e MBIy ... ] e<0 (PR). (7.31)

The first three terms within large square brackets in (7.31) represent the expansion of the Fresnel external reflection am-
plitude at the geometrical-optic angle of incidence, up to second order in the small parameter o j [ef. (7.12)]. Thus they
are equivalent, to this order, to the WKB approximation (7.4); the fourth term (Fock direct transmission penumbra
contribution) adds a small O (8~ !/2) oscillatory correction.

Similarly, in the total reflection domain, we find

172 .
12, | N | 4 i M
M M7 By

'3 (B,6)~ — %exp[ —2iBsin(6,/2)]

+ 2_61'77/12 Nej

\/77. M3/ZBI/2

e~ iMBE 4 L. l’ e>0 (TR) (7.32)

€
1+my—

The first three terms within large square brackets again
represent the Fresnel total reflection amplitude (unimo-
dular to second order in the expansion parameter) at the
geometrical-optic angle of incidence, expanded as in
(7.12); those terms are equivalent to the WKB approxi-
mation (6.7). The fourth term, arising from the oscillato-
ry term in (7.29), gives oscillations (diffraction fringes)
around the WKB pattern. For the polarized intensities
or gain functions, the oscillations have phase M Be? (up to
an additive constant) and amplitude envelope
2¢;V'N

djp=* M3/AB1/4| 372 (7.33)
where |w| is of order unity in the domain under con-
sideration [see (7.25)]. The direct transmission contribu-
tion (last term within large square brackets) is also oscil-
latory, with similar phase but much smaller amplitude.
Because of its scaling factor B~ !/4, the diffraction oscilla-
tion remains sizable up to very large values of 3.

The qualitative conclusions from (7.31) and (7.32) are
J

iB

the following. (1) In PR, the near-side amplitude should
rapidly -tend towards the WKB approximation. (2) In
TR, the near-side amplitude should exhibit diffraction os-
cillations around the WKB value, approaching it much
more slowly than in PR. (3) The phase of the oscillations
should be governed by the Fresnel parameter M Be?, and
their envelope should be approximately given by (7.33),
scaling like 8~ '/4, and with ~N ~? times larger magni-
tude for polarization 2.

These conclusions are already in qualitative agreement
with the patterns illustrated in Fig. 6 (for detailed com-
parisons, see Sec. VIII). In view of the asymptotic extra-
polation, (7.31) and (7.32) cannot be expected to be quan-
titatively accurate.

Now consider the contributions from direct (partial)
and total reflection [(7.18) and (7.19)] to the total near-
side amplitude. Beginning with the TR angular domain,
and applying the asymptotic expansions of the Fresnel in-
tegral®® and of the parabolic cylinder function D_, P
[Egs. (A3)-(AS)], we find

Sf(/a’,@)z——2—exp[—2iﬁsin(0/2)]
12 — o ) 2
. N ‘/N e iMBe e—HT/4 e-lM[)’g
X 1_23/2 . tie. + i o .
ie; !—Me ie; 2 BMey” Wr Vilpe +0(e)| in TR, (7.34)
. o VN e—iMBaz o "iT/4 o iMBE?
S5 ,G)zﬁﬁex —2iBsin(0/2)] |ie; — — i .
o (B 5 pl —2iBsin(6/2)] |ie, 2 B e Vs +0(e)| in TR (7.35)
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These show that the dominant oscillatory term in (7.32) arises in equal measure from direct (partial) and total reflection

contributions.

integrals in (7.18) and (7.19), with a size-independent amplitude that scales like 1/w, in contrast with (7.33).

However, the last terms of (7.34) and (7.35) contain a much larger oscillation, arising from the Fresnel

These

terms, which originate from the cutoff that separates subcritical and supracritical contributions, cancel each other ex-

actly when (7.34) and (7.35) are added, to give (7.32).
Similarly, in the PR angular domain, we find

Sjg (B,0)= —iﬁ—exp[—ZiBSin(e/Z)]

2
172 — — iMpe? —in/4 ,—iMBe?
_a32, | N o YN e M et e ™ +0(le])| in PR (7.36)
X | 1=2%"%, Mlsl &= M2 2 VBl el ,
. ~ — iMBe? —im/4  —iMBe?
> o IB ot oin Lo YN e e M, in PR (7.37)
S;7(B,0)= > exp[ —2iBsin(6/2)] e; 2 B e VarBle] (le]) | in .

When these two contributions are added, both types of
oscillatory terms, that found in (7.32) as well as the much
larger Fresnel oscillations, cancel out, leaving only the
WKB terms in (7.31) [the small oscillatory correction in
(7.31) arises entirely from direct transmission].

As will be seen in Sec. VIII, these qualitative features
of the reflection amplitudes in the planar-limit approxi-
mation remain valid for the corresponding terms in the
CAM approximation.

D. Physical-optics approximations

A physical-optics approximation (POA) to near-critical
scattering was derived by Marston and Kingsbury!'>!* by
a procedure reminiscent of Airy’s theory of the rain-
bow.!? The contribution from reflection, in the TR re-
gion, is found to be

explive.) 172
—)£(3,9)=§£%* [F[ %{g— sin2e
—F(—o)f in TR (7.38)

where the superscript R denotes reflection, Yoj i a
phase,'* and F is the Fresnel integral function. The only
other contribution included is that from direct transmis-
sion:

POA(B)G)-B D1 )1/2(1_7']2)

Xexp |i %4—7/” H(g) (7.39)

where the superscript 7 denotes transmission, r; and D,
are the expressions in (5.6), and y,; is another phase.!*
The Heaviside step function H (¢) restricts the contribu-
tion to the TR region, in agreement with geometrical op-
tics.

