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Collective mechanisms for atomic transitions in dense plasmas: Representation
and screened Coulomb-Born approximation for plasmonic recombination cross sections
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The Bohm-Pines Fock-Tani representation for a single fixed proton immersed in a finite-

temperature electron gas is derived by a sequence of canonical transformations. The long-range
correlations between the charged particles of the system give rise to free-bound, bound-free, free-
free, and bound-bound hydrogenic transitions with emission or absorption of plasmons by electrons
in the field of the fixed proton. These are all exhibited explicitly in the transformed Hamiltonian.
Within this "proton in jellium model" differential cross sections for plasmonic recombination into
the highly excited and screened levels of hydrogen (8s, 8p, 9s, 9p) for n,, =10" cm ' and k~T =0.5

eV are evaluated using a screened Coulomb (plane-wavej Born approximation. The resulting cross
sections appear to be much larger than those expected for the radiative mode.

I. INTRODUCTION

The long-range correlations between the charged parti-
cles in plasmas are responsible for the related phenomena
of screening and longitudinal plasma oscillations. '

Screening affects the internal structure of atoms and
weakens the strength of atomic transitions significantly
near threshold, as shown by explicit calculations per-
formed with screened Debye-Huckel potentials. Plasma
oscillations might also play a significant role in the atom-
ic physics of the highest bound levels of the system as
suggested by a recently proposed new mechanism for hy-
drogen recombination in plasmas, whereby the binding
energy is carried away by a plasmon (quantum of plasma
oscillations) rather than a photon or a third particle. As
a generalization of that work, in this paper we shall de-
velop the Bohm-Pines Fock-Tani (BPFT) representation
of the Hamiltonian for a simplified model of the plasma,
consisting of a single fixed proton immersed in a finite-
temperature electron gas. In this transformed Hamiltoni-
an, which exhibits simultaneously all the possible scatter-
ing and reaction channels (including the above-mentioned
plasmon-mediated recombination mechanism), the parti-
cles interact through short-range (screened) potentials
while the long-range interactions between them are
characterized by emission or absorption of real plasmons.
The physical content of the different terms in the expan-
sion of the Hamiltonian will be explained. As an example
of application of this representation, we shall evaluate
differential cross sections for plasmonic recombination
into the highly excited and perturbed levels of hydrogen
for plasmas with n, =10' cm and k&T =0.5 eV, using
the screened Coulomb (plane-wave) Born approximation.
In agreement with semiclassical estimates, the plasmonic
recombination cross sections into the perturbed highest
levels of hydrogen (n =8,9) are found to be several or-

ders of magnitude larger than those expected for the radi-
ative mode (which are estimated using well-known for-
mulas for the unscreened case). It is pointed out that the
plasmonic mode may be comparable to the three-body
mode which is usually taken to be the dominant one at
these densities.

II. COLLECTIVE REPRESENTATION

Consider a system of volume 0 composed of N, elec-
trons with density n, =N, /0, charge e, and mass m,
moving in a uniform immobile positive background
whose density is equal to that of the electrons (the elec-
tron gas). Working in terms of a Hamiltonian formalism
through the use of appropriate canonical transforma-
tions, Bohm and Pines obtained a (quantum-mechanical)
collective representation of the electron gas as a set of
electrons, interacting through short-range screened
Coulomb potentials, plus an independent set of plasma
oscillations. At temperature T, the Hamiltonian for the
electron gas in the collective representation is given,
within the random-phase approximation (RPA), ' by

H =T,, +H, + V, , +N, h,
with

T, = g P,'/2m, ,

H )= g trtco (C C + —,'),
q (&q

ik.(X, —X )

(2tre /Bk )e
ig, l. (&q )

