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It has been found, very generally, that there is a critical volume of the diffusion space, Q„ for a
class of diffusions in random media, characterized by V(r) with a zero mean. If the size of the
diffusion space is bigger than 0„the total population increases with time. Otherwise, the total pop-
ulation decreases with time and will eventually vanish. An estimation of 0, is obtained by a varia-
tion method.

Diffusion in random media where disorder involves the
presence of traps and sources, has recently received con-
siderable attention, both for its intrinsic theoretical in-
terest and for its many applications in physical and bio-
logical systems. ' Examples of such systems would be
chemical or physical reactions with random nucleation
centers, the size of a polymer chain in random environ-
ment, ' chain reaction with random fissile distribution,
or biological multiplication with random nutrient con-
centration. In this work we will study diffusion through
a d-dimensional random media which is enclosed by a
trapping layer. Mathematically, the problem is described
by the following equation:

t}n(r, t) =DVzn(r, t)+ V(r)n(r, t),
at

where D is the diffusion constant and n(r, t ) vanishes on

the boundary. We consider a class of random potential V

that has a zero mean value and a nonzero but finite vari-

ance,

( V) =0, ( V(r) V(r') ) =g(~r —r'~ ),
where the brackets denote statistical average, the func-

tion g(r } is peaked at r =0. When r is small, g(r ) can be

approximated as goexp[ (r ll } ].—The correlation

length l is very short, much shorter than the typical
length of the difFusion space, L We have ( V. ) =go&0
and ((VV) ) = —V g(r)~, e&0. Initially, n(r, 0)=5(r).
For such systems defined above, we pose the following

question: In the long-time limit will P ( t ) =I n (r, t )d r in-

crease or decrease?
To illustrate our problem, we can consider the above

equation describing a biological model. Initially, there is

only a small population of bacteria at the center of a cell

which is surrounded by an infinite absorbing layer. The
random potential V(r) characterizes the distribution of

—f n(r, t)dr=D){Vn)do+ f V(r)n(r, t)dr,a
Bt

(3)

where II) denotes the integration on the boundary sur-

fa=e. The normal of the surface is chosen to point to the
outside of the cell. Since n(r, t ) vanishes on the bound-

ary, (Vn )do. is negative. We denote

P{t)=f n(r, t)dr=p(t)L", (4)

nutrient sources and traps. We are asking whether the
total population of bacteria inside the cell will grow or di-

minish in the long-time limit.
The above equation can also describe a chain nuclear

reaction. Then, our question is related to the condition
for the chain reaction to be self-sustaining.

We have found that in such a class of problems there is

a critical size of the diffusion space. If the volume en-

closed by the boundary is bigger than this critical size,
P(t) increases with time. Otherwise, P(t ) decreases with

time and eventually vanishes. This conclusion is general
and related to the localization problem of random sys-

terns in quantum mechanics. For nuclear chain reaction,
our results are equivalent to the well-known problem of
critical mass.

Let us first examine the diffusion process in the above

example. Though the potential seems to be "neutral" for
its zero mean, in the diffusion process the bacteria can
best At the environment. They will concentrate in the re-

gion of positive V, and have only a small population in

the region of negative V. Therefore, the net effect of the
neutral potential increases the total population of bac-
teria. On the other hand, the traps on the boundary elim-

inate any approaching bacteria. This competition be-

tween the elimination on the boundary and growth
through the diffusion determines the whole process.
After integrating Eq. (l) over the whole space inside the

boundary, we have
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where L is the volume of the cell. In d-dimensional
space, roughl speaking, the absorption rate by the
boundary D (Vn )d o, is proportional to the speed of
bacteria reaching the boundary D/L and the surface area
of the boundary L ~, i.e., —L~" D/L =DL" . As
stated earlier, the second term in Eq. (3) is related to the
growth rate which is proportional to the volume of the
cell L". Then Eq. (3) can be estimated as

dp(t ) -p(t)( —DIL +7)),

where g is the bulk growth rate per unit volume, a posi-
tive quantity which will be discussed in detai1 later. The
critical length is then found to be L, -(D/q)' and the
critical volume is II, -(D/g) . If the size of the cell is
smaller than 0„the absorption by the boundary is dom-
inated, the total population of bacteria decreases and
vanishes in the long-time limit. If the size of the cell is
bigger than 0„ the growth rate is stronger than the ab-
sorption by the boundary, and the total population of the
bacteria in the cell increases with time.