Although well-defined expressions are obtained for the
phases y,; and y,;, Marston and Kingsbury found'* that
the agreement with Mie theory is significantly improved
by replacing y,;—y,; in the TR region, by the WKB

[

phase difference between the total reflection and transmis-
sion contributions

2Bsin(6/2)]
—NCZ)]

'}’Oj_Ylj“"[_5j(9)_
—[—2B(c,

where the first square bracket contains the phase arising
from the last two phase factors in (6.7) and the second
one is the phase of the last phase factor in (5.3). This still
leaves an overall phase factor undetermined, as well as
the question of how to extend the reflection contribution
to the PR region.

Langley and Marston® choose an overall phase factor
such that the transmission contribution (7.39) is just the
WKB approximation (5.3). They extend the reflection
contribution (7.38) to the PR region by just omitting the
total reflection phase shift —§; from (7.40) (which is
equivalent to taking the Fresnel reflectivities at the criti-
cal angle). With these adjustments, the POA becomes’

(7.40)

S} poa(B,0)=S; 33X (B,0)+S{ 351 (B,0) (7.41)
where
;;&f(ﬁ, ——%exp[—2iﬁsin(9/2)]
Xexp[ —iH(£)5;(6)]
o T/ MB '/2.
X 5 F by sin2e
—F(—oo)} R (7.42)
Sip8A (B,0)=—iB(D)'*(1—r})
Xexp[ —2if(c;—Nc,)]H (¢) . (7.43)

To establish a connection between the contribution
from total reflection in POA and CAM, let us apply the
planar reflection approximation (6.21) to (6.16):
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—in/4
S7(B,0)~—=PBexp[ —2iB(M —Ne¢)]
J 2V

X fowexp

—i [gz—Zs[Bsin(G/Z)]l/Zé’

23/2\/Nej _ ]

+ YLK VE|dE (7.44)

where O (€2) corrections to the last term in the integrand
phase have been neglected.

In the TR region, we now apply Marston and
Kingsbury’s assumption that the square root term in the
J

Sj?MPOA(B’e)z - %exp

. 0
—2i —
1fj’sm2

where MPOA stands for “modified physical-optics ap-
proximation;” &; is the total reflection Fresnel phase
shift (6.8); and O(Be®) terms in the phase have been
neglected, consistent with the approximations made in
(6.16).

Comparing (7.45) with the POA result (7.42), we find
only two significant differences; the contribution from the
Fresnel integral terms is complex conjugated and, in their
argument, there is the substitution

V' MPBsin(2e)—V Bsin(6/2)(2¢) . (7.46)

While the arguments (7.46) agree for small |e/7|, they
]

exp[ —iH(€)5,(0)]—= | F*
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integrand phase can be treated as slowly varying and tak-
en at the stationary-phase point of the remainder of the
phase,

E=[Bsin(6/2)]" % .

By (6.14), (4.23), and (4.13), £ is just the geometrical-optic
stationary-phase point. In the PR region, the stationary-
phase point falls outside of the range of integration; thus
the dominant contribution to the integral*® arises from
the endpoint {=0 in (7.42), so that the square root term
is taken at this point. The result is

ei‘lT/4 2 9 172
5 ;Bsin? —F*(— o) (7.45)

[

differ greatly for larger values of |e/7|; the MPOA result
(7.45) approaches the WKB result (6.7), while the POA
result (7.42) does not.*’

We will try to improve the POA by treating in a sym-
metric way the contribution from the direct-reflection
subcritical term, which is neglected in the POA. Starting
from (4.12), and employing the Fresnel approximation
(3.13) to RY), we again treat this expression as slowly
varying (neglecting its rapid variation near the critical
angle). Thus we evaluate it at the geometrical-optic
stationary-phase point (4.11) in the PR region, and at the
end point (critical incidence, where R (212) =1) in the TR re-
gion. The result is

/5 mpon(8,0)= — Lexpl 21 sin(0/2)] | H(e)+
ei-rr/4 —
X & (F* [~V /mBsin(0/2)e] —F*(— )] .

In (7.47) we define H (0)=1 so that the expression within
the first set of large square brackets becomes 1 at the crit-
ical angle. Again, this result approaches the WKB ap-
proximation (4.16) for £ <0, |e/n| >>1.

Taking the WKB approximation to the direct
transmission contribution, as in the POA, the MPOA is
defined by

S},Kd)POA(B’G)z j,>MP0A(ﬁ70)+Sj(<),MPOA(ﬁ’9)
+S; 554 (B,6)

where the first two terms are respectively given by (7.45)
and (7.47), and the third one by (7.43).

A qualitative discussion of the physical-optics approxi-
mations in the near-critical region, along lines similar to
Sec. VII C, can readily be given. At the critical angle 6,,
it follows from (7.41) that

(7.48)

S\ pda(B.0,)= —’—f—e—Wﬁ (7.49)

sin(6/2)—e;[N?—cos*(6/2)]'/? (—e)
sin(8/2)+e;[N?—cos?(6/2)]'/? )

(7.47)

[

which differs by a factor of J from the dominant term in
(7.27). The reason is the omission of subcritical reflection
(which contributes an equal amount at 6,). Taking into
account the correction terms in (7.27), we find that the
POA gain functions should be well below the correspond-
ing CAM ones at (and near) the critical angle, the
difference increasing with 8 and being smaller for polar-
ization 2.

For larger deviations from the critical angle, there is a
close similarity between (7.42) and the Fresnel-integral
terms in (7.18) apart from complex conjugation [note that
F(—w)=—F(w) and that the arguments of the Fresnel
functions are approximately the same for |e| <<1]. Thus
the departure of (7.42) from the WKB approximation in
the TR region has the same large-amplitude Fresnel oscil-
latory character as the last term in (7.34). In (7.32), this
term was cancelled by the subcritical reflection contribu-
tion, but the POA misses this important cancellation.