Is= — g (2tre /Qq )= —e'q, /tr .
q(&q )
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Here P, is the momentum of the electrons, C and C an-
nihilate and create plasmons with momentum fiq and en-

ergy fuu, q, is a wave-vector cutoff —kD', with
AD=(k~T/4mn, e )'c the Debye screening length for a
one-component plasma, ' and co is the frequency of plas-
ma oscillations defined by the well-known Bohm-Gross
dispersion relation '

co =co (1+ 23k,Dq—), q &q, (3)

with co~ = (4n n, e /m, )
' . The subsidiary condition on

the electronic wave function +,

g [~ /[m —(q P;/m, —Rq /2m, ) ]Ie '4=0,

q &q, (4)

guarantees that Maxwell's equations are satisfied. In (2),

T, represents the free-electron kinetic energy, 0, the
free plasmons, V, , a screened electron-electron interac-
tion, ' and 5 a constant negative-energy shift that results
from the long-range correlations between the electrons. "
The independence of the collective behavior (plasmons)
from the single-particle motion is certainly an approxi-
mation, because at nonzero temperature there is always
at least a slight probability of finding an electron of wave
vector k such that it is capable of absorbing a plasmon of
wave vector q with conservation of momentum and ener-

gy, producing a damping of the oscillations. This linear
Landau damping' is contained in the imaginary com-
ponent of the complex frequency 0 =co —iy . For a

Maxwellian electron distribution, '

l/2 3 I/2(q AD )

y /co =m' [co /q(2k&T/m, )'c ] e . (5)

Therefore, for those q such that qkD &&1, the damping is

negligible, and we can (in a good approximation) consider
the plasmon modes as independent degrees of freedom of
the system. An equivalent argument uses the fact that a
charged particle traveling through the plasma with veloc-
ity v can emit a real plasmon of momentum Aq and ener-

gy Acoq, with conservation of momentum and energy,
only if the condition co =q v is satisfied. ' Since there is
a maximum plasmon wave vector q„ there is a critical ve-

locity v, -~ A.D below which real plasmon emission can-
not occur. Thus, for the finite-temperature electron gas,
only the few electrons in the high-velocity tail of the
Maxwellian distribution will have enough velocity to ex-
cite plasmons. For this reason Bohm and Gross (BG)
neglected this contribution to obtain the dispersion rela-
tion (3). In doing this they neglected a small coupling be-
tween electrons and plasmons analogous to what we do
here in the context of Bohm-Pines (BP) theory.

Consider now a single proton of charge e immersed in
the electron gas and fixed at the origin. Its interaction
with the electron gas is given by the expression

—g (4ne /QK )e
&, K

which under BP transformation' gets transformed into'

i, K
K()q )

(4m.e /QK )e
i, K

E(&q )

(4me /QK )e

(4me /QK )(2ne cu /QA'q )'~2e 'g(q, p, , —K)p'+H.
i, K, q

q(&q )

K(&q, )

(4~e'/QK')(2me'co&/QA'q ) e 'g(q, P, ,
—K)p +H. .

i, K, q

q(&q )

E(&q )

(2ne %co /Qq )' (P t+C )+
q(&q )

where the ellipsis represents higher order terms, and
—

1

g(q, P„K)= co~— Aq Aq. K
m, 2m, m,

q P, Aq2
CO

'+
m, 2m,

In (7), H.c. stands for Hermitian conjugate, and, since
the "higher-order terms" are of the same order of magni-
tude as those neglected in deriving the Hamiltonian (1),

we do not consider them any further. The first term in (7)
represents a screened electron-proton interaction which
has the same form as the electron-electron interaction

V, , appearing in (2). ' ' Applying the subsidiary condi-
tion (4) to the second term in (7) yields

( K P, /m, fiK /2m, )—
QK [cgx —(K.P, /m, A'K /2m, )']-

K(&q )
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By our taking the thermal average of (9) and using the as-

sumption of isotropy of the E's, it is found' ' that (9)
tends to cancel the small oscillations contained in the first
term in (7) that occur for distances larger than A.D. Since
we are neglecting these oscillations in the present
work, ' ' then it is consistent to neglect the contribu-
tions coming from the second term in (7). Similarly, the
fourth term in (7) may be neglected when compared with
the third term; first, because the values of g (q, P, , —K) in