A further consideration can relate this problem to the
localization in quantum mechanics. The following
Schrodinger equation,

HP= DV' P(r) V—g(r) =A/(—r),
describes a particle of mass A /2D moving in a potential
—V(r). Since the wave function stays in a finite region
and vanishes on the boundary, the eigen values are
discrete. Let the orthonormal eigenfunctions be g„with
eigenvalue k„. We can make all P„real, then

f p, (r)g, (r)dr=5, ,

D f ~V&(r}~ dr f V(r)~—g(r)~ dr
A,o

&

f ~g(r)~ dr
(13)

Let us first estimate the denominator. We write
e ~ =(e ~ )+(e ~ (e ~ —)), where (e ~ ) denotes its
statistic average. Since V is random and has a very short
correlation length, e ~ —(e P ) must fiuctuate around
zero very fast. Then

f dry (e tt"—(e2P ) )=()

energy is related to the absorption by the boundary, and
the bulk growth rate per unit volume g is related to the
potential energy,

g= f V(r)lg, (r)l'« . (12)

We can estimate q and the critical volume by a varia-
tion method. Let the normalized nonperturbed ground
state be Po, which is a positive and smooth function in the
space. We set the trial wave function
f(r)=Pc(r)exp[tV(r)] where P is a positive variational
parameter. This trial wave function shares many features
with the true ground state. In the unperturbed case,
V=O, the trial wave function becomes the true ground
state. It is thus easy to understand that our trial wave
function is a good approximation of the true ground state
for a weak V. In the case of a strong V, the trial wave
function is localized in the same way as the true ground
state, concentrating in the region of strong positive V and
almost vanishing in the region of strong negative V.

Therefore, we expect that by varying the parameter }33 our
trial wave function will provide a good approximation to
the ground-state energy,

The ground state $0 is nondegenerate and positive in the
region, having no nodes. Then we can expand n (r, t ) as

n(r, t)= g P„(0)g„(r)e (8)

and

r 2dr= odr exp 2 V

satisfying n(r, 0)=5(r). Since —Ao) —
A, , &, the

term of the ground state will be dominant in the long-
time limit,

—
XOI

n(r, t)~$0(0)go(r)e ' as t~ao . (9)

If Ao is negative, n(r, t } will grow. If Ao is positive, n(r, t )

diminishes. For A,O=O, n(r, t ) will be stabilized.
The ground-state eigenvalue is given by

XO=D f ~V/0(r)~ dr —f V(r)~go(r)~ dr . (10)

The first term in Eq. (10) is the kinetic energy K which is
always positive. E can be estimated as

since $0 is a smoothly varying real function. We denote

(exp(2PV) ) =f(13), (14)

Since ( Vexp(2PV)) =
—,'f'(P), we have

f V(r)~g(r)~'dr= —,'f'(P) .

The other term in the numerator is given by

D f ~VQ(r}~ dr=D(nIL) f(P)+DP f(P}h(P),

(15)

where the function f(P) only depends on P, but its form
is related to the distribution of the random potential.
Similarly, in the numerator,

f V(r)~g(r)~ dr= f $0( Vexp(2PV)) .

K -D(m/L). (11)
where h(P) is defined as

which decreases as the size of the cell decreases. Since
V(r) is random, the ground state is localized, concentrat-
ing in the regions of strong positive V and almost vanish-
ing in the region of strong negative V. Then it is not
difficult to see that —f V~1to~ dr is negative. An exam-
ination of Eqs. (9), (10), and (5) concludes that the kinetic

h(P)=((V'V} exp(2PV)) If(P) .

Substituting these results into Eq. (13), we obtain

A.o
~ D ( vr/L ) +DP h (P ) ——,

' f '(P) f/( fj) . (18)

The minimum of the right-hand side in Eq. (18) is ob-
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tained by varying the parameter P. We denote the
minimum of DP h(P) 2—f'—(P)/f(P) as C, which is in-

dependent on L. Then

f(P)=cosh(2') .

If the 1attice spacing is a, then

(23)

ko&D(~/L) —C . (19)
h(P)=2p /a (24)

The critical length is L, ~ vr&D/C and the critical
volume is

Then, if pa /D «1, from Eq. (18), we have the critical
length

Q, ~(m.&D/C )" . (20)
L, &Derv'2/(pa) . (25)

The particular value of C depends on the distribution
of the random potential V. For example, if V has a
Gaussian distribution and V'V and V can be treated as
two independent random variables, we have

The situation near the critical volume needs some in-
vestigation. When L is close to L„A,O in Eq. (18) can be
approximated as A,o- 2D—n(L . L, )/—L, . Since in a d-
dimensional space Q —Q, —(Q, )' "~ (L L, )d—, we can
write the above expression in the form

f(P)=& p(2PV)) = p(2P& V')), ~(P)=&(V V)') . k ——2Dn' (Q —Q )/(Q'+ 1) . (26)

(21) If 0=0,—e where e-0+, the life time of the total popu-
lation is

From Eq. (18) we have C=& V )) /(D&(VV) ). Then
for the Gaussian distribution, r- Q'+ "d /(2Dm i Q —Q, ~

) . (27)

(22)

For a one-dimensional random system in which V(x )

can be either —p or p on lattice sites with an equal prob-
ability, we have

When Q=Q, +E, r in Eq. (27) gives the time necessary
to have a significant increase in the total population. As
Q —Q, ~v(Q —Q, ), r~r/v.
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