The POA intensity oscillations in the TR region have
an envelope with amplitude
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Apop=~+1/(Vrr|wl) .

Apoa is not only larger than (7.33), but also size and po-
larization independent, and it decreases more slowly with
the distance from the critical angle. Since the
stationary-phase point in the POA is the geometrical-
optic one, the POA pattern should also be displaced from
the true one by the Goos-Hanchen shift. The differences
should be smaller for polarization 2, and should get worse
as B increases. The POA (=WKB) contribution from
direct transmission (7.43) grows like €3/ and has the
same Fresnel oscillatory character, so that it eventually
becomes dominant at larger deviations from the critical
angle.

In the PR region, only (7.42) contributes to the POA,
and the contribution is again similar to the Fresnel (last)
term in (7.37), giving rise to a polarization-independent
term that decays like w ~2. Unlike (7.31), this does not
approach the WKB result, so the POA fails completely in
the PR region; this is not surprising in view of its omis-
sion of subcritical reflection.

For the MPOA, (7.45)—(7.48) yield, at the critical an-
gle,

S hon (B,6,)=— izée “AMB=g(0) 5(B,6,)  (1.50)
where the last equality follows from (7.4), and the contri-
butions are evenly split between subcritical and supracrit-
ical reflection. Since the correction terms in (7.27) are
not included, the MPOA gain functions will have values
above the corresponding CAM ones; thus CAM is brack-
eted between the POA and the MPOA. Since the WKB
approximation is expected to fail near the critical angle,
so also should the MPOA.

For larger deviations from the critical angle, the
Fresnel terms in (7.45) and (7.47) are almost identical to
those in (7.19) and (7.18), respectively. However, while
one of the contributions is multiplied by a Fresnel
reflection amplitude, the other one has a coefficient unity,
so that there is no cancellation of Fresnel-like oscillatory
terms. In the TR region, the behavior of the MPOA
resembles that of the POA, but, unlike the POA, it does
approach the WKB result at large values of €.

The main advantage of the MPOA over the POA is
that it also approaches the WKB result for large || in
the PR region, because it includes the subcritical contri-
bution (7.47). However, the approach is oscillatory rath-
er than monotonic, because of the noncancellation be-
tween the asymptotic Fresnel “tails” arising from (7.45)
and (7.47).

VIII. NUMERICAL COMPARISONS

In the present section, we compare numerically
summed Mie results (see Appendix B for computational
procedures) with the various approximations defined in
Sec. VII. We always take N =0.75 and subtract far-side
contributions out to order P =100.

A. The WKB approximation

Comparisons with the WKB approximations (7.4) are
useful because it contains the interference effects among

all contributing terms, evaluated at the level of geometri-
cal optics. The main omitted physical effect is
diffraction, so that this comparison helps define the angu-
lar domains where significant diffraction effects (devia-
tions from WKB results) occur. Small deviations, of
course, may be attributed to omitted higher-order WKB
corrections. Furthermore, far enough from the critical
scattering angle, neglected higher-order Debye contribu-
tions (beyond direct transmission) must be taken into ac-
count.

Although the domain of validity of the WKB approxi-
mation was estimated to be given by (7.5), we shall extra-
polate it all the way to the critical angle (e=0); as was
mentioned following (7.4), it will then exhibit a cusp at
£=0, inherited from geometrical optics.

In Fig. 9, the nearside Mie results for S=5000 are
compared with the corresponding WKB results. The
cusp in the WKB data at 6=6, is quite apparent. Note
that G| wkp(B,6,)=G, wkp(B,6,)=1, in agreement with
(7.50), and that 6=6, — 7 is approximately the position of
the first peak in the gain functions, which gives another
interpretation of the parameter 7.

We see that our estimate |6—6,| >>27 for the domain
of validity of the WKB approximation [(4.9), (7.5)] ap-
pears to be well verified. Indeed, as anticipated in the
qualitative discussion in Sec. VIIC, the WKB approxi-
mation very rapidly approaches the Mie solution on the
PR side, within a distance 1 of the critical angle; while
the approach is considerably slower and oscillatory on
the TR side, where one needs to go to an angular distance
at least 4—5 times 7 for a reasonable merge.

The growth in the amplitude of oscillation as one goes
further away from 6, arises from interference between
reflection and transmission, as was first pointed out by
Marston and Kingsbury.!* This requires, at large enough
distances from 6, on the TR side, the inclusion of
higher-order near-side transmitted Debye components,
which we have not taken into account. Thus we restrict
the comparisons to the first few oscillations, where most
of the diffraction contributions are concentrated.

In conclusion, we see that the diffraction effects that
need to be explained in the near-critical region occur
within a distance of order 1 from 6, on the PR side, and
within a distance of a few times 7, covering the first few
oscillations, on the TR side.

B. The physical-optics approximations

We now compare the subtracted Mie results with the
POA [Eq. (7.41)] and the MPOA [Eq. (7.48)]. Figure 10
shows this comparison for = 5000.

The geometrical-optic cusp at 6, persists in the
MPOA. 1t is not present in the POA for G; and G,, but
it is present in the POA for cos8. These breaks in slope
all arise from the Heaviside step functions in (7.41) and
(7.48), where one must remember that (7.43) is O (¢3/?) as
eN0.