the region K &q, are very small compared with the
values of the same function in the region K )q, (as can
be easily verified); and second, because the subsidiary
condition (4) reduces the fourth term by a factor
-(K P;/m, &ox) «1 for K &q, . The last term in (7)

represents the absorption and emission of virtual
plasmons by the fixed proton leading, as shown in Ref. 4
[Eq. (6)], to a negative shift (6) of the energy. Therefore,
the total Hamiltonian for the electron gas plus the fixed

proton, in BP representation further transformed into
Fock space, is

A'„„=f',+a„+0,, +f&,.,+ V, „+(X,+I)a,
with

f', = g (fi lc /2m, )e i,ez,
k

fico»(C zC»+ —,
' ),

q((q )

(10)

(2»re /QE )e g+«e ir «eic eg,
k, k', K

K()q )

where we have neglected terms of order q for q (q, ;

these represent pure quantum effects and are very small
(less than 1% of co for n, —10' cm and ksT-I eV).
The Hamiltonian (10) has been already quoted without
any derivation in Ref. 4 [see Eqs. (2), (6), and (7), and re-
lated comments]. Several remarks concerning the
different terms in this Hamiltonian can be found there.
Here we only want to emphasize the fact that the pres-
ence of the extra proton is crucial for the existence of the
term V, ~, the electron-plasmon interaction with emis-

sion and absorption of single plasmons by electrons in the
field of the proton. Indeed, it is the proton-electron at-
traction which allows the incoming electron to increase

V, = — g (4ne /QK )e i,+«ei, ,
k, K

K()q )

i= g (4»re /QK )(2»re co»!Qfiq )

k, K, q

K ()q, )

q((q )

Xgqi, «(C'~qe i, q+«ei, +H. c. ) .

Here e& and e & annihilate and create electrons with

momentum haik and

g „«=(co»—fiq k/m, )
' —[co —(R/m, )q (k+K)]

(12)

its velocity until it exceeds the critical velocity U, men-
tioned before to emit a real plasmon. This interpretation
of the emission process is contained in the singularities of

Qvk, q(q
q [v„+iriK/m, ], q &q,

(13)
(14)

where vi, = haik/—m, is interpreted as the random (classical)
velocity of the electrons in the plasma, and RK/m,
represents the increase in velocity of the electrons pro-
duced by the short-range (K )q, ) attractive interaction
with the proton. The first singularity is the previously
mentioned condition for real-plasmon emission which,
for the electron gas, will be satisfied only by the few elec-
trons in the high-velocity tail of the Maxwellian distribu-
tion; therefore, we neglect it. On the contrary, the
second singularity cannot be neglected because the sum
on E appearing in V, ~

ensures that for any vk there is al-

ways a K such that the condition (14) is satisfied. Thus
even a slow electron in the field of the proton can in-
crease its velocity to emit a real plasmon.

III. BPFT HAMILTONIAN

Another change of representation is useful to separate
explicitly the free-electron states from the bound-electron
states. In fact, in the new representation, all the difterent
reaction channels of the system will be displayed explicit-
ly as separate terms in the Hamiltonian. The required
canonical transformation, which is a particular case (fixed
proton) of the general Fock-Tani transformation, ' is
effected by a unitary operator 0 given by'

U=e' "", P=g(Ãe„—a', ~,), (15)

&i, i,
= g P„(k)P;,(k') .

V

(18)

Insertion of (17) into (12) yields after some lengthy alge-

A
where A, , and A are the (Fermi) annihilation and
creation operators for electrons bound in (here perturbed)
hydrogen orbitals centered on the proton at the origin:

3,= gP„(k) i„A„=(A „) (16)
k

The index v stands for (n, l, m) (and the spin z component
s, which will be suppressed here); P,(k) is the (perturbed)
hydrogen momentum wave function, the Fourier trans-
form of the perturbed spatial wave function P„(x). The
new bound-state Fermi annihilation and creation opera-
tors a, and a introduced by this transformation an-

ticommute with the original (plane-wave) electron opera-
tors ei, and e i, (although the ei, and A „do not anticom-
mute) and they commute with the plasmon operators C
and C' . The canonical transformation effected by (15) is

