
PHYSICAL REVIEW A VOLUME 42, NUMBER 2 15 JULY 1990

Ultrarelativistic envelope solitons in a magnetized electron-positron plasma
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The nonlinear propagation of intense electromagnetic radiation in a pulsar magnetosphere is in-

vestigated. The radiation is considered to be a circularly polarized electromagnetic wave, in whose
field electrons and positrons acquire ultrarelativistic velocities. The nonlinear frequency shift due to
the wave-plasma interaction is found to cause the wave localization, and it produces a new kind of
envelope soliton, which in coupling with the ambient magnetic field generates intense ambipolar
field along the magnetic lines.

In this paper, we reconsider the nonlinear propagation
of a field-aligned (parallel to the external magnetic field)
ultrastrong electromagnetic wave in an electron-positron
plasma. Our previous investigations are thus generalized
to include the ultrarelativistic nonlinear effects on the
wave propagation. The field amplitude is assumed to be
so large that particles acquire ultrarelativistic velocities
in this field. It is found that the frequency shift due to
the wave-plasma interaction causes the wave to localize
and a new kind of envelope soliton is produced. These lo-
calized radiations (solitons), in coupling with the ambient
magnetic field, generate an intense ambipolar field along
magnetic lines.

The basic equations describing the relativistic hydro-
dynamics in strong high-frequency fields are the relativis-
tic two-Auid equations of motion, the continuity, the
wave equation, and the Poisson equation:
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slowly varying complex amplitudes. For such a case the
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The ponderomotive forces, exerted by the radiation pres-
sure is given by
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which, by using (6) and (7) attain the following:
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where j refers to p =e+ and e =e, e =+e is the charge,
v is the particle velocity, T is the temperature, and mo
is the particle rest mass.

We consider the intense radiation as a circularly polar-
ized electromagnetic wave which propagates along the
ambient magnetic field Bo=Bpz and all the quantities do
not depend on x and y but on z and time t,

for electrons and positrons, respectively.
Thus the slow plasma motion along the ambient mag-

netic field is described by the equations
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Here, for simplicity the right-hand polarization of the
wave is taken into account (the left-hand polarization
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(13) where 0 and lc are constants. Then it can be shown' that

We consider the case of ultrarelativistic wave (v, &&1)
propagating in the electron-positron plasma. For such a
case, from Eq. (7), we see that
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The above conditions imply that cuE —coc»cu and the
dispersion relation for the wave is

1 eP

Voto, —~t-', mo

eC
Pl oco

(24)

2 2
Vor op

—
~g, mo

eC

mo
(25)

where we imply the boundary conditions

We assume that all the low-frequency perturbations
(N„N, P) are caused only by the ponderomotive force,
which is the function of pump wave amplitude
lEl =f(g). Therefore, N„N, and P are also some func-
tion F(g). Thus the density perturbation of plasma
species can easily be determined from Eqs. (20) and (21),
which give

where u =S~e no/mo is the plasma frequency with no
being the background plasma density.

Let
lEl~ao, &a, @,N„N, ~0 as l(l~~ . (25a)

and
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Thus using (24) and (25), from the wave equation (3) and
the Poisson equation (15), we get the coupled system of
equations
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where a„ is constant and 5a, 5n are the small perturba-
tions. Then for the case of ultrarelativistic wave, which
satisfies the condition
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The slow plasma response Eqs. (11)—(14) may be writ-
ten as
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The system of equations (26) and (27) describes the modu-
lation of ultrarelativistic wave in magnetized electron-
positron plasma.

To solve Eqs. (26) and (27), we introduce the dimen-
sionless variables
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Let us consider a linear space shift of the wave due to
the interaction. In other words, we represent the corn-
plex field amplitude as

and rewrite the system
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C3 For a, & 0, Eq. (34) admits the localized solution
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The above system has an "integral of motion" p) p= [ —a, +(a',—4a,a, )'~'] .
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where the constant of integration E=0 can be obtained
from the boundary conditions (25a) and we have intro-
duced the functions G(p, g), F(q&, g), and H(y, f) for fur-
ther use.

Making use of the "energy integral" (30), it is possible
to eliminate the independent variable rl (see our earlier
paper and the references therein) between (28) and (29),
yielding the following equation for y in terms of

hatt
alone:
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The physical requirement of a] & 0 for the localized solu-
tion (36) implies the condition Vo /C & 1 (subluminous
soliton). An analysis of the expression for Vo [Eq. (23)]
and the dispersion relation [Eq. (18)] shows that for the
case of ultrarelativistic wave Vo/C & 1 (always), since in
this case coco, & co . Therefore subluminous envelope sol-

0

itons are the final state of the modulation of the ultrarela-
tivistic wave.

The density perturbations are given by
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As we assume that the density fluctuation and hence
the ambipolar field generation are caused by the pondero-
motive pressure of the high-frequency wave, we consider
the electrostatic potential as a function of the driving
field amplitude and introduce the expansion

P=g C„1(", n =1,2, 3, . . . , (32)
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and using (33) in (28), we get

provided the series converges rapidly (the convergency
will be investigated later).

Making use of the expansion (32) and (31), a power
series in 1( is obtained in terms of free parameters. This is
done in the Appendix, where an argument on the conver-
gence of the series is also given. It is found that C] =0,
C2g,„-e, C3f,„-e, and so on, where =e( c5o) /
co (& 1 is a small parameter.

We then assume

We calculate the charge density fluctuation along the
magnetic lines. Assume that radiation pressure is much
higher than the thermal pressure. Then, neglecting the
thermal terms, we get
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APPENDIX

and the maximum density fluctuation is (5N),„=
—,'(co, /co)pe, which may generate an intense ambipolar

field along the magnetic lines.

(d„P) =a,Q+a2$ +a3$
where
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Here we give the first coefficients of the expansion (32)
and discuss the convergence of the series.

Inserting the expansion (32) in (31), a power series in g
is obtained and the C„'s can be determined.
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Since V2/'C2«1 and (5')2/~2 &&1, it is found that Czf,„-e, C3$',„-e', and so on, with e=(5') /co~(1 —Vo/
C~)'/~ && 1. Hence the series (32) converges rapidly.
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