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The wave function of a particle escaping from a barrier, in general, would have its quasinormal
modes, which decay like exp( —yt/2, ), dominated by anomalous t terms at asymptotically late
times. One implication of the existence of these anomalous terms is that the wave function cannot
be expressed as a sum of quasinormal modes. We show that these anomalous terms are related to
classical motion linking the initial point (x', t =0) to the final point (x, t ). We then show that when
the potentia1 is unbounded from below, such terms do not appear, and more importantly, for such
potential, the time development of a wave function initially concentrated in the finite region can be
expressed in terms of a summation over quasinormal modes.

I. INTRODUCTION

In this paper we discuss the leakage of the wave func-
tion of a particle out of a potential barrier V(x), with em-
phasis on the difFerence between potentials that approach
a constant, say zero, as x —+ ao [Fig. 1(a)], and potentials
which are unbounded below [Fig. 1(b)], the latter includ-
ing potentials for which the escape is classically allowed,
e.g. , V(x) = —x /2. For simplicity we consider only po-
tentials with V(x)=+ ~ for x (0, i.e., the particle is
confined to a half line and escapes only to the right, so
that x represents a positive "radial" coordinate.

Imagine first "switching ofF" the leakage by making the
barrier infinitely high, then the potential well, say of
characteristic spatial dimension a, has a sequence of
bound states with energy E„' ' and wave functions P'„'(x),
which are concentrated inside the well, i.e., P'„'(x)-0 for
x )&a. Now if the barrier height is finite, some of these
states become quasinormal modes, leaking out at some
rate y„, i.e. , the energy becomes E„iy „/2, whe—re
E„-E„' '. The corresponding wave functions P„(x), in-
stead of vanishing at infinity, obey the outgoing wave
boundary condition, i.e., (outgoing wave amplitude)/
(incoming wave amplitude)= ~, which defines the com-
plex energies as poles of the S matrix.

The quasinormal modes P„(x) are close to the bound
states P'„'x inside the well (x 5 a), and the latter is a com-
plete basis for wave functions that tend to zero
sufFiciently rapidly at infinity, so it is natural to examine
the following propositions.

(c)

X

FIG. 1. (a) A typical bounded potential V(x). (b) A potential
unbounded below V(x). (c) The potential V(x) truncated to
V(x).
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(A) Are the quasinormal modes (together with the
bound states if any) complete for wave functions concen-
trated inside the well? More explicitly, we ask the ques-
tion: For an initial wave function 4(x, t =0) that is con-
centrated inside the well [%(x )a) =0], under what con-
ditions would the time development of the wave function
%(x, t) for finite x be given by

%(x, t)= ga„e "e " P„(x)+ gc;P;(x)e

c

with the constants a„being esseritiafiy the projection of
%(x, t =0) on the quasinormal modes P„.' (In the pres-
ence of multiple poles, in addition to the exponential
time dependence, these terms may contain factor of
powers of t )T.he second sum in (1) represents the
bound-state contribution. For simplicity of discussion,
we henceforth do not consider the case where the poten-
tial inside the well is a global minimum, so that there is
no bound-state contribution. The generalization to in-
clude bound states is trivial.

Before we study this question, we look in particular at
a special case of (A).

(8) Under what conditions would the wave function
%(x, t) for finite x as t~ ~ be dominated by the lowest
quasinormal mode with the smallest y„(in the absence of
a bound state)? This question is interesting not only in its
own right, but also guides us to the answer of (A). It is
clear that the conditions in (B) are necessary conditions
for (A), but not vice versa.

It has been shown, at least for potentials vanishing
at infinity, that for late times %(x, t) is dominated by
anomalous terms going as t . The answer to (B) is neg-
ative and hence the expression (1) cannot be valid in gen-
eral. Specific examples have been evaluated and a
similar phenomenon occurs in scattering. These anoma-
lous terms do not become important until very large
times, and are in practice unobservable in experimental
situations such as a decay. En Refs. 4—7, it has been
pointed out that these terms are related to the long-
wavelength components of the initial wave packet. We
shall first study the physical origin of such terms, and
show that they are absent for potentials that are un-
bounded below.