'ei, U = ei, —y ~i, , i, eg + y 4,(k)&„,
k' V

where 6& z is the bound-state kernel
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H(e~a) = g e z(k l v(e~a)lv)&„,
k, v

H(a~e) = [H(a~e)]

Hp, = g e q (k'l v~, lk)eq,
k', k

where

(pl V, lv)= fP,*(x)H(x)(t„(x)d x,
(k l V(e~a) lv) =F,(k) —g F,, (k')bk z,

k'

(20)

(21)

(k'lvp, li)= g ( 4ne IQK )5k—, &+K
K()q )

bra the Bohm-Pines Fock-Tani representation of the
Hamiltonian for a Axed proton immersed in an electron
gas. It has the structure'

H =(N, +1)b,+H ~+ T, +H, +H, +H(a~e)

+H ( e ~a }+H ( pl a ~e ) +H ( e~pl a ) +H ( pl e~e )

+H (e~pl e)+H (pl a~a)+H (a~pl a)

+ V, , +H(ea~ee)+H(ee~ea)+H„+ . (19)

In (19), 6, H ~, and T, are the same terms as those before
the transformation (17), except that the physical interpre-
tation of T, is different now in that the e& and e & opera-
tors refer only to unbound electrons. The diagrammatic
representation of T, is shown in Fig. 1. Incoming lines
approach from the right and stand for annihilation opera-
tors on the right in the corresponding term in the Hamil-
tonian; outgoing lines leave toward the left and stand for
creation operators on the left in the same term. '

H, is a screened single-atom Hamiltonian, H(e~a}
and H(a~e) the Hamiltonians for ionization and recom-
bination processes, and 8, an effective interaction be-
tween the proton and the free electrons modified by the
presence of bound-electron states:

H, = g a „(pl V, lv)&, ,

Coulomb field of the proton, and

F (k)= P,(k)+ g ( 4—~e IQK )P„(k+K) .
Ak
2m K()q )

(23)

H(x)(t, (x)=e,,((„(x), F„(k)=e,(t„(k), (24)

where P„(k}is the Fourier transform of the energy eigen-

The diagrams corresponding to these transitions are
given in Fig. 2. The dashed lines stand for the fixed pro-
ton and the double lines for the electrons bound to it. In-
teraction Hamiltonians analogous to (20) have been ob-
tained previously by Girardeau' for a more general sys-
tem consisting of many electrons, protons, and atoms
(e.g. , a partially ionized atomic hydrogen plasma). How-
ever, in that work there was no attempt to study the
long-range correlations between the particles, so that
screening and plasma oscillations did not appear, these
effects being concealed in the long range of the Coulomb
force between the "bare particles" of the system. Screen-
ing for the electron-proton pair in our case is a conse-
quence of the fact that we are not only considering the
"bare electron-proton pair" but also the contributions
(within the RPA) coming from all the electrons that com-
pose the rest of the system. This RPA is approximately
equivalent to the sum of the ring diagrams for the finite-
temperature electron gas in many-body theory, ' which is
the sum of an infinite series of divergent terms (because of
the infinite range of the Coulomb force) that give rise to
screening. Therefore, our formulas are more suitable to
direct application than those in the above-mentioned
work, especially for high-density plasmas where the
medium strongly perturbs the reactions. If the P„'s are
chosen to be energy eigenstates of the screened Hamil-
tonian H(x) with energy e„, then with (22) and (23) we
have

—g F„(k')((},*, (k) —g F„*(k)y„(k')

+ g bk „gF„(k")p„(k'),
k lt

y

with t'ai &bi

$2+2
H(x}= + g ( 4vre !QK )e'x"—

K {&q, )

(22)

the Hamiltonian of a single electron in the screened

le) {d&

FIG. 1. Diagram representing the electron kinetic energy T„.

FIG. 2. Diagrams for (a) single-atom Hamiltonian H„(b)
H (e~a), (c) H (a~e), and (d) H~, . Dashed lines stand for the
fixed proton and double lines for hydrogen atoms.
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FIG. 3. Representation of plasmonic-recombination and
plasmonic-ionization Hamiltonians. Wavy lines represent
plasmons.