As expected (Sec. VIID), the POA, because of its
neglect of subcritical reflection, fails completely in the
PR region; it has much larger errors than the WKB re-
sult, which it does not approach at large angles, except
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FIG. 9. Comparison between subtracted Mie results to order
P =100 and the WKB approximation, for N =0.75, 8=5000. FIG. 10. Comparison between subtracted Mie results to or-
The angular width parameter 7 is defined by (7.2). (a) G,(3,6); der P =100 and the POA and MPOA, for N =0.75, B=5000.
(b) G,(3,0); (c) cos8(p3,0). (a) G1(B,0); (b) G,(B,0); (c) cosd(3,0).
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for cosd, which is =1 both for (7.42) and (4.16). In the
TR region, again, the POA phase difference is chosen to
be identical with the WKB one, so that they lead to the
same results for cosd [Figs. 9(c) and 10(c)]. For both G,
and G,, the POA is better than the WKB approximation
for the first and second peaks of oscillation, but gets
worse for the other peaks [Figs. 9(a) and 9(b) and 10(a)
and 10(b)].

While the inclusion of subcritical reflection in the
MPOA lets it approach the WKB result in the PR re-
gion, the approach is oscillatory, in agreement with the
discussion in Sec. VIID. Thus, although it is distinctly
better than the POA in this region (except for cosS,
which is affected by the oscillations), it is worse than the
WKB approximation. In the TR region, the MPOA is
generally better than the POA for G, but without much
of an advantage. For G,, the POA tends to be better
than the MPOA, except for some of the peaks at large €.
Finally, for cosd, the MPOA is slightly better, but the ad-
vantages are small.

In conclusion, little advantage is gained by going over
from the POA to the MPOA. In accounting for
diffraction, both physical-optics approximations improve
on WKB just in the region between the top of the first
peak and the second one, but the errors are still consider-
able.

C. The CAM approximation

Comparisons between the Mie results and the CAM
approximation (7.1) will be made for B=1000 and
B=10000. Since we have only developed the lowest-
order CAM approximation, employing transitional
(nonuniform) asymptotic approximations and assuming
that ' << 1, the lowest value of 3 for which it is reason-
able to make comparisons is 3=1000. The planar-limit
approximations of Sec. VIIB begin to be applicable
around B=10000, in a very restricted neighborhood of
0,.
The results for S=1000 are shown in Fig. 11. The
POA and WKB approximations are also shown. Between
6,—mn and 0,+7, the CAM approximation provides a
much better fit to G; and cosd than the other approxima-
tions. For G,, this is also true, except that the POA, on
the TR side, approaches comparable accuracy towards
6,—n.

For 6> 6,+2mn on the PR side, the CAM results for G,
and G, are less accurate than the WKB approximation,
showing small residual traces of oscillatory behavior.
The CAM results for cosd also show some oscillation, fol-
lowed by a dip near 95°. It can be verified that the Mie
results for cosd show a similar dip (absent from the POA
and the WKB approximation) about 10° further on (cf.
also Fig. 5).

For the 6 <6, —n on the TR side, the accuracy of the
CAM approximation tends to deteriorate and to become
comparable to (or worse than) that of the other approxi-
mations. Thus, at 3=1000, the CAM approximation ac-
counts well for the diffraction effects within a band of
width about 27 centered on 6,, but it is not a significant
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FIG. 11. Comparison between subtracted Mie results to or-
der P=100 and the CAM approximation, for N =0.75,
B=1000. The POA and WKB approximations are also shown.
(@) G,(B,0); (b) G,(B,0); (c) cosd(3,0).
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improvement on the other approximations at greater de-
viations from the critical angle.

The corresponding results for S=10000 are shown in
Fig. 12. At this higher value of 3, both the quality of the
CAM fit and its range are considerably improved. For
G, [Fig. 12(a)], the differences between the CAM approx-
imation and the Mie result are of the same order as the
residual fluctuations in the Mie data, not eliminated by
the subtraction procedure, except at the high end of the
angular range shown, where traces of oscillation are still
present in CAM. Essentially all diffraction effects (depar-
tures from the WKB approximation) are accounted for.
The same holds for G, [Fig. 12(b)], with slightly larger
deviations at large distances from the critical angle.
Note, by comparison with Fig. 11, that the POA errors
become worse as 3 increases, in agreement with the quali-
tative discussion given in Sec. VII D.

For cosd [Fig. 12(c)], the CAM fit is excellent on the
PR side. It appears to have somewhat larger deviations
in the TR region, but the corresponding relative errors
are small [the vertical scale in Fig. 12(c) has a large dis-
placement from the origin].

We conclude that, at 3=10000, the lowest-order CAM
approximation already accounts very well for the
diffraction effects in near-critical scattering.

D. Discussion of individual contributions

In order to relate the results with the qualitative dis-
cussions given in Secs. VIIC and VIID, it is instructive
to plot separately the contributions from the various
terms in the CAM and POA approximations. So as to
bring out the role of interference effects, one should plot
amplitudes rather than intensities, so that we define

g;(B,6)=[G;(B,0)]'? j=1.2

and we denote the corresponding CAM contributions by
PR (partial reflection), DT (direct transmission), and TR
(total reflection), respectively, associated with the magni-
tudes of (4.24), (5.15), and (6.12). Similarly, for the POA,
we denote by R (reflection) and T (transmission) the con-
tributions to (8.1), respectively, associated with the mag-
nitudes of (7.42) and (7.43).

All these contributions, for 8=1000, are plotted in Fig.
13(a) (for polarization 1) and in Fig. 13(b) (for polariza-
tion 2). The leftward displacement of the TR curves with
respect to the R ones is immediately evident in these
figures. This is a consequence of the spherical Goos-
Hianchen angular shift discussed in Sec. VIC, or,
equivalently, of the tunneling of light within the bubble.

According to (6.32), the shift should be e,/e;
=N"?=1~1.8 times larger for polarization 2, and a
comparison between Figs. 13(b) and 13(a) shows that this
relationship is approximately satisfied. Numerical tests
of (6.32) at points satisfying condition (6.34) also show
consistency. In fact, one can only expect an order-of-
magnitude agreement for several reasons: (6.32) was de-
rived by comparing two stationary-phase approximations
in the planar limit, which requires large B and small &,
tending to get into conflict with (6.34); the CAM result is
not a stationary-phase approximation; and the POA re-

(8.1
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sult also differs slightly from that considered in Sec. VIC
for the stationary-phase comparison.