The renewed interest in this issue of t terms derives in
part from quantum cosmology, where 4 is the wave func-
tion of the universe in minisuperspace, x being the scale
factor of the universe and t the conformal time, related to
the proper time r by dt =drlx(r). A model potential
might be V(x) =(x —Ax )/2, where A, )0 is proportion-
al to an e8'ective cosmological constant generated by an
inAaton field. The universe "escapes" from the quantum
domain inside the well (x (a=1/&A. ). To the extent
that path integrals are equivalent to ordinary quantum
mechanics, the problem is exactly analogous to that of a
particle escaping from a barrier. ' In quantum cosmolo-
gy the proper time separation between three-geometries is
unmeasurable in principle and has to be summed over in
a path-integral sense, and the resulting wave function is
dominated by paths with large t or ~. If there is no t

terms, the wave function would be dominated by the
slowest leaking quasinormal mode and hence would be
completely determined by the dynamics of the system
and independent of the initial data, a situation which is
intuitively appealing. The issue therefore deserves a care-
ful reexamination.

Apart from the motivation by quantum cosmology, po-
tentials that are unbounded below arise naturally in
another context. Field theory is often studied by pertur-
bation in some coupling constant A, . The validity of the
series in A, (or of any resummed series) relies crucially on
analyticity in the X plane. The case of time-independent
perturbation for zero-dimensional field theory; i.e., the
generalized anharmonic oscillator

1 + —,'(co x +A,x )
8x

(2)

has been studied in depth. ' The behavior of high-order
terms in the perturbation expansion is controlled by the
tip of the cut for A, = —

~A, ~. A negative A, corresponds to
an unbounded potential of the type of Fig. 1(b).

A potential that is unbounded from below [such as V in
Fig. 1(b)] can be regarded as the limit of a truncated po-
tential [such as Vin Fig. 1(c)], with V(x) =E, for x )x„
where x, is much larger than all relevant x values con-
sidered in the problem, and ~E, much larger than all en-

ergy scales in the problem. Then it is physically obvious
that the truncation does not a6'ect the physics. However,
it is important to note that in this point of view, any
t ~ oo limit is to be taken after x, ~~, V, ~~.

The issue of completeness is important from another
consideration. Imagine that a leaking potential V(x) is
slightly perturbed to V(x)+e8'(x), ~e~ ((I; assuming
that the unperturbed problem is solvable, naturally one
hopes to express the complex eigenvalues E„—i y „/2 as a
perturbative series in e. The perturbation is nontrivial,
since the quasinormal modes, with the outgoing wave
condition at infinity, define a non-Hermitian system (in
the sense that the total probability in any finite region of
space is not conserved), to which the usual formalism of
perturbation does not apply. The problem can be solved
to first order in e, both in quantum mechanics" and for
the electromagnetic analog, ' but in order to evaluate
higher-order corrections one would need to expand the
wave function in some complete set, preferably the
discrete set of quasinormal-modes. The electromagnetic
analog is of very general significance since any optical
cavity permits the escapes of particles (i.e., photons) due
to output coupling, so that there is always leakage of the
wave function and the allowed frequencies are always
complex.

The rest of this paper is organized as follows. Section
II reviews the origin of t terms for potentials that ap-
proach a constant at infinity, showing that these terms
are related to the existence of a threshold. Section III
then shows that for potentials unbounded below, there
are not t terms in the long-time behavior, essentially
because there is no threshold. We prove that for wave
functions concentrated in the finite region [4(x )xo) =0
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for an xo & ~], the quasinormal modes indeed form a
complete set when the potential is unbounded from
below, under the assumption that the scattering matrix S
has no singularity other than poles. Section IV presents
an example of unbounded potentials to illustrate the gen-
eral properties. Section V is a brief conclusion.

II. BOUNDED POTKNTIAI. S

values of q satisfying

d5(q) d d
2 + 8(q, x)+ 8(q, x') q—t =0,

dq dq
'

dq

or

8(q, x) — 8(q, x') qt —=0 .
dq

(9a)

(9b)

We first study the case of a bounded potential in order
to elucidate the origin of the anomalous t terms,
concentrating on the t ~ ~ limit [proposition (B)] in this
section. The existence of such terms in the t~ ~ limit
implies that the expansion (1) is impossible, while power-
law behavior at finite t does not have the same implica-
tion. We assume V(x)~0 as x —+ ~, in fact, for simplici-
ty we discuss only the case of V(x)=0 for x )a. The
quantization volume is (O, L), with L ~ oo at the end be-
ing understood. Exact normalized eigenfunctions with
real energy E =q /2 can be written as (2L) '