FIG. 4. Diagrams for free-free electron transitions in the
field of the proton by plasmon emission and plasmon absorp-
tion.

state P„(x). Thus (21) gets reduced to

(pl V, lv) =e,,5„„,

(k l V(e~a) lv) =0,

(k
l v& & lk) = g ( 4we /QK )5k'

K(&q )

with

( vq l V( pl a+—e ) l k )
(25)

(4me /Q, K )(2ne a) /QA'q~)'~2
E()q )

X g king'(k —q+&)

where the orthonormality of the bound states P,(x) [or
P,(k)] has been used. The first equation in (25) tells us

that the state v propagates without decaying into other
atomic states p. If there were external fields, then the P's
satisfying (24) would not be eigenstates of the total Ham-
iltonian (external field included), and the nondiagonal
matrix elements would not vanish. The second equality is
again a consequence (together with the first equality) of
the stability of the single-atom screened energy eigen-
states in the absence of external perturbations, so that the
breaking of the atom into its components does not occur
in these circumstances. In the last equality, the first term
at the right is the screened Coulomb interaction between
the proton and the electrons, whereas the second term is
the portion of the spectral representation of the Hamil-
tonian H(x) associated with all of its bound states.
Therefore, (k'l V~, lk) should not have any bound state,
while it should be equivalent to the screened Coulomb
potential when acting on a continuum (unbound) energy
eigenstate.

The next six terms in the Hamiltonian (19), which con-
tain a plasmon operator in the initial or in the final state,
arise as a consequence of applying the canonical transfor-
mation (17) to f',

i in (12). The interaction terms
H (pl a~e} and H (e~pl a) given by

X ~k', kk, k', K0:(k' —q+K) (27)
k'

and with diagrammatic representations displayed in Fig.
3, are responsible for the mechanism of plasmonic recom-
bination (to highly excited states of hydrogen) and for the
inverse ionization process, as reported in Ref. 4. In (27)
the sum on K together with the function gq k z character-
ize the plasmon emission while the momentum wave
functions P„(k) characterize the final bound electron. In
lowest-order approximation, the wave functions P,(k)
can be taken to be eigenstates of the screened Coulomb
potential, satisfying Eq. (24). As already mentioned in
Ref. 4, with this choice one neglects the imaginary part of
the atomic self-energy, i.e., the finite lifetime of the per-
turbed atomic state. The subtraction term involving the
bound-state kernel 6& & orthogonalizes the k dependence
of the matrix element to the bound electron subspace to
take into account the fact that e& annihilates an initially
unbound electron. The Hamiltonian H (pl ee) de-
scribes free-free electron transitions in the field of the
fixed proton with plasmon emission, and H(e~pl e) the
corresponding transition with absorption of a plasmon.
The diagrams for these processes are shown in Fig. 4, and
the explicit expressions are

H(plebe) = g e k C q(k'q I V(plebe) lk)ek,

H(pl +—ae)= g a C (vql V(pla~e)lk)ek,
k, q, v

q((q )

H(e~pl a) =[H (pl a~e)]
(26)

k, k', q

q(&q )

H (e~pl e) =[H(pl e~e)]

with

(2&)

(k'ql V(plebe)lk }= g (4me IQK )(2me co IQAq )'
K(oq )

X gq k K[5k k+K+q (6k k+K q+5k k K+q)]+ g 4q k Kkk k +K q6k k
k"

(29)
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It should be emphasized that this mode of (plasmon)
emission is different than the one induced by the few elec-
trons in the high-velocity tail of the Maxwellian distribu-
tion (related to Landau damping) and which we have
neglected within the BG approximation. Indeed, in (29)
even very slow electrons in the attractive field of the pro-
ton can start to speed up until they reach the critical ve-

locity for plasmon emission. The presence of bound elec-
trons modifies the matrix elements for free-free electron
transitions of the proton because of the fact that the free
electrons have wave functions orthogonal to the bound
states. These modifications are represented by the last
three