The POA transmission contribution (curve T),
equivalent to an extrapolated WKB approximation, also
differs considerably from the CAM result (curve DT), al-
though they tend to merge in the TR region at large €
[the CAM Fock result (5.15) rejoins the WKB result,
though not uniformly]. In particular, the CAM transmis-
(a) N=0.75, B=10000
G, (P=100)

o G‘ (CAM)
G, (POA)
---- G, (WKB)

0.8

0.4

76° 80° 84° 88°

N=0.75, B=10000
G, (P=100)
o G,(CAM)
G, (POA)
- - - G,(WKB)

N=0.75, B=10000

cosd (P=100) L
©  cosd (CAM)
cosd (POA)
- - - - cosd (WKB)

T T T
84° 88°

FIG. 12. Same as Fig. 11, for =10000.
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FIG. 13. Contributions to gj(B,O)z[Gj(B,O)]I/Z, for the
CAM approximation, from partial reflection (PR), direct
transmission (DT), and total reflection (TR), and, for the POA,
from reflection (R) and transmission (T), for =1000. (a) for
j=1; (b) for j =2.

sion contribution has a tail extending into the PR region,
where the POA contribution is identically zero. The con-
tribution from partial reflection (curve DR), neglected in
the POA, not only is dominant in the PR region, but also
has an appreciable tail extending into TR region.

Let us now connect the CAM curves with the qualita-
tive discussion of individual contributions given in Sec.
VIIC. The crossover between the TR and DR curves
occur near 6=6,, where they give comparable contribu-
tions. In the TR region, the amplitude of oscillation of
the TR curve is reduced by interference with the tail of
the PR curve (Fresnel terms). This cancellation of dom-
inant Fresnel contributions is more noticeable in the PR
region, where the oscillations of the DR curve about its
mean are removed by interference with a TR tail of the
same magnitude. The cancellation is practically com-
plete at the far end of the curves in Fig. 13(b), leading to
a strong enhancement of the DT contribution.

Figure 14 shows corresponding results at =10 000.
The Goos-Hanchen shift is a good deal smaller, as ex-
pected from its inverse dependence with 3 in (6.32). It

(a) N=0.75, B=10000
g, (CAM) L

. 1 1
(b) N=0.75, B=10000

g, (CAM) F
------ g, (POA) L

DR
0.4 2 X L
[~ T 0 S ]

o . 7 DT
- T \n T

85° 90°

FIG. 14. Same as Fig. 13, for =10000.

shows all the qualitative and semiquantitative features al-
ready discussed in connection with Fig. 13. The Fresnel-
like oscillations about the mean in curves TR and DR,
which cancel out through interference between the corre-
sponding amplitudes, leaving only the considerably small-
er “parabolic-cylinder-like” oscillations on the TR side
(Sec. VII C), can be seen quite clearly (the envelope of the
damped oscillations in the DR curve should be compared
with the tail of the TR curve).

IX. CONCLUSION

We have developed, in lowest order of approximation,
the CAM theory of near-critical Mie scattering. Already
in this order, in spite of the transitional nature of the
asymptotic approximations employed, CAM theory ac-
counts for the new diffraction effects that are observed
and, for the first time, explains their physical origin. In
terms of the effective potential, they arise from a small
neighborhood of the edge of the curved potential step
shown in Fig. 1(a) (situation 2).

The lowest-order CAM approximation developed in
this paper has several limitations; its accuracy becomes
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high only at large values of 3 (several thousand), and it
does not merge smoothly with the WKB approximations
at large deviations from the critical scattering angle, re-
stricting its angular domain of applicability. These limi-
tations are not inherent but are merely due to focusing on
the dominant contributions, neglecting correction terms
and employing various simplifying approximations, in-
cluding the use of transitional asymptotic expansions.
However, it is known!”3? that CAM theory, with the
help of uniform approximations, is capable of yielding ex-
tremely accurate and uniformly valid results, with
domains of applicability that extend all the way to size
parameters of order unity. Thus, if required, it offers
well-defined procedures for improving the accuracy and
domains of validity of the results.

The theory as developed to this order would apply with
only minor modifications to a variety of other problems
involving near-critical scattering at a curved interface. It
applies to nonrelativistic quantum scattering by a square
potential barrier, as well as to acoustic scattering from a
homogeneous sphere. In seismology, analogous
diffraction effects must occur in the generation of head
waves’ ° at a curved interface.

With trivial changes, the theory also applies to near-
critical scattering by a homogeneous circular cylinder.
In the electromagnetic problem, for instance, the partial-
wave scattering amplitude coefficients differ from the Mie
coefficients only by the replacement of Ricatti-Bessel
functions by ordinary Bessel functions,?’ and of Legendre
functions by trigonometric ones, which agrees with the
asymptotic approximations we have employed.*®* Thus
the diffraction effect is structurally stable, remaining basi-
cally unaffected by the change from spherical to cylindri-
cal geometry; indeed, experimental observations>® were
made in light scattering from cylindrical “bubbles.”

Initial attempts at interpretation? tried to correlate the
effect with the rainbow, which is also structurally stable,
treating it as a ‘“reciprocal rainbow.” In terms of this
“analogy,” the geometrical-optic treatment!! would cor-
respond to the Descartes theory of the rainbow and the
WKB approximation to Young’s interference theory;'?
the POA would be the counterpart of the Airy theory.

However, the analogy is misleading; near-critical
scattering is a new diffraction effect, entirely different
from rainbow scattering. At the geometrical-optic level,
a rainbow is a caustic direction, with an infinite discon-
tinuity in the intensity, whereas in near-critical scattering
the intensity remains continuous: the critical scattering
angle corresponds to an infinite discontinuity in the slope
of the intensity, which we propose to call a weak caustic.
The weaker nature of the singularity leads to a better be-
havior of the WKB approximation. Indeed, while the
zero-order (“primitive semiclassical’) WKB approxima-
tion cannot be employed in the rainbow region, where it
diverges at the rainbow angle,? it is well behaved in the
near-critical region, where it reproduces the geometrical-
optic cusp at the critical angle. It is only the first-order
WKB correction that diverges at the critical angle.

The diffraction effects in rainbow scattering? are
spread over an angular domain of order 872’3 and in-
clude an intensity enhancement of order B'/3; diffractive

FIEDLER-FERRARI, NUSSENZVEIG, AND WISCOMBE 43

changes in supernumerary interference oscillations on the
bright side; and tunneling into the dark side. In near-
critical scattering, diffraction effects spread over a
broader angular domain, of order 8~ !/? [cf. (7.2)]. There
is no overall intensity enhancement. The diffractive
changes in interference oscillations on the total reflection
side (where tunneling is very important) and to the inten-
sity decay on the partial-reflection side scale like 8774,
so that they remain appreciable up to very large values of
B.
Although direct transmission gives a non-negligible
contribution, the new diffraction effect arises basically
from ‘“a peculiar kind of reflection,” to paraphrase
Young’s picture of edge diffraction.> The new diffraction
integral associated with the effect is the combination of
the Fresnel-Fock and Pearcy-Fock integrals.

The curvature of the interface produces two very
different types of effects.

(i) It spreads the range of angles of incidence. If only
this relatively trivial effect is taken into account, and the
surface is replaced by its tangent plane at the point of in-
cidence to evaluate the reflection coefficients, the problem
is mapped into that of a divergent beam incident on a
plane interface, corresponding to the planar reflection
limit. In this limit, the new diffraction effects are de-
scribed (as corrections to the WKB results) by the func-
tion P(w), related to the parabolic cylinder functions by
(7.20), and defined by (7.15) as the Fresnel transform of
the square root function. Similar functions are found in
the treatment of near-critical reflection of spherical waves
at a plane interface.'® The plot of |P(w)| in Fig. 8 al-
ready shows some basic qualitative features of the new
diffraction corrections. The failure of physical-optics ap-
proximations stems from their attempt to describe the re-
sults in terms of the usual Fresnel pattern, the Fresnel
transform of the Heaviside step function: as we have
seen, subcritical and supracritical Fresnel contributions
cancel each other exactly. The planar-limit approxima-
tion is quantitatively useful only for very large size pa-
rameters and very small deviations from the critical an-
gle.

(ii) A much deeper effect of curvature is manifested, in
the effective potential, through the inertial (centrifugal)
barrier, which also plays a crucial role in edge
diffraction.!”!®32 This is responsible for the difference
between the planar and spherical reflection coefficients,
giving rise to the Fock-type effects. The effective poten-
tial for near-critical incidence, i.e., around situation 2 in
Fig. 1(a), may be approximated by a linearly rising poten-
tial step, which explains the appearance of Airy functions
in the new diffraction integrals. Taking into account
these dynamical effects of curvature leads to a consider-
able improvement in accuracy and extension of the
domain of validity of the approximations. The next step
beyond the transitional Fock-type theory takes into ac-
count the curvature of the potential step and leads to the
uniform approximation, that should further improve the
accuracy and extend the range of applicability of the
CAM theory. Thus the planar reflection limit, the
present transitional CAM approximation, and a uniform
CAM approximation provide successively better and
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broader approximations.

In terms of the short-wavelength asymptotic methodol-
ogy of Huygens-Fresnel-type integral representations of
wave fields, of the type

f(/3,a)=fA(k,e)exp[iB(D(K,e)]dk 9.1)

where B is large and both the ‘“amplitude” 4 and the
“phase” @ depend on one or more control parameters &,
rainbows are associated with the fold catastrophe,*! where
& is a cubic polynomial such that the ordinary saddle-
point method cannot be applied. The corresponding ca-
tastrophe diffraction integral*! is the Airy function.

In spite of the appearance of functions related to
Pearcey’s integral (6.25), connected with the cusp catas-
trophe (the next one in the hierarchy*!), near-critical
scattering does not arise from this catastrophe. What
breaks down in the saddle-point method has to do with
the amplitude A rather than with the exponent ® in (9.1).
In the saddle-point method, it is assumed®® that A4 is sin-
gle valued and holomorphic within the range of integra-
tion. It is this assumption that breaks down in near-
critical scattering. In the planar limit, 4 goes through a
branch cut within the domain of the saddle point: see
(7.11) and the remarks following (6.6). In the exact CAM
representation, there is no branch cut, but A4 is piecewise
analytic, i.e., it is represented by two different analytic
functions in different parts of the range of integration; in
the subcritical range, it is given by the first term (3.2) of
the Debye expansion (3.1) [cf (4.5)], involving the spheri-
cal reflection coefficient RY), while in the supracritical
range it is given by the full S function [cf. (4.2)], involving
the total spherical reflection coefficient R /).

The generalized Goos-Hanchen shift, whose presence
and relevance are obvious in Figs. 13 and 14, is a direct
manifestation of tunneling. Thus the CAM treatment of
near-critical scattering from a curved interface reveals
the important role of tunneling in this new diffraction
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effect in semiclassical scattering, as has already been
found in forward diffraction, rainbow scattering, glory
scattering, and orbiting,>? ie., in all semiclassical
diffraction effects known so far.

Well-documented and tested FORTRAN programs for
doing the computations reported herein are available
from the third author on IBM or Macintosh diskettes.
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APPENDIX A:
THE PARABOLIC CYLINDER FUNCTION

The Weber parabolic cylinder function (in Whittaker’s
notation) has the integral representation*

2
exE —z°/4) po 1,
D (z)= (=) f lexp —2—t2 zt |dt ,
Rev<0. (A1)
It satisfies the relationship*’
V2aD,(iz)=T(v+1)[e "™2D_,_ (z)
+e™2D_,_ (—2)]. (A2)

For |z|>>1, |z| >>|v|, its asymptotic expansion is given
by49

Dv(z)~e_22/4z" 1—%4—0(244) , largz| <3mw/4 , (A3)
z
D (z)~e # /4" 1*@4-0(2'4)]
2z
Vi
— V2T imvgetrag—v—t |1y WHDOVED) 4y | s cargz <Sm/4 (A4)
I'(—wv) 222
D (z)~e * /42 l1—"(”—‘211+0(z“) ]
2z
L V2T iyt ==t | D) ey | —5m/4<argz < —m/4 . (A5)
r'(—v) 222
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APPENDIX B:
COMPUTATIONAL CONSIDERATIONS

All computations reported here were carried out in
14-digit precision, and all quantities were computed to an
accuracy of at least six significant digits.

1. Mie theory

In preparation for this study, it was necessary to ex-
tend the Mie scattering algorithms of Wiscombe® to the
case of refractive index less than unity. Considerable
care was exercised to do this correctly, because there is
danger of severe numerical ill-conditioning due to the
large size parameters and consequently long (up to 10000
terms) Mie series involved. The main concern was the re-
currence for the Bessel function ratio 4,(Np), since this
is by far the most important place where the refractive in-
dex N affects the Mie algorithm. It was found that, con-
trary to the N > 1 situation, it was never possible to use
up-recurrence for A,; doing so led to disastrous errors.
A, always had to be computed by down-recurrence.

The only other issue in the Mie algorithm was the
number of terms to take in the Mie series. The formula
used in Wiscombe® was fitted to the N > 1 case but was
found to be entirely satisfactory for N <1 also. Adding
5% more terms than required by this formula had no
effect. Using 10% fewer terms, on the other hand, had a
big effect, indicating considerable cancellation among the
first 90% of the terms (at least near the critical angle) and
thus a preponderant influence of the terms in the tail end
of the Mie series.

Before devising the method of subtracting the far-side
contributions, we tried averaging the Mie results over
narrow angular bins to tame the Mie fluctuations, but
this was highly unsatisfactory. In general, we have found
that such filters (even very sophisticated ones) are of little
value in smoothing Mie curves; the Mie fluctuations are
very strange (appearing almost fractal in that there is
structure within structure) and are definitely not of the
sort which are susceptible to traditional smoothing algo-
rithms.

2. CAM calculations

The main concerns in computing the CAM approxima-
tion are (a) replacing infinite upper limits in some in-
tegrals with finite values; (b) computing Airy functions Ai
and Ai’ of complex argument; (c) doing the integrals by
numerical quadrature.

1. Upper limits

The evaluation of the Fresnel-Fock integral (4.24) and
the Pearcey-Fock integral (6.12) is performed according
to the procedure defined following (4.26) and (6.13), so
that [including the incomplete Fock-type function (5.15)]
all CAM integrals with infinite upper limits have rapidly
decreasing integrands—in some cases monotonically de-
creasing, in other cases oscillatory with a monotonically
decreasing envelope.

Since the monotonic decrease is at least exponential [in
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fact, faster than exponential: with power 2 for (5.15) and
Gaussian for (4.24) and (6.12)], it is possible just to use
finite rather than infinite upper limits without having to
add in an estimate of the residual, as long as large enough
upper limits are used. Our criterion was that doubling
the value of the upper limit should not affect the comput-
ed value of the integral to six significant digits.

Regarding the finite pieces of stationary-phase in-
tegrals that contribute to (4.24) and (6.12), as was pointed
out following (4.26) and (6.13), the integrands, though os-
cillatory, only go through a small number of oscillations
when 6 is in the near-critical region.

2. Airy functions

It is difficult to find algorithms for computing Ai(z)
and Ai'(z) for complex z. Algorithms for real z, based on
Chebyshev polynomial fits (e.g., Prince’!), are easy to find
but not extensible. Sophisticated algorithms for Bessel
functions of complex argument (including Airy functions)
have been developed by Amos.”> However, Amos com-
putes Airy functions in terms of I and K Bessel functions
of fractional order. To us, this seemed excessively com-
plicated and wasteful of computer time, because the Airy
functions are entire functions without branch cuts and
have simple power and asymptotic series representations.
We developed fast routines based entirely on these series.
(Our experience contradicts Schulten et al.>* who claim
that the power and asymptotic series are too limited in
range and slowly converging to be useful for moderate
values of z).

The power series for both Ai and Ai’ take the form
(Ref. 30, Eq. 10.4.2)

¢ f(z)—c,g(2)

where both f(z) and g (z) are power series. This becomes
increasingly ill-conditioned as |z| increases: either be-
cause the subtraction causes loss of significant digits (e.g.,
on the positive real axis); or because f(z) and g(z) con-
tain large nearly cancelling terms (e.g., on the negative
real axis). But by using 14-digit precision and allowing a
loss of up to seven significant digits in the computation, it
is possible to reach up to |z| =5.4 using no more than 23
terms (all 14 digits are lost for |z| >8). The number of
terms necessary was fitted as a linear function of |z
(4.75+3.3|z| for Ai and 5.0+ 3.35|z| for Ai'); this allows
a more accurate and efficient summation using a Horner’s
rule factorization.

For |z| > 5.4 the Airy asymptotic series give equivalent
precision (six digits or more) to the power series in 20 or
less terms. The simpler asymptotic series (Ref. 30, Eq.
10.4.59) is used for almost all z; however, it is not valid on
the negative real axis, so very near that axis [when
Re(z) < —0.998|z|] the more complicated series 10.4.60
is used instead. The series is stopped when the final term
added is below 1072 times the leading term, provided
that the series is decreasing at this point (which is always
the case for |z| >5). In no case is the asymptotic series
summed to where the terms start to increase, which
occurs roughly at term number =2|¢{| where {=2z3/2,
The number of terms necessary is gotten from an empiri-
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cal function of |£| so that a Horner factorization can be
used, as for the power series.

The accuracy of our routines falls from = 10 significant
digits to roughly seven digits as |z| increases from zero,
or decreases from large values, toward 5.4. The only er-
ror condition occurs for very large |z|, when the exponen-
tial in the asymptotic form may overflow.

We checked our routines for Ai(z) and Ai'(z) against
the routines of Prince’! for real z; along rays arg(z)=mw/3
and 27/3, where Ai(z) and Ai'(z) can be expressed in
terms of Airy functions of real argument using Ref. 30,
Eq. 10.4.9, with z =r and z =re*'" (r real); against Table
VII of Schulten et al.®? for |z| =6 and arg(z) from O to
in steps of 7 /6; and against old tables of Harvard Univer-
sity®* and Woodward et al.*’

3. Quadrature

The integrals were calculated using the Kronrod-
Patterson method involving a sequence of interleaving 1;
3; 7; 15; 31; 63; 127; and 255-point extended Gauss-type
quadrature formulas.® Since each successive formula
employs all points used by its predecessor, no integrand
values are wasted when the order of the integration for-
mula is increased; this is a considerable merit when the
interands are as complicated as in CAM approximations.
Convergence is defined to occur when the relative
differences between the magnitudes of two successive for-
mulas are less than 107% It was never necessary to go
beyond the 255-point formula, and usually convergence
occurred much earlier in the sequence. Since it is the
magnitude of the integral whose convergence is tested, it
is possible for the real or imaginary part separately to be
poorly converged, if one of them is orders of magnitude
smaller than the other one; in practice, this did not prove
to be a problem.

3. Transcendental equation solution

According to (3.17), the following transcendental equa-
tion must be solved in the computation of the pth term of
the far-side sum:

f»(6,,)=sinb;, —N cos[(20,, —0—m)/(2p)]=0. (B1)

Figure 15 shows f, for 6=80° and various values of p.
The curves converge rather quickly to
f«(0y,)=sind,,—N as the single root approaches
sin"!N. An examination of many such curves for
different N and 0 showed always this same behavior: be-
tween O and the critical angle there is always a monotone
increase and a single root, and the curves always con-
verge rather quickly to f, as p increases.

The asymptotic approximation (3.20) to the root 6,
turns out to be excellent even for low values of p. Empir-
ically, it always exceeds the true root. Typically it is high
by 20-30% for p=2; a few percent for p =3; and
around 1% or less for p =4. By p =30 or thereabouts,
(3.20) is good to 5-6 significant digits. Empirically,
(3.20) converges monotonically to the true root as p in-
creases, so we stop solving the transcendental equation as
soon as (3.20) agrees with the root to six significant digits;
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FIG. 15. Plots of f,(6,,), defined by Eq. (B1), for N =0.75,
6=280°, and various values of p. For p— o, the single zero of
this function approaches 6, =sin"'N.

(3.20) is then used for the root for all larger values of p.

We routinely take terms up to p =100 in the far-side
sum (to ensure convergence to roughly four significant di-
gits) and evaluate this sum at hundreds to thousands of
angles O; thus the transcendental equation needs to be
solved 10*~10° times in a typical computation. This
clearly made manual inspection of each solution impossi-
ble, so a safe root finder with guaranteed convergence
was essential.

Our first choice for such a root finder was the routine
RTSAFE from Press et al.’” RTSAFE requires the root to
be bracketed. It uses Newton’s method except when the
Newton step is either too large or would place the next
guess for the root outside the brackets; then it reverts to
the bisection method. Typically, RTSAFE required 5-6
iterations (independent of p) to converge the root to six
significant digits. 0 and 7 /2 were used as the root brack-
ets because it can easily be shown that

fp(0)<0 and f,(7/2)>0.

The critical angle was also tried as the upper root bound
in place of 7 /2, but this actually inhibits convergence by
forcing more non-Newton steps.

We were able to reduce the number of root-finding
iterations required to 2-3 by making two changes to
RTSAFE: first, allowing the input of an initial guess [which
we took to be (3.20)]; and second, using Regula Falsi in-
stead of bisection (Regula Falsi converges faster). This is
almost a best-possible result.

4. Fresnel integrals

The Fresnel integral F(x)=C(x)+iS(x) occurs in the
POA and MPOA results (7.41) and (7.48). The computa-
tion of this function would not be remarkable, except that
the approximate fits given in Egs. 7.3.32 and 7.3.33 of
Ref. 30 and employed in Refs. 5 and 14 have serious
problems for small x. We discovered this in trying to
reconcile differences between our implementation of the
POA formulas and some published numbers.

Although it proved harder than expected to find
Fresnel integral routines among the usual mathematical
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libraries—in particular the International Mathematical
Statistical Library has none—we did find them in the
well-known Numerical Algorithms Group (NAG) library
(see Cowell’®). When we compared the NAG values with
the fit proposed in Ref. 30, we found serious errors in
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S(x) for x <0.4: 4% at x =0.32, 25% at x =0.22, and
growing catastrophically large for x <0.2. Even where
the fits based on Ref. 30 were good, their errors were nev-
er smaller than a few tenths of a percent; this hardly
seems sufficient for present-day computations.
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sidade Catolica, Rio de Janeiro, RJ 22452, Brazil.
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