P(q, x),
with

The other two possibilities are obtained by changing t to
t in —(9).
For the moment exclude the case q =0, which will be

discussed separately below. Since %(x )a, O)=0, we let
x' (a (x, i.e., we consider only the propagation from in-
side the potential to the outside. (The case x & a involves
no complication and can be treated similarly. ) We seek
solutions to (9) for t~ ~, and since d5/dq, d8/dq are
bounded for finite q, it remains to examine q ~ oo. In that
limit, the WKB approximation is valid, so that

8(q, x') =qa —f i/2[E —V(y)]dy, (10)
X

P(q, x) =S(q)P+(q, x)—
(I) (q, x), (3a)

a ]
8(q, x') =a —

q
dq x' v'2[E —V(y)]

where P
—

(q, x) are eigenfunctions with the same eigenval-
ue E, and

p
—

(q, x)=e —'q", x)a . (3b)

4;„(x)=—f dq c (q)P(q, x),
0 2&

where

c (q) = f dx (Ii;„(x)P*(q,x),

(4)

and we assume that the particle is initially confined, i.e.,
qi;„(x)=0 for x )a. The subsequent evolution is given
exactly by

4'(x, t)= f dq c(q)P(q, x)e
0 2' (6)

In (3a), S(q)=exp[2i5(q)] and 5(q) is the phase shift.
We have chosen A and the particle mass m to be unity.
The initial wave function qi;„(x)=4( tx=0) may be ex-

panded as

2a x —a
t = +rD+ —r(q, x'~a) .

q
D

q
(12a)

The interpretation of this formula is as follows. Consider
a motion starting from a, moving to the left and return-
ing to a. In the absence of a potential, the time taken is
2a/q and the potential introduces a delay ~D. Now for
motion from x ' to x, we need to add the time from a to x,
namely, r(q, a ~x)= (x —a)/q and also subtract the time
from x' to a, namely, r(q, x'~a). Thus the right-hand
side of (12a) is the classical time for the motion shown in
Fig. 2(a), in which the particle goes inwards to the poten-
tial before moving to large x. Likewise (9b) can be writ-
ten as

—=a —qr(q;x'~a),
where r(q;x'~a) is obviously the classical time for
motion from x' to a at energy q /2. Recalling that
d8(q, x)/dq =x for x ) a and defining
rD =(2/q)d5(q)/dq, we see that (9a) can be written as

or, putting (5) into (6)

%(x,t)= f dx'G(x, x', t)+;„(x'),
0

where the Green function is

(7)

x —a
t =r(q, x'~a)+ (12b)

G (x . t) f d (
2is(q) —i—e(qx') is(qx'))

2is(q) is(q, x) —ie(q, x))

—iq ti2e

and we have defined P
+—(q, x)=exp[+i 8(q, x)], so that

8(q, x)=qx for x )a.

A. Classical paths

(b)

X

T
I

X

X

At large t, G (x,x', t) would be dominated by stationary
phase contributions to (8), (see also Ref. 7) which occur at

FIG. 2. Classical paths lining (x', t'=0) and (x, t), corre-
sponding to Eqs. (9a) and (9b).
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which is the classical time for the motion shown in Fig.
2(b), which goes directly from x' to x, and for x' outside
of the potential, would be independent of the potential.
Thus the stationary phase contribution (if any) is related
to classical paths linking (x', t =0) to (x, t).

It is easy to see that these classical path contributions
do give t terms. For t~ ao, the stationary phase ap-
pears at q =q =x lt for both (12a) and (12b).
(Remember q&0 and both a and x' are finite, hence r is
finite). Integration of (6) about q =q„produces terms of
the form t ' exp[ix /(2t)]. However, these classical
paths linking (x', t =0) to (x, t) as t ~ ~ are possible only
if x~~ (for q&0), again for both (12a) and (12b).
Hence the t ~ ao limit of %(x, t) with finite x [proposition
(B)] contains no stationary phase contributions for q&0.

It remains to examine the contribution at q =0. In this
case, the WKB expressions (10) and (11) are not valid.
We return to (8). The integral in (8) is carried along the
positive q axis; as usual, we rotate the contour so that it
passes along the line of steepest descent through the sta-
tionary point, i.e., along the line of q =e '

p, p real
and positive, as illustrated in Fig. 3. The rotation of con-
tour picks up the poles in the shaded region. Examining
(8), we see that poles can only arise from S =e ', and
occur say at E„iy„l2 in th—e E plane. The residues are
associated with exponential time dependence and pro-
duce no anomalous terms [they are, in fact, the quasinor-
mal mode terms in (1)]; it remains to examine the q =0
threshold contribution along the rotated contour.

B. Threshold contribution

The threshold contributions depend on the q ~0 be-
havior of c (q) and S(q). Setting

q plane

+i(x, t) = dq c (q)(e'i e—' )e ' '/2- A, xt
2m

where

(13a)

i n cr /42o'/2P( (13b)

and p=1+o. /2;

'P2(x, t)= f dq c(q)[S(q)—1]e' e ' ' —A2t
1

2m

where
(14a)

Az=e ' " 2~1(p')(coSO/~) (14b)

and p'=(1+cr+o. ')/2.
Appendix A shows that the generic case is o. =o.'=1,

so that both 0, and +2 vary as t as t ~ ~. Scatter-
ing can be treated in exactly the same manner, except
that the integral (7) should be taken in the region
(R b, R +—b), where the incident wave packet occupies
an interval of length 2b at a large distance R from the po-
tential. '4

III. UNBOUNDED POTENTIAL

For a potential unbounded from below, such as that in
Fig. 1(b), there is simply no threshold, so from the discus-
sion in the last section, we see that there will be no t
terms in the t —+ oo limit [proposition (B)]. This suggests
that the expression (1) might be valid [proposition (A)]
for potential unbounded from below. In this section we
prove that this is the case.

For potential unbounded from below, the wave number

k (x) =&2[E —V(x—)]

does not approach a constant at large x, and is not a con-
venient parameter to label the incoming and outgoing
modes. We parametrize them in terms of their energy ei-
genvalue E, with P (E,x) defined t—o be the solutions to
the (time-independent) Schrodinger equation which satis-
fy the boundary conditions

c(q)-coq, S(q) —1-Soq

then the threshold contribution to (6), i.e., the integral
along the rotated contour, can be written as the sum of
two terms

E plane lim P (E,x)V'k(x)exp —+i f k(x)dx =1 . (16)

For potential unbounded from below, the WKB approxi-
mation is valid for large x, with any fixed E. Hence Eq.
(16) is the appropriate incoming and outgoing boundary
conditions.

In energy representation, the Green function (8) be-
comes

G(x, x', t)= f dE [S(E) 'P (E,x') —P+(E,x')]1

FICs. 3. The original path I l and the new contour I 2 in (a)
the q plane, (b) the E plane.

X [S(E)P (E,x) P(E,x)]e—
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In the limit E,~—oo, P*(E,+ip, x) in the dx' integra-
tion from 0 to a (where the potential is finite) is given by
the WKB expression. Since P* is zero at x ' =0 and is
normalized by (16), it must be exponentially small (in

~E, ~) in the interval x'H(O, a). Hence the dx' integration
gives zero in the limit E,~—~. The physical reason for
this is obvious: the initial wave function 'P;„concentrated
in the finite region has no overlap with the arbitrarily
negative energy scattering states.

(ii) We next evaluate the integration along I z. We first
note that S(E) remains finite on I 2 as E,~ —~ [point
(1) in Appendix B]. In (17), both P +(E,x) diverg—e at most
like ~E~

'~ exp(b~E~' ) as ~E~~oo, with some constant
b. Therefore the Green function (17) is dominated by the
exp( —iEt) factor which goes to zero as ~E~ ~ &x in the
lower-half E plane.

(iii) Therefore the wave function (7) with the Green
function (17) is determined solely by the singular points
of the Green function in the lower-half E plane. It
remains to show that they are the singular points of
S (E). We first express the Green function in terms of

F. plane

45o p Re E

FICz. 4. Integration contour for potentials which are un-

bounded below.

It is important to note that the range of integration in E
starts from —oo (instead of from a finite constant, e.g.,
zero, as in the case of a bounded potential), since the po-
tential V(x) is unbounded from below. To evaluate (17)
we shall let the lower limit be E, and let E,~—~ at the
end (the contour I, in Fig. 4).

The wave function is given by (7) with the Green func-
tion given by (17). To show that this wave function can
be expanded as in (1), we deform the contour to I 2+I 3

in Fig. 4. The wave function is then given by the integra-
tions along I 2, I 3, and the residues of the poles in the
lower-half E plane. In the following, we evaluate these
three contributions separately.

(i) On the contour I 3, E is given by E, +ip, where
p&(E„O) is a real number. The contribution of the in-

tegral along I
&

to %(x, t) in (7) is

1
lim i f dp P(E, +ip, x)

E, —~ E, 2m

X dx'+;„x' * E +ipx'
0

( —iE +p)]tXe

P(E,x) =f (E)P+(E,x) g—(E)P (E,x),
where

f (E)=P (E,O), g (E)=P+(E,O)

(19a)

(19b)

are the Jost functions' in E representation. Since
(E,—x) satisfy the same equation with a real potential,

and with the boundary conditions (16), we have
P+(E,x)=[/ (E*,x)]*,which leads to

f(E)=g*(E*) . (20)

From the ratio of the outgoing and incoming waves in
(19), we we see that S (E) is given by

S(E)= (21)
g (E) f*(E*)

$(E,x ) is a solution to the Schro-
dinger equation with the properties [point (2) in Appen-
dix B]

(5(E,O) =0, (22a)

dP
dx 0

(22b)

Therefore P(E,x) satisfies the (time-independent)
Schrodinger equation with boundary conditions indepen-
dent of E, implying' that P(E,x) is an entire function of
E. In terms of P(E,x) the Green function (17) is

G(x, x', t)= — lim f dE 1 S(E)
P(E,x)P(E,x') .

E,
'—~ E, 2' [f(E)]2

(23)

It is easy to see that all the poles of S (E) lie in the lower-
half E plane [point (3) in Appendix B], therefore we have
(i) by (21), f (E) cannot have any zero in the lower-half
plane, and the only singularities of the integrand in (23)
are those of S (E), and also (ii) all the poles of S(E) are
picked up by the distributions of contour I &~I 2+ I 3.

Therefore we see that for a potential unbounded from
below, a wave function initially concentrated in the finite
region can be expanded as in (1), where each term
represents the contribution of a pole of the scattering ma-
trix S(E), i.e., a quasinormal mode contribution. Notice
that we have assumed that S(E) has only poles. From
the point of view that the unbounded potential is regard-
ed as the limit of a truncated potential with V(x )x, ) go-
ing to a constant [Fig. 1(c) at large x, and

~
V(E) x, )~

much larger than any energy scale in the problem, that
S(E) has only poles is guaranteed by the analytic proper-
ty of S(E), see, e.g. Newton. ' We note that a truncation
of the potential at large x cannot be used in the usual
scattering problems with asymptotically Rat potential,
since (i) the region of interest in these scattering problems
is exactly at large x, and (ii) the change involves an ener-

gy scale under consideration, namely, E=O. Such are
not the case with the potential unbounded from below.
We further note that even if S (E) has singularities other
than poles in the lower-half E plane, the expansion (1)
still has the same form with the exponential time depen-
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dence, although they may not correspond to the usual
quasinormal modes. If S(E) has cut in the lower-half
plane, part of the sum in (1) becomes an integral.

It must be emphasized that the derivation above is val-
id for any t )0. Taking t~0+ in (1) then shows that
the quasinormal modes form a complete set for wave
functions concentrated in the finite region.

IV. EXAMPLES AND DISCUSSIONS

In this section we use the example of the generalized
anharmonic oscillator described by Eq. (2) to illustrate
the expansion in quasinormal modes, some of its implica-
tions, and the late-time behavior of a leaky system. For
A, (0 and X ) 1, Eq. (2) describes a leaky system; any ini-
tial wave function initially concentrated in the finite re-
gion will eventually escape to infinity. We shall look at
various values of co and k.

We first note that for A, )0, the potential V(x)~+ ~
as x~ —+ ~, so there is a complete set of bound states
P, (A, ,x) with real energies E„(A), satisfying P„(X,x)—+0
as ~x~ ~~. Then"

' 1/2

2mi sincot

l COX exp . [cos(rot)(x +x' ) —2xx']
2 singlet

(26a)

The Green function G for the inverted oscillator is ob-
tained by simply continuing to co= —i A:

0
2mi sinh(Qt)

1/2

Xexp . [cosh(At)(x +x' )
—2xx']

2 sinh(Qt)

(26b)

1/2

Despite the appearance of the square root in (26a), there
is in fact no branch cut and analytic continuation is
straightforward. Continuation to co = + i Q gives the
same result. The large t limit of (26b) is

g $„(A,,x)P„(k,x') =6(x —x'), A, )0, (24)

e
—Qt/2 iA(x +x' j/2 (27)

this equation being understood in a weak sense over the
space of functions satisfying the appropriate boundary
condition. More generally

showing explicitly that there are no t terms. More-
over, the resulting asymptotic +(x, t) has the form given
by the leading term in the expansion (1), with

' 1/2

g P„(A,, x)P„(A,, x')e " =G(A, ;x,x';t), (25)
ao= dx'e' " +;„x' (28)

in@ /22
(29)

where we have explicitly indicated the dependence of the
Green function G on k.

Now for A, (0, the potential becomes unbounded
below; then by the derivation in Sec. III, we find G to be
given by a sum of quasinormal-mode contributions. This
implies that (25) holds for negative A, as well, provided
each quantity in (25) [e.g. , E„(A,)] is defined by analytic
continuation from A, )0. In particular, each quasi-
normal-mode function is the analytic continuation of the
corresponding bound-state function P„(A,,x), k) 0.

That the quasinormal-mode functions are the analytic
continuation of the bound-state functions for the general-
ized harmonic potential has been shown by Bender. '

For a general potential containing a parameter A, , wheth-
er the continuation is possible or not depends on the
singularities on the A, plane. It is interesting to ask under
what conditions would such a continuation be possible,
especially in view of our present result that the expansion
(25) of the Green function (again in a weak sense) in
terms of the quasinormal modes is valid for potentials un-
bounded from below.

To study the late-time behavior of the wave function,
we look at a particular case of (2). We let A, =O and
co = —0 (0. This is an inverted harmonic oscillator,
and the Green function is known analytically.

We start with the "usual" harmonic oscillator with
co )0, whose Green function G' is

Eo =0, yo=A (30)

To show that Po is a quasinormal mode with energy
Eo iyol2—= iQI2, —one can verify directly that HPO
=( —iQ/2)po, which is just the analytic continuation
co~ —iQ of the Schrodinger equation for the ground
state of the "usual" harmonic oscillator.

Two further properties of (28)—(30) are worthy of note.
Since there is no barrier in this example, the particle does
not "bounce" back and forth inside a well; the absence of
periodic motion is the reason for EO=O. Secondly, the
projection (28) involves the integrand $0+;„and not
$0%;„, which is a general feature of such non-Hermitian
systems. "'

Incidentally, the inverted harmonic oscillator can also
be regarded as a half-line problem if we start with an odd
4;„(x'), thus ensuring that %(x =0, t) =0 for all t In this.
case ao in (28) is zero and the lowest quasinormal mode is
the analytic continuation of the first excited state.

We should add that the Green function G' of the "usu-
al" harmonic oscillator has no limit as t ~~ [see (24a)],
because the particle oscillates indefinitely inside the well.
The existence of the t ~ ~ limit is unique to leaking sys-
tems, and the corresponding path integral is well defined
without the need for ad hoc prescriptions.



43 QUASINORMAL MODE EXPANSION AND LATE-TIME. . .

V. CONCLUSION

We have shown that for potentials that are unbounded
from below, the time development of a wave function ini-
tially concentrated in the finite x region can be expanded
in terms of quasinormal modes [Eq. (1)]. We have proved
the result for the case in which the particle is restricted to
a half line (x )0), so that x represents a positive "radial"
coordinate. The result can be extended to the full line,
provided the potential is also bounded from aboue; or if
the potential is unbounded from above, then V(x) must
tend to infinity rapidly enough. A detailed discussion of
these generalizations will be given elsewhere.

We have also analyzed the origin of t terms in the
asymptotic wave function describing a particle escaping
from a potential barrier. Mathematically, these terms
arise from singularities on the real energy axis. Physical-
ly they are due to either an energy threshold or a classical
path linking the initial point x' to the observation point x
and taking time t~~. The analysis of the classical
motion shows that for potentials unbounded from below,
anomalous terms do not exist. In such cases, the long-
time behavior is dominated by the quasi-ground-state and
one is in the fortunate position of knowing the eventual
wave function even when the initial wave function is not
specified in detail.

An analogy with classical mechanics may be sugges-
tive. For a classical Hamiltonian system, if the initial
state is specified only within a certain phase-space volume
V, then by Liouville's theorem the final state is equally
uncertain, and lies anywhere within a phase volume V'

equal in magnitude to V: one cannot predict the future
without knowing the past. However, for classical dissipa-
tive systems, the phase volume contracts, V'« V, and
the final state can often be predicted even when the initial
state is unknown. Quantum mechanics is of course a
Hamiltonian system, but whenever the system is leaky,
i.e., the wave function can escape to infinity, the finite
parts of coordinate space behave essentially like a dissipa-
tive system, in that probability and energy are continually
lost to infinity. The behavior may then resemble that of a
classical dissipative system: we can predict the future
without knowing the past. This point is of particular in-
terest in quantum cosmology, since the initial condition
of the universe is unknown.
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APPENDIX A

Here we show that generically o =o'=1. Let N(q, x)
be the solution to the time-independent Schrodinger
equation with energy q /2 and boundary condition
4&(q, O)=0, 4'(q, O)=1. (This would be the appropriate
condition if one imagines integrating the difFerential
equation numerically from x =0.) Thus P(q, x) in (3)
differs only by a normalization factor: P(q, x)

—[S(0)—1]+0(q),
a(q)4'(q, a) =iq [S(q)e'i'+e 'i']

iq-[S( 0) + I ] +0( q ) .

(Al)

(A2)

Generically N'(q, a)WO as q —+0, thus we see from (A2)
that a(q)=0(q), and hence from (Al) that
S(q) —1=0(q), or cr'= l.

Next from (5) we have

c(q)=a(q) J dx 4;„(x)@(q,x) (A3)

showing that as q ~0,c (q) ~ a(q) =0 (q), i.e., o = l.

APPENDIX B

In this appendix we demonstrate the following proper-
ties of P (E,x) an—d S(E) used in Sec. III.

(1) S(E) is finite in the E~ ~ ~ limit.
To see this, we first note that the WKB approximation

for P(E,x) is valid in the ~E ~ ~ limit. For small x, P is
a combination of exponentially increasing (in x) and de-
creasing components with nearly the same amplitudes
[since P(x =0)=0]. For large ~E, ~, the classical turning
point (for E, (0) is at large x, and the exponentially de-
creasing (in x) component is strongly suppressed there.
From the WKB connection formula, we see that in the
classically allowed region [where E, ) V(x) with large
but finite E, ~], P(E,x) cannot be purely outgoing wave.
This implies that S(E) cannot be infinite. Physically this
means that there is not quasinormal mode with energy E,
much lower than the bottom of the potential well in the
finite x region.

(2) The P(E,x) defined by Eqs. (19) satisfied Eqs. (22).
The property (22a) follows directly from the definitions

of f (E) and g(E) in (19b). Property (22b) can be ob-
tained by considering the Wronskian of P —,

(E,x) P (E,x) —P+(E,x) P (E,x) =2i .

Since P (E,x) satisfies the same linear second-order
equation, the Wronskian is x independent and we have
evaluated it at x ~ ca using Eq. (16). Likewise we have,
using (19),

(E,x) P(E,x) P(E,x) P (E—,x)=2if (E) .
d- — d

Evaluating this equation at x =0 and using (22a), we get
(22b).

(3) The poles of S(E) are located in the lower-half E
plane.

To see this we apply the continuity equation to P(E,x)
defined by Eqs. (19). Let

4~(x, t) =(b(E,x)e

Then, by using the time-dependent Schrodinger equation,

=a(q)C&(q, x). Now matching this definition to (3) at
x =a gives for q ~0

a(q)C&(q, s) =S(q)e' ' —e' '
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f ~%'E
~

dx = —,' (O'—E%'E—O'E%'E ) .
Bt o

Near a pole E =E, +iE2 of S (E) in the complex E plane,

4E ~S(E)P+(E,x)e ' '=S(E)

X exp i f &2(E —V)dx e

where we have used the WKB approximation for P+
which is valid at large x. Putting this into the continuity
equation (B1), we find

2E2 dx= —
—,
' 2 E —V+ 2 E —V

X exp —2 Im f &2(E —V)dx

(B2)

If we denote

&2(E —V)= ~2(E, +iE2 —V) '~ e

then

2
tanOE

1

goes to zero as V(x)~ —oo. The term in parentheses in
Eq. (B1) above is positive. Therefore from Eq. (B2), we
see that E2 must be negative and the pole is in the lower-
half E plane.

The leakage of probability to infinity renders the system non-
Hermitian, and the proper definition of the inner product,
and hence of projection, is not obvious.
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