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In a recent paper, using the Volkov solution of the minimally coupled Dirac equation, we

developed the concept of the quasifree states of the electron from a kinematical point of view

[Rashid, Phys. Rev. A 38, 2525 (1988)]. Using these concepts, we present a coupling (decoupling)
scheme that separates the kinematical factors from the dynamical ones. When the electrons in a gas
are assumed to be in quantum states having quasi-four-momentum, then the Boltzmann equation
reduces to a form that lends itself easily to the methods of separation of the variables. The solution
is obtained as the product of a time-dependent part and a time-independent part. The latter is as-
sumed to be just the initial distribution function, in which case the time-dependent part is found to
be linked to the scattering cross section of the electrons. We assume a high-Z plasma where
electron-ion collisions dominate over electron-electron collisions. The complete solution is finally

obtained by normalizing the product solution. The first case we consider is a cold plasma, so that
the energy of the photon is much greater than the mean kinetic energy of the electron and the elec-
trons are assumed to form a Maxwellian gas. The cross section calculated under the Born approxi-
mation from our previous paper is used and the laser intensity is assumed to be such that the Kibble
parameter is much smaller than unity. The time-dependent solution is surprisingly found to be
Maxwellian still but with the temperature increasing with time. The second case concerns a hot
plasma with a mean electron energy much greater than the photon energy but still less than its rest
mass energy. The final normalization gives us a non-Maxwellian distribution but is reduced to an
analytically closed form so that it is easily tractable. The temperature is still found to be increasing,
but now we get a difference in the time dependence between the amplitude part and the exponential
part.

I. INTRODUCTION

In the field of laser fusion the optimization of the heat-
ing rate of the electrons due to multiphoton absorption is
an important area of research. ' Prior to Langdon's
analysis authors have calculated the heating rate 8' of
the electrons in the plasma basically using the
Maxwellian distribution for both the initial and the final
states of the electron without taking into account the
nonlinear modifications introduced by the high-intensity
laser field. In a recent paper, we' discovered that, due to
the effect of the spin of the electron, the heating rate in-
creases substantially with the temperature of the plasma
when k&T) 100 eV. This discovery is of importance in
the field of laser fusion and also in the area of laser diag-
nostics of high-temperature plasma. The computation
for the isotropic part of the electron distribution is as-
sumed to be Maxwellian, which has been shown by Jones
and Lee to be a self-similar solution if the anisotropic
part of the electron distribution is ignored.

The fact remains that as of yet we do not know of any
solution to the Boltzmann equation when the laser field is
intense enough so that multiphoton absorption sets in. It
is characterized by the parameter y=E /E h, where E
is the average electron energy in the radiation field and

Eph %co is the energy of one photon. The latest efforts
are still based on the expansion of the distribution func-
tion in an infinite series' or using the Bogoliubov-Born-

Green-Kirkwood-Yvon (BBGKY) hierarchy. " In either
case, the end result is a string of expressions that ob-
scures rather than clarifies the physics of the problem.
Further restrictions and approximations do reduce the
final answer to a decent form but then the result is valid
only for a narrow range of values of the parameters.

The present analysis is an attempt to break away from
this line of thought and to approach the problem of solv-
ing the Boltzman equation for a plasma in an intense
laser field from another angle that is based on our previ-
ous presentation. ' In Sec. II, instead of considering the
free electron and the laser field we look at the dressed
electron, which has the quasimomentum p* and the
effective mass m'. The quantities marked with an aster-
isk are actually a time average of the equivalent
quantum-mechanical observables so that now the elec-
trons can be considered to be in quasifree states. We then
introduce the modified Boltzmann equation based on our
picture of quasifree electrons interacting with the
Coulomb field of the ions. Assuming the ions to be rela-
tively stationary, the modified Boltzmann equation then
reduces to a form that can easily be solved using the sepa-
ration of variables technique. The solution is obtained as
the product of a time-independent part and a time-
dependent part that we also assume to be dependent on
the initial quasirnomenturn p *.

In Sec. III, we apply the solution to the case of a non-
relativistic electron gas having a modified Maxwellian dis-

42 1990 The American Physical Society



42 TIME EVOLUTION OF PLASMAS USING THE EXACT. . .

II. MODIFIED BOLTZMANN EQUATION
AND ITS EXACT SOLUTION

We assume that the plasma is cold and quasineutral so
that the electrons have random free motion between col-
lisions with the ions within the plasma but the ions are
relatively stationary. Hindsight helps us in assuming a
shielded Coulomb field for the ions so that our final
answer is finite. We are justified in doing this since the
Debye shielding effect should be taken into account. We
further assume that, since the laser field is designed to
cover the whole of the plasma interaction region, the
electrons are inside the laser field before and after the col-
lision with the ion and hence we consider the electrons to
be in Volkov states. ' We treat the electron relativistical-
ly in order to take into account the relativistic effect of
the laser field. We use the Lorentz-Heaviside units' with
A'=c= 1 and the metric g""=(1,—1, —1, —1). The laser
beam can be represented by a classical monochromatic
field the amplitude of which is

A„=(0, A)=Aocos(k x),
where

k„=(ko,k) = ~k~(no, n)

(2. 1)

(2.2)

and the gauge is e k=O. The exact solution for the elec-
tron in the intense laser field A„ is given by the Volkov
state'

tribution, the modification being due to the presence of
the intense laser field and is taken in a time-averaged
manner. Using the fact that the plasma is cold and that
the laser field is intense, so that the absorbed photon en-

ergy is much greater than the average electron energy, we
can compute the time-dependent part of the Boltzrnann
equation solution and finally get the time-evolving distri-
bution.

In Sec. IV we present the complete result and the time

development of the modified Maxwellian distribution for
different laser-field intensities. We compare our result
with that obtained by Jones and Lee. In conclusion we
discuss the implication of our result and present some
possible problems to be tackled and solved in the future.

(u&, =(1/E)[p+[e Ao/(4k p)]k] . (2.7)

If we equate this to p" /E we would define the quasi-
three-momentum p*. Similarly, one can prove that

(l&, =(%'~tl+ &=1+[e Ao/(4k p))k p =p* /p

(2.8)

where a quasienergy p
" has been defined. Combining

(2.7) and (2.8) we write the relativistic quasi-four-
momentum p* as

p'"=p" +[e Ao/(4k p)]k"

so that we can define the effective mass m * as'

m"=m[1+ —'(eA /m) ]'

(2.9)

(2.10)

Since the Kibble parameter

ex=[E~/(mc )]' '=eAO/(2m) (2. 1 1)

is relevant whenever the quiver energy of the electron is
comparable to or larger than its rest mass energy we see
from (2.9) and (2.10) that the radiation field could give
rise to relativistic effects to a nonrelativistic electron.
Hence, once this relativistic contribution has been taken
into account in a time-averaged manner we can always go
back to the nonrelativistic picture if the bare electron's
energy is nonrelativistic.

If the electrons in the plasma are in states specified by
the quasi-four-momentum p'" as defined in (2.9) and
form a gas, then the modified Boltzmann equation can be
written as

= n fdv,* f d SI (f' f*,
' f*f ", )

~

v* —v &* ~,
—

We now compute the observables for the electron in-
side the laser field by introducing the time-averaging
method. ' For the velocity of the electron we use the a-
rnatrix operators in the following way, '

(~&, =(q,'~+, &, ,

where the subscript t denotes taking the average over the
time period and 6 is the Volkov solution (2.3). One can
easily show that

4;=(m/E;)'~ 1+ h'3 u, e ' ' (2.3)
271 'pi

where u, is a spinor satisfying the normalization condi-
tion

and

u, .u, =iE, i/m

S, =(2n.p;) ' f [2ep, .A —(eA) ]dy .

(2.4)

(2.5)

The subscript i indicates the incident electron and the
caret over the four-vector implies a dot product between
the vector and the y matrices. ' The expression (2.3) is
an exact solution to the minimally coupled Dirac equa-
tion.

(2.12)

=n fd A(f* f')v*-
at

'
dn

(2.13)

where the quantities with subscript 1 indicates the ion's
parameters and those without any subscript as those of
the electron's parameters. The asterisk indicates that
these depend on quasimornentum p* and v* are the
quasivelocities. The primes denote that final velocities
v* are to be used. do. */dQ is the scattering cross sec-
tion for the dressed electron by the ion. We assume a
high-Z plasma when electron-ion collisions dominate
over electron-e1ectron collisions. '

Since the ions are assumed to be stationary we can do
the v, integral so that we get
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We solve this by assuming that

f '=f (u')f (u', t),
f' =f(u' )f(v', t) .

(2. 14)

(2.15)

f (v*,O)=1,

we get the solution of the time-dependent part as

f (u', t)=e

(2.16)

(2.17)

Hence, the time-dependent part of the evolving distribu-
tion function depends only on the initial velocity v*. Us-
ing the method of the separation of variables and the re-
striction that

we are justified in pulling out the time-dependent part
f (v ', t) out of the integral in (2.13).

III. EVOLUTION OF THE MODIFIED
MAXWELLIAN DISTRIBUTION IN THE
PRESENCE OF INTENSE LASER FIELD

We now use the result of the preceding section to
evaluate the evolution of a Maxwellian gas when the laser
radiation is very intense. In the presence of intense laser
field a Maxwellian electron gas is changed so that it fol-
lows the modified Maxwellian distribution given by'

f (u )=[m /(2nk&T)] ~ e (3.1)

where

deA(v')= g n fdQ[f(v' )
—f(v')]u*

l dQ
f(v") . do'

(3.2)

The scattering cross section of the dressed electron for l-

photon absorption has been derived in our previous pa-
per' and is given by

(2.18)

Substituting (2.17) and (2.18) back into (2.14) gives us
the general solution of the Boltzmann equation where

f (u ) is any initial distribution function for a quasi-free-
electron gas. Since A is not a function of the angles of v'

where the transition rate dR "from a quasifree state to a
quasifree state has been derived in Ref. 1 [Eq. (2.31)].

Substituting (3.1} and (3.2) into (2.18), taking the non-
relativistic approximation, and doing the Ef integration
(see Ref. 1 for details), we get (Fig. 1)

—lb')/k~ T

A(u")= 4n [e Z—/(4m)] g f dQ; J dQfpf Ef', , q Ji(e}u)) (3.3)

where Jl is the Bessel function of order 1 and its argument ep1 is defined as

ep|=[e A/u( mtoc)][ e(p,
' —pf )]; (3.4)

e is the polarization vector of the laser field. We have assumed that the laser intensity is not high enough to make the
Kibble parameter ett greater than unity. In (3.3), Q; and Qf are the solid angles in the initial and the final momenta
directions.

Because of the nonrelativistic approximation, (3.3) becomes

—lhasa/k~ TA(v*)= —4n [e Z/(4m)] m'c g pf'(e —1) I~,
l=1

where the integral

I&= f dQ; fdQf Ji (ep, )/~pf' pi* —l—haik~

(3.5)

(3.6)

Assuming that the Kibble parameter c~ is negligible compared to unity, the argument of the Bessel function will also
be small, and hence we can use the following approximation,

Ji(x) =x/(21!) .

The integral of (3.6} then becomes

(
— )'

I&=[eADI(21!mk)] f dx; f dx, f '
dP; f 'dy,

(p; +pf —2p, pf cosy )

(3.7)

(3.8)

where y is the angle between p; and pf. The latters have
coordinates (p, , e, , p, } and (pf, 8f, gf), respectively, with
laser polarization e along the z-direction. The x's are
defined by

x; =cosO;, xf =cosOf

The angle y is given in terms of x, , xf, Pf as

cosy =x,xf + [(1—x, )(1—xf )]' cos(P; Pf ) . —

(3.9)

(3.10)
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If the plasma is cold such that

2m '/fico »p * (3.1 1)

A(u*) =ap*

where

(3.12)

a = —[25n /(34k)][e ZAO/(2m 'irtk)]

X g (e ' —1)/[(l)(l!)'] .
t=1

(3.13)

Combining with (2.14) and (2.17) and introducing a nor-
malization constant C(t), we get the evolving quasi-
Maxwellian distribution as

then the integrations could easily be done. (See Appendix
A. ) The final answer is then

mc »pf, /(2m) » i%co . (4.1)

When the intensity is such that the Kibble parameter cz
is much smaller than unity, then the argument ep1, given
by (3.4), of the Bessel function in (3.3) is also sinall com-
pared to unity. Hence, we still can use (3.5) together with
the integral II given by (3.8). Doing the P; and the Pf in-

tegrations and assuming that pf =p, =p, the integral (3.8)
reduces to (see Appendix A)

(xf —x;) (1—x;xf)
Ii —Ai I dx, J dxf

[a&+(x;—xf) ] ~
(4.2)

IV. EVOLUTION OF A HOT PLASMA
IN INTENSE LASER RADIATION

Here, we again use the expression (3.3) but with the fol-
lowing approximations,

f ' =C ( t )[m */( 2' kti T) ] ~

Xe
—p /(2m k T)[1—a2m k Tt j8 (3.14)

where

ai =(m'loco/p ) (4.3)

Defining a time-dependent temperature T*(t) given by and

T'( t) = T [1—a(2m 'ks T)t]

we find the evolving distribution as

f"(u",t) =
I m "I[2irktt T"(t)]

I
'~'e

(3.15)

(3.16)

A, =[ire Aol(2l!mkp)] (4.4)

The factor ai in the denominator of the argument of
the integrals in (4.2) saves it from becoming infinite and is
crucial to our analysis. Performing the rest of the in-
tegrations in (4.2) (see Appendix B) we get

The a of (3.13) has two parts of opposite signs and one
part is due to the contribution from the absorption of
photons and the other part is due to the stimulated emis-
sion process of the electron in the laser field. Since
if&co»keT we see from (3.13) that a is positive and
hence from (3.15) our treatment is valid for time

Ii = A i
4 [ln(a( )

——"
, ] . (4.5)

As ln(a& ) is small on the average, hence, I& is negative in

value. Substituting back into (3.5), we get

A= no[e Z—I(2ir)] %co/(ke T)(m/p)[ireAo/(2mk)] S,
(4.6)

t &1/(a~) (3.17) where

where now the new coefficient a~ is given by S = g [—"
,
—ln(a, )]/[l!(1—1)!] .

I=1
(4.7)

az =28. 125n (2m*k' T)/(3irik)[e ZA0/(2m'i)ik)]

(3.18)

The expression (3.16) tells us that if we start with a
modified Maxwellian distribution when the laser field is
turned on then the distribution remains Maxwellian, with
only the temperature increasing with respect to time, ac-
cording to the expression (3.15). This is a surprising re-
sult since we have not considered any relaxation process
in our treatment. If we expand (3.16) in a Taylor series,
with respect to the parameter az t, then we get back the
Maxwellian distribution as the first term that corro-
borates what Jones and Lee have obtained earlier.

The time-dependent heating rate 8' for the complete
Maxwellian distribution (3.16) is exactly that of our ear-
lier treatment, ' except that the temperature T there is re-
placed by T*(t) as given in (3.15). For the nonrelativistic
case that we have treated, the spin contribution would be
negligible.

A =m/(2k T)s,
(4.9)

8 (t) =no[e Z/(2ir)] [A'co/(kii T)][iteAol(2mk)] St .

The quantity C(t) is a time-dependent normalization fac-
tor. We first consider the case when the time t is such
that 8 (t) is much smaller than the average value of the
velocity v so that the usual normalization of (4.8) can be
written as

C(t)4'(A Im-)' I du e "' v(u —8)=1 .
0

Therefore the distribution function then becomes

(4.10)

Substituting (4.6) back into (2.17) and assuming the ini-
tial distribution for the electron gas to be Maxwellian
given by (3, 1), we get [after combining with (2.14)],

f ( t ) = C ( t )[ A /( 2ir ) ] ~ e (4.8)

where
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Interaction Region

FIG. 1. Quasi-free-electron scattering from a quasi-free-ion
via Coulomb interaction.

I(r) [1 2gB(r)/tn. j/2] —1[/ /(27K)]3/2e
—AU —B(t)/v

(4.11)

A plot of this evolving distribution function can easily be
done by a small computer.

V. CONCLUSION

The usual method employed to solve the problem of
the time evolution of a plasma in the presence of a weak
radiation field has been to use the Boltzmann equation
and expand the distribution function in an infinite series.
When the laser field is intense, this scheme does not work
mainly because the series cannot be truncated fast
enough. Moreover, our analysis clearly show that the
four momentum of the electron gets modified by the laser
field. Taking this modification into consideration by in-
troducing quasi-four-momentum we have shown that, in

fact, the Boltzrnann equation becomes simpler insofar as
to lend itself to the technique of the separation of vari-
ables. This leads to a solution that is the product of the
initial distribution function and a time evolution part
which depends on the difFerential cross section of the
scattering process involved in the heating of the plasma.
Also, this solution is true for the relativistic case (except
for the case where the ions are assumed to be in motion
in which case a factor of —,

' has to be introduced).
We applied the result for the nonrelativistic case of a

Maxwellian electron gas interacting with stationary ions
and calculated the time evolving part of the distribution
function. Finally, we showed that this amounts to the
fact that the Maxwellian distribution remains Maxwellian
but the temperature increases as given in Eq. (3.9). A
plausible explanation of this could be that we are dealing
with an infinite plasma and hence instead of disjoint
phase-space heating as with a finite plasma we get a uni-
form increase in temperature due to the availability of
large sample space.

In the future, we would like to investigate the time de-
velopment of other distribution functions and explore the
relativistic case too.
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APPENDIX A

The integral in (3.8) is of the type

+1 +1 2m 2n

'(p +pI' 2p;pI—cosr)' ' (Al)

where y is defined by (3.10) and (3.9). The first integra-
tion we try in (A 1) is over P, and is given by the type

I, =f dP;[A +8 cos(P; PI)]-
=2 d, A +8 cos, (A2)

where

A —p, +pI 2p;pIx;xI
(A3)

I =2m /1 [A 8]—(A4)

As A and 8 are independent of PI, the integration over
the latter is just 2m. Hence, the integration of I, over the
variable x& becomes

8 = —2p;pI[(1 —x, )(1 —xI )]'/

In (A2), we have used Relation (3.032.2) of Ref. 14. Us-
ing Eq. (2.554.3) of Ref. 14, we get

+1
I2 = dxI( /1'x/+8'xI+ C'xI+D')R /, (A5)

where
A'= —2p;pjx;, 8'=pI(pI+p; )+4pIp; x,
C'= —2p, 'pIx, —2pIp, (pI+p, )x, ,

D'=p, 2(pf2+p, 2)x,2, R =a+bxf+cxf2

a =(pI p; ) (2m—lAcu), —b = 4p, pI(p; +pI)x-;,
—

4p 2p 2 (A6)

Under the approximation (3.11), the factor as defined in
(A6) will dominate in the denominator of the integrand in
(A5). Hence the overall integral

I =[(2m)'/(2mlA'co)'] f dx, f dxI(p, x, —pIxI)'

X(p, +p&
—2p;pIX;xI )

(A7)
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This integral is straight forward, and retaining only fac-
tors relevant for normalization we get (3.12) of the text.

«—f ~ X [I (X +Xf )Xf]I = dx dx--(1+x )f 2+ 2]3/2 (B2)

APPENDIX B

To perform the integration in (4.2), we first use the
transformation

Using Eqs. (2.261) and (2.264) from Ref. 14 and canceling
terms that are antisymmetric, we get

+1I = dxI —2+ 1 —xI ln 1+xI +1n 1 —xI—
1

x; —xy+x (Bl) —In(at /4)]I . (B3)

where x is the new variable. The integral in (4.2) then be-
comes

The last integration in (B3) can easily be done using Eq.
(4.293) of Ref. 14 to get (4.5) of the text.
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