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Nonlinear psendospin dynamics on a noncompact manifold
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We describe the motion of an SU(1,1) pseudospin vector in the frame of the mean-field approxi-
mation induced by the variational principle on linear-plus-quadratic Hamiltonians. The dynamics
of the SU(1,1) states of the Perelomov type obeys a nonlinear Bloch or torquelike equation, and each
orbit can be interpreted as the intersection of two quadrics, one representing the energy surface and
the other the group manifold, both in the space of the averaged algebra generators or semiclassical
pseudospin. The fixed points of the flow can be also determined by resorting to strictly geometric
considerations. The evolution of the phase diagram in parameter space is investigated as well for
selected Hamiltonians. The bifurcation sets are constructed and the nonthermodynamic phase tran-
sitions can be clearly identified for the systems under consideration.

I. INTRODUCTION

Nonlinear dynamical systems that, in some suitable ap-
proximation, attempt to describe the motion of N in-
teracting particles, constitute an active research field in
many-body physics. Applications to nuclear dynamics in
the mean-field approximation derived through Dirac's
variational principle' have received great attention, with
particular emphasis on those physical configurations or
channels that can be modeled by systems with spectrum-
generating algebras. In this spirit, n-level models of the
SU(n) type are well suited and due to its algebraic simpli-
city and integrability properties, the SU(2) dynamical
group has been the focus of several recent investigations.
It has been shown that the variational SU(2) dynamics
exhibits a collection of geometrical characteristics which
greatly simplify the investigation of the phase diagram,
i.e., the location of fixed points, their nature, and the ap-
pearance of topologically invariant regions of phase
space. In addition, the evolution of the phase diagram in
parameter space can be examined and the bifurcation
sets can be determined as well as the kind of phase transi-
tions undergone by the system.

SU(2) models can be linked to a variety of objects from
two-level atoms immersed in a radiation field to N nu-
cleons with two-level spectrum which interact through a
two-body force. ' In the latter case, the Hamiltonian is
quadratic in the SU(2) algebra generators. Now, the
essence of the mean-field approximation is the reduction
to a one-body scheme and one can see that the motion is
formulated in terms of a nonlinear Euler equation,

J=Q(J}XJ

where J is the expectation value of the SU(2) basis vector
J=(J„,J~,J, ) with respect to an SU(2) coherent state '

and Q( J) is the gradient of the averaged or mean-field
Hamiltonian in J space.

Equations of the form (1.1) with a J-independent vector
Q—which may, however, admit some time

dependence —are known as Blochlike (or torque) equa-
tions. It has been recently shown that they appear in
dynamical problems with SU(2), SU(1,1), and SU( n )

dynamical groups' ' together with Hamiltonians that
belong to the algebra. Furthermore, several authors have
remarked' that in every case, these are the coherence-
preserving Hamiltonians, in other words, they generate
motions which map group coherent states of the Perelo-
mov type' onto states of the same class. It is interesting
as well to remark that in a11 fermion realizations of the
algebras, coherent states are Slater determinants, and
consequently the group coset can be parametrically
mapped onto the Grassmann manifold.

The SU(2) variational problem with quadratic Hamil-
tonians expressible through (1.1) is coherence-preserving
as well; ' in fact, Eq. (1.1) describes a J -conserving
motion on the SU(2)/U(1) coset or Bloch sphere which is
in a one-to-one correspondence with SU(2} coherent
states. This property appears as a characteristic of the
approximation associated to the variational procedure,
since the exact motion does not necessarily lie on the
sphere at all times. The reason for this conservation lies
in the fact that the generator of the motion in the mean
field can be expressed as a linear combination of the aver-
aged algebra operators, however, with nonlinear
coefficients, in other words, with coefficients that depend
on the same averages. In the Fermion realization of the
algebra and the flow, such are the nonlinear one-body
Hamiltonians arising from the time-dependent Hartree-
Fock ' approximation.

On the other hand, we observe nowadays an increasing
interest in systems with SU(1,1) dynamical groups, ' in
view of the wide set of applications that include harmonic
motion, ' ' description of superfluid elementary excita-
tions, ' Coulomb problem, ' two-photon processes, " de-
generate parametric amplification, ' ' s states of the
Morse oscillator, ' path integral methods, anharmonic
motion, squeezing of states in the electromagnetic
field, and damped oscillatory motion. Those illustra-
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II. VARIATIONAL SU(1,1) DYNAMICS
WITH GENERAL QUADRATIC HAMILTONIANS

In this section we are gaing to shaw that in view of the
fact that bilinear functions of the SU(1,1}algebra genera-
tors factorize, quadratic operators such as the Hamiltoni-
an or the SU(1,1} Casimir operatar, when averaged with
respect to graup coherent states, define corresponding
quadrics in the averaged algebra space. This property is
enforced to geometrically characterize the orbits.

Let us consider the SU(1,1) vector k=(l„l2,l, )

whose components commute as

[k„t,]= (2.1a)

[k„t,]=rt, ,

[k, ,l, ]=if, , (2.1c}

(2.1b)

and the Casimir operator,

c'=t,' (2.2)

tions mostly involve linear SU(1,1) Hamiltonians —with
the exception of Refs. 20 and 25 where a class of anhar-
monic motion has been investigated. However, a number
of problems with quadratic Hamiltonians remain to be
considered, among them, anharmonic oscillatory motion
with quartic perturbation ' in the mean field and
superfiuid dynamics in the presence of residual quasipar-
ticle interactions. The formulation of this problem in
the framework of the mean-field approximation induced
by the variational principle is the purpose of the present
work.

In this vein, we will describe the variational dynamics
of SU(1,1) coherent states on mastly geometric grounds.
In particular, the orbits appear as the intersections of
quadrics that represent constant-energy surfaces, with
one sheet af a two-sheeted hyperboloid —the curved
phase space of SU(l, l} or Labatchevsky plane'3'2z —in
the space of averaged algebra generators. We will then
see that the resulting equation is of the form (1.1). This is
the subject of Sec. II. In Secs. III and IV we will investi-
gate several special applications to linear and quadratic
Hamiltonians, respectively, and construct the associated
phase diagram. The evolution of the fiow in parameter
space is examined in Sec. V, where the bifurcation sets
are constructed for each characteristic Hamiltonian. The
summary and conclusions are presented in Sec. VI.

Now, some algebraic manipulations, which amount to
using disentangling theorems, essentially identical to
those performed in the SU(2) case, easily give the factori-
zation property for the anticommutator [k;,k. l of any
two algebra generators,

(z[-,'[t, ,t, ] lz &
= „K,K, ~, S,, (2.6)

where K; = (z lk; lz ) and b i
=

ling =
—6i = —k /2.

It is clear then that the locus of the expectation value
of the Casimir operator, which in turn is the dynamical
manifold, is a two-sheeted hyperboloid in a three-
dimensional space (K„Kz,K~ },actually,

C=K3 —Ki —Ki=k (2.7)

However, since K3 )k )0 [cf. Eq. (2.4)], we disregard the
hyperboloid sheet with negative values of K~. It is also
evident that for general quadratic Hamiltonians of the
form

8=e,t, + ,'p, ,t,t, -, (2.8)

with p; a symmetric matrix, the energy of a system with
a coherent state as wave function is

E=e;K + ,'p; K;KJ ———,'p;;b, ;, (2.9)

(2.10)

Due to the analytical analogies between SU(2) and
SU(1,1) coherent states, all results previously obtained for
the former dynamical group can be straightforwardly ex-
tended with the replacement Hs„(,2,~i&s„„». The
SU(1,1) Euler-Lagrange equations are then

being p,"=(2k+1)p,"/2k. Equation (2.9) is only mean-
ingful on the hyperboloid (2.7}whose points are in a one-
to-one correspondence with the states (2.5); however, we
can interpret that the orbit labeled by a given energy
value E is the intersection of the quadric (2.7) with posi-
tive Ki and the quadric defined by (2.9). This statement
simply generalizes the construction of the SU(2) orbits.

We may easily see that the variational description of
the dynamics leads to the above kind of orbits. Dirac's
variational principle specialized on SU(1,1} coherent
states as trial functions demands us to set Euler-Lagrange
equations for the Lagrangian,

Since the group is noncompact, its unitary representa-
tions are infinite dimensional; we will restrict ourselves
to the positive representation 2)„, k being the Bargmann
index related to the Casimir eigenvalue as Bq

(2.11a)

(2.11b)

C=k(k —1) .

Let l k, n ) be the basis,

E, lk, n &=(k+n)lk n & ~

and let lz ) be a Perelomav coherent state, '

lz ) =exp(zE+ —z'k )lk, 0) .

(2.3)

(2.4)

(2.5)

with p=k cosh8, q=P, being z=tanh(8/2)exp( iP}—
and %=(z l8lz ). Here (() and 8 are the usual spherical
coordinates, which in turn give rise to an unbounded
canonical SU(1,1) space (p, q ) with p E [1,~ ) and
qE[0,2n].

As in the SU(2) problem, the Hamiltonian equations
(2.11) are the statement of Ehrenfest's theorem for
coherent states. It is also an algebraic matter to calcu-
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late the Euler-Lagrange equations in K space; one ob-
tains the vector equation

K= —
—,'V%XVC, (2.12)

with C given by (2.7). We then realize that, as already
stated, each orbit lies at the intersection between each en-

ergy surface &(K)=E and the group manifold (2.7). We
may as well notice that the validity of Ehrenfest's
theorem for coherent states implies that, if the exact dy-
namics is confined to the SU(1,1) hyperboloid, it neces-
sarily coincides with the variational motion. Such is
indeed the case of linear Hamiltonians, which have been
shown to be coherence preserving' and to yield Bloch-
type equations. '

The nonlinear flow defined by Eq. (2.12) possesses sta-
tionary points when either V& is proportional to VC or
when at least one gradient is zero. The first condition in
turn implies that fixed points of the Row are those where
the energy and group manifolds become tangent. This is
a particular geometrical property among several other
ones which greatly simplify the qualitative characteriza-
tion of the How.

k', =E3sinhri+E, coshrt, (3.4b)

tanhri = a//—e . (3.5)

The phase flow of the "untilted" Hamiltonian (3.3) in the
original K space possesses an absolute energy minimum
at the tangency point where V%= VC, namely,

gk k

(1 g2)1/2 ' '
(1 (2)l/2

(3.6)

with q chosen in such a way that the coefficient of either
k', or E'3 vanishes after replacement of both Ei and k3
in (3.3). It is easy to verify that in any case, the Blochlike
equation of motion (2.12) is invariant under the "tilt"
(3.4). This property holds in spite of the fact that a vec-
tor equation of the form (2.12) is not rotationally invari-
ant in the usual sense.

If a & e, one chooses

III. PHASE FLOW FOR LINEAR HAMILTONIANS

In this section we describe in detail the phase How for
linear Hamiltonians, both on the group manifold and on
the plane canonical phase space (p, q). Let us first con-
sider 2.2

8=et, . (3.1}

This is the most widely investigated Hamiltonian; it cor-
responds to the one-dimensional harmonic oscilla-
tor ' ' to the isotropic three-dimensional one to the
group version of the Bogoliubov transformation for
superAuids generally speaking, to any linear combina-
tion e;K; which can be "tilted" according to some rules
that define a particular approximation. Each problem
here listed gives, in turn, at least one realization of the
SU(1,1) algebra.

For the Hamiltonian (3.1), the energy quadrics are
planes perpendicular to the E3 axis, thus every orbit is a
rotation. The only fixed point is the hyperboloid vertex
(0,0, k ) and the canonical phase flow is a set of horizontal
lines above p = 1. This is illustrated in Fig. 1. The veloci-
ty vector can be easily computed, since V&=(0,0,e) and
VC=2( K, , K2, K3); t—hus, ac—cording to Eq. (2.12),

1.4.

1.
-3.Q

3.Q

2.2

QQ

0 MINlMUM

3.Q Ki&K

K=( eK2, eK„O)— (3.2)

or P=et+Pp which is just a rigid rotation around the K3
axis.

A slight deformation of (3.1) is 1.4

B=eK3—aK„a)0, e)0. (3.3}

K 3 =K3coshrI+K, sinhq, (3.4a)

This Hamiltonian appears, for example, as an SU(1,1)
algebra realization of a one-quasiparticle Hamiltonian;
the Bogoliubov transformation is equivalent to a
"tilt" or generalized rotation of the form' '

1.
OQ 0.6 1.2 1.8 qgTt

FIG. 1. {a) The phase flow of the linear Hamiltonian on the
group manifold with k=1 and @=1; {b) the phase flow on
canonical phase space.
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with

(3.7)

This situation is illustrated in Fig. 2, where we can appre-
ciate that all orbits are closed, however, falling into two
categories, the local librations and the rotations, whose
separatrix is the plane containing the hyperboloidal ver-
tex. The geometrical meaning of the tilting operation
(3.4) in the current frame becomes then clear; it just car-
ries the point Ko onto the vertex of the hyperboloid in K'
space, and eliminates the libration zones in phase space.
From the physical viewpoint, in this case one lies in the
region of parameters of the Bogoliubov-Valatin transfor-
mation where the energy spectrum is that of a compact
operator. '

In the strong-coupling limit when a/e~ I, we can ap-
preciate that all orbits are open ones, or equivalently,
that the canonical momentum is unbounded, and that no
energy extremum appears. In the extreme strong-

coupling regime a~ao, which can be mimicked setting
e=O, the energy planes become vertical ones. In this case
there exists an orbit K(t) which can be analytically in-

tegrated, corresponding to zero energy or to the energy
plane through the vertex, with velocity,

K= —a(O, K3,E2) (3.8)

from where one may compute the transit time between
K2(0) and Ez(t) which is

, K2(0), K2(t)
t =—sinh ' —sinh

a k k
(3.9)

The corresponding phase diagram is shown in Fig. 3.
Now, from the geometrical viewpoint this situation cor-
responds to a "tilt" defined by I/tanhg= —o. /e [cf.
(3.5)], leading to a Bogoliubov-Valatin Hamiltonian pro-
portional to k'„an unbounded operator. The phase dia-
gram thus obtained illustrates a more general property of
the flows on noncompact manifolds, namely, the fact that
there is not a conserved characteristic. ' ' ' Let us recall

3.

K3/K
(a)

&3/K
(a)

2.6-

2.2-

2.2.

14-

1.
-3.0 0.0

PlK

3.0 K,/K

1.4-

-3.0 0.0 30 K~/K

3.0

2.6.

P/K

3.

2.2- 2.4.

1.4-

o.o 1.0 qi~
1.2

00 1.0 2.0
FIG. 2. Same as Fig. 1 for the perturbed linear Hamiltonian

given in Eq. (3.3) with a= —,'. FIG. 3. Same as Fig. 2 for e=O and a= 1.
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that in a compact manifold, the characteristic is the sum
of the indices of the singular points; ' its conservation
fixes then the number and kind of bifurcations that may
occur. ' In our case and in forthcoming examples, criti-
cal points can be created and destroyed as one evolves in
parameter space, with a source or a sink at infinity.

E =(k —o) at the vertex K =(0,0,k) as illustrated in

Fig. 4. It is clear that every orbit is a positive rotation
around the E3 axis and also that all orbits are nondegen-
erate.

Z. k &a &Zk

IV. NONLINEAR FLOW
FOR QUADRATIC HAMILTONIANS

8=—,'(g +p )+A/ (4.1)

Actually there exist several realizations of the SU(1,1)
algebra in terms of the canonical coordinates g and p, the
simplest one for the present example being

g, q p g ri pg —iItlPI
4

' 4 ' 4
(4.2)

One then finds

The general expression for the quadratic Hamiltonians
is given in (2.8). Physical realizations of such a Hamil-
tonian are, for example, listed below.

(a) Quartic anharrnonic oscillator We.have

When a =k, the cylinder axis is tangent to the group
manifold at the vertex and when a & k, the axis intersects
the hyperboloid twice at degenerate relative minima
K +=(+(a —k )'/, O, a ) with zero energy. In this sit-
uation, the vertex becomes a saddle point with energy
E, =(k —o ) . This is illustrated in Fig. 5, where we may
see that in this range of values of a three topologically in-
variant regions, namely, two degenerate librational zones
around the minima and nondegenerate rotations with en-
ergies above E, .

Ks/K

2ik, ——4A(E, +iE ) (4.3)

(4.4c)

(b) Superjfuid with residual quasiparticle interactions
With the standard realization of the SU(1,1) algebra for
the three-level superfluid, '

gi = T~(&+& +&+& ), (4.4a)

,'i (it+ tt ——&+ o ), (4.4b)

E3 =1+8++& tl +1

where 8+ and 8+ are the particle creation and annihila-
tion operators, respectively, in single-particle states ~+ ),
one finds, for the two-body Hamiltonian in the Bogo-
liubov representation, an expression of the form (2.8)
with coefficients P, that are complicated functions of the
original interaction strengths and the tilting angle ri [cf.
Eqs. (3.4)].

In what follows, we will consider two particular selec-
tions of the matrix elements P,, that apply to the
superfluid problem and permit a geometrical analysis of
the flow.

2.6.

2.2

'1.0
-3.0

P/K

3.0

2.

0.0 3.0 Kz/K

(b)

Let

A. Superfluid with quasiparticle interactions
2.2.

(4.5)

It can be verified that it corresponds to a superfluid with
two-quasiparticle interactions together with four quasi-
particle creation and annihilation events. The energy
quadric %(K)=E are cylinders with their axis through
(0,0,a) and parallel to the K, axis. Let us consider the
following cases.

1. O~a &k

1.
00 1.0 2.0 q/Tf

In this case no cylinder axis intersects the group mani-
fold; the only fixed point is the energy minimum

FIG. 4. |,'a) The phase flow of the quadratic Hamiltonian
given in Eq. {3.14) for k =1 and a = —'; (b) the phase flow on

canonical phase space.
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3. a &2k

The situation is depicted in Fig. 6, where we can appre-
ciate that the saddle point at the vertex has bifurcated
into two degenerate saddle points and a relative max-
imum. The Row presents four invariant regions, namely,
the following.

1. Rotations around the relative maximum
KM =(0,0, k ) of energy E~ = (a —k ) . They are degen-
erate with type-3 orbits (see below), since the cylinder in-
tersects the group manifold twice; this is illustrated by
the dashed line in Fig. 6, which represents two difFerent
orbits that arise from the same energy surface.

2. Degenerate librations around the minima, their pro-
jections on the (Kz,X3) plane being circumferences.

3. Rotations around the K3 axis up to energy
EM=(a —k) . They correspond to the upper intersec-
tions of cylinders whose lower intersections are rotations
around KM', consequently, they are degenerate with

B. Super8uid ~ith quasiparticle coalescence

Let us now consider the Hamiltonian

8=~k, + UI t, ,t, I . (4.6)

Physically, it corresponds to a superQuid with quasiparti-
cle coalescence or decay processes. The associated en-

type-1 rotations.
4. Nondegenerate rotations with energies higher than

E~, since in such a case the cylinders intersect the hyper-
boloid once.

Notice that the Hamiltonian (4.5) is invariant with
respect to rotations around I( 3 by an angle m.. This im-

plies, on the one hand, that the vertex is always a fixed
point, and on the other hand, that critical points other
than the vertex always appear in degenerate pairs. It is
then interesting to examine a problem where this symme-
try is broken, as in the following example.

2.6
7.

2.2.

/, .0 &

1.4.

1.
-3.0 0.0 3.Q Kg/K

1.
-4Q -2.0 0.0 2.0 /, 0 K&/K

(b)
P/K

2.6
7.0.

2.2

1.8 40-

1.4

0.0 1.0 2.0 q/~
1.0

0.0 1.0 2.0 q/~

FIG. 5. Same as Fig. 4for a=2' FIG. 6. Same as Figs. 4 and 5 for a =4.
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ergy quadric is
T

%(K)=e E3+ K—,E2 (4.7)

with y = U( 2k + 1 ) /e. An equivalent SU(2) Hamiltonian
has been proposed and investigated in Ref. 5. As in the
SU(2) case, the energy surfaces are hyperbolic cylinders
with axis through K, = —k/y; if g=O, the axis lies at
infinity and the quadrics become planes as in Sec. III A.

K3
and K2=0,

Ki+k/y

which in turn yields two critical points, namely,

(4.8)

As the interaction strength increases, the minimum at the
group manifold vertex evolves towards negative K3
values, while a saddle point appears. The location of ei-
ther fixed point can be found setting Vgf parallel to VC
(cf. Sec. II); we find

K = — + (1—8y )'/, 0, I2[l+4y —(1—8y )'/ ]I '/
4X 4X

' '
4X

(4.9a)

k
Ks

4X

k
( 1 8+2) l/2 0 I 2[1+4~2+( I 8~2) l/z]

I
i/2k

4X
' '

4X
(4.9b)

with corresponding energies E and E, .
The character of each critical point can be assigned by

strictly geometrical considerations as illustrated in Fig. 7.
We see in Fig. 7(a} that when K is the tangency point,
the energy surface does not intersect the group manifold
and thus leaves it entirely in the region of energies higher
than E; consequently, K is a minimum. Instead, when
the contact occurs at K„a manifold intersection occurs
that separates a libration area from three regions with
open orbits. This geometrically means that K, is a hy-
perbolic point. This is clearly illustrated in Fig. 7(b}. For
energies between E and E„each libration possesses a
degenerate open partner in the rotation zone.

We may then realize that as the interaction parameter
increases from zero, a bifurcation occurs at

~g~= 1/2&2 where both critical points coalesce, disap-
pearing for higher values of g. Notice that this situation
is substantially equivalent to the SU(2) case, where a sad-

dle point bifurcation occurs for ~y~ ~1. However, the
noncompact manifold does not allow energy maxima for
Hamiltonian (3.16). Once again, as in Sec. III, we verify
that the sum of indices of singular points of the hyper-
boloid ' is not conserved.

2.6-

2.2.

).4-

1.
-3.0

2.6

K~K

0.0 3.P K,/K

(b)

V. BIFURCATION SETS
AND QUALITATIVE DYNAMICS

In this section we will investigate the shapes of the bi-
furcation sets in parameter space for the general quadra-
tic Hamiltonian (2.8), together with the topologically
equivalent flows. We restrict ourselves to selected Hamil-
tonians that contain the particular ones presented in Sec.
IV, since their parameter spaces are two dimensional and
permit a straightforward analysis.

]4

A. Superfluid with quasiparticle interactions
O.D 1.0 2.0 q/Tf

Let us consider the mean-field Hamiltonian,

%(K)=(K3—a) +aKi+1(.z,
FIG. 7. (a} The phase flow of the Hamiltonian given in Eq.

(3.15) for k =1,y= —'.
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' 1/2
2a —k2

(1+a)
a

t (5.2)

which corresponds to the one investigated in Sec. IV A
when a=0. While the parameter a just sets the center of
the energy surfaces, the interaction strength a determines
the nature of the quadric as follows: (i) a (0 gives one-
sheet hyperboloids, cones, and two-sheeted hyperboloids
according to the energy E being positive, zero, or nega-
tive; (ii) a=0 gives cylinders (Sec. IV A); (iii) a) 0 gives
ellipsoids, or spheres if a= l.

The critical points of the phase flow are those which
verify either V& parallel to VC or V&=0. For nonvan-
ishing a, the parallelism condition gives five critical
points, namely,

I'

a/K

H~PERBOLOIDS = = ELLIPSOIDS

IiK C

K~

Qvi

and

aa
E~ = —ak1+a

~+—(0 (a /4 —k ) a /2}

if a ~2k, with

if a /( 1+a ) ) k, aW —1, with energies

(5.3)

(5.4)

QYII

FIG. 8. The bifurcation diagram in (a,a) space for the
mean-field Hamiltonian (5.1).

aE' = —k
2

For K, =K2 =0, we get

Ko= (0,0, k ),
with energy

Eo=(k —a)

(5.5)

(5.6)

(5.7)

If a = —1 and a =0, the intersection between
JV=K3+Kz —KI and C=K3 —K2 —KI is a cone; con-
sequently, no isolated critical point appears. This inter-
section is the locus of zero velocity points and corre-
sponds to E2=0, K3 —K, =k, which yield the
minimum energy. We see in Eq. (5.2) that for nonvanish-
ing a, as a approaches —1 the fixed points K+ depart to-
wards infinity, leaving us only three critical points, name-
ly, K+ and Ko in Eqs. (5.4) and (5.6), respectively.

From these considerations one can draw the bifurca-
tion diagram in (a, a ) space that appears in Fig. 8. The
bifurcation sets are defined by the existence conditions of
the fixed points (5.2) and (5.4) and the regions where to-
pologically equivalent flows belong are labeled from I to
VIII as indicated in the picture. Let us now analyze in
detail the type of bifurcations that show up when going
from one region into the other; they are graphically illus-
trated in Fig. 9 and correspond to the following points.

(a) From region I into region II. An absolute minimum
at K3 =k bifurcates into two relative minima and a sad-
dle point that remains at the vertex.

(b) From region II into region III. The saddle point at
K3 k bifurcates into a relative maximum and two saddle
points. Notice that in region III the K2 axis of the ener-

gy ellipsoid is larger that the I(, axis; the vertical
dashed-dotted line indicates the location of the spherical
energy surface. It is then clear that the flow in region IV

Qtv =Qv

Qii =Qttt Ql ='Fllll

Qo

I = IV N =Qvi

Qo

Qo sADDLE; Q+ MINIMUM Q MAXIMUM

FIG. 9. The bifurcations that occur when crossing a bifurca-
tion set in Fig. 8. See text for details.

(V) is identical to that in region II (III} interchanging the
roles of the K2 and K, axis.

(c) From region I into region IV: same as (a).
(d) From region IV into region V: same as (b).
Before examining the remaining parts of Fig. 9 we need

some more considerations. It should be noticed that for
a= —1 and a (0 there exists only one minimum at the
vertex, due to the fact that the curvature of the quadrics
in the (K „K2 ) plane is higher for the energy surface than
for the group manifold. When a vanishes, both quadrics
intersect at a curve and for positive a the vertex becomes
a saddle point, as a consequence of the inverted relation-
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ship between the curvatures. When a reaches the value
2k, this saddle bifurcates as in (b). In relation to this
analysis, it is especially interesting to remark that in the
vicinity of a= —1 for every value of a, as well as in the
neighborhood of a =0 when u = —1, it is not possible to
enclose the bifurcating fixed points within a closed curve,
and, consequently, the local conservation of the index '

cannot be ensured. This arises from the fact that the
Grassmann manifold is noncompact.

Therefore the bifurcations on the left of the line
a= —1 are (cf. Fig. 9) (e) from region VII into region
VIII: a saddle point bifurcates into a relative minimum
and two saddle points.

From region VII into VI, the same bifurcation occurs
as in (b).

Finally, let us comment that the line a= —1 separates
two half planes with well-defined and conserved sum of
indices of singular points ' that correspond to the index
of one minimum if a & —1 and to one saddle for a & —1.
As discussed above, the index of a curve cannot be
defined on the line itself since the definition of the critical
points (5.2) there contains a divergence.

B. Superfluid with quasiparticle coalescence

%(K)=(Ei b)(E ——
i a ) . (5.8)

The energy surfaces are hyperbolic cylinders with axis
parallel to Ez in the (E, ,Ei ) plane. One can easily real-
ize that the sum of indices of singular points ' vanishes
on the complete parameter space; the bifurcation dia-
gram is presented in Fig. 10.

In this figure we appreciate that the parameter space
displays three qualitatively different regions. In region I,

A mean-field Hamiltonian that generalizes the one
presented in Sec. IV B is

FIG. 11. Same as Fig. 9 for the bifurcation sets in Fig. 10.

no fixed point exists, either isolated or belonging to a de-

generate curve. Region II exhibits one relative minimum

and one saddle point as in Fig. 7 (see the discussion in

Sec. IVB). In region III, the axis of the hyperbolic
cylinders intersects the group manifold at two degenerate
saddle points, while librations appear near one relative
maximum and one relative minimum. These bifurcations
are schematically indicated in Fig. 11.

VI. SUMMARY AND CONCLUSIONS

2.5-

1.5-

05-

0.0-

-0.5
-3.0 Q.Q

FIG. 10. Same as Fig. 8 for the mean-field Hamiltonian given
in Eq. {5.8).

Prior to the present work, we had developed a geome-
trical method to characterize the topology of the non-
linear variational fiow on the SU(2) group coset or
Grassmann manifold provoked by a linear-plus-quadratic
Hamiltonian in the algebra generators. The equation of
motion for the pseudospin vector is a Bloch-like equation
with a nonlinear frequency. In addition, we had shown
that such systems admit a straightforward way of deter-
mining their bifurcation sets in parameter space together
with the description of the associated phase transitions.

This work has dealt with an extension of the above
techniques to linear-plus-quadratic SU(1,1) Hamiltonians,
aimed at representing either quartic anharmonic
motion ' or two-quasiparticle interactions in boson
superfiuids. ' We have then shown that as in the SU(2)
case, a nonlinear torque equation describes the evolution
of the averaged algebra vector on the noncompact group
manifold; the motion can be viewed as a generalized rota-
tion or "tilt" on a Lobatchevsky space. We have ana-
lyzed in detail the topological features of the flow for two
particular choices of the Hamiltonian. The common
property of both algebras resides in the geometrical
identification of the fixed points of the corresponding
flows; the most significant difference, however, is related
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to the noncompactness of the SU(1,1}group manifold and
consists of the impossibility of establishing indexes of
curves surrounding singular points ' when one of these
departs towards infinity.

The latter phenomena, namely the changes that the
global phase flow undergoes when a fixed point bifur-
cates, can be generally classified as nonthermodynamic
phase transitions or catastrophes. We have constructed
the bifurcation sets in a two-dimensional parameter space
for two Hamiltonians that generalize the previously in-
vestigated generators of the motion and shown that the
transitions undergone by the phase portrait can be rather
easily identified on a pure geometrical basis.

The results here presented encourage further research
concerning more general nonlinear flows. Fermion sys-
tems with SU(n) dynamical groups and quadratic Hamil-
tonians are especially interesting in view of their immedi-
ate applications to nuclear physics. Work along this line
is in progress and will be presented elsewhere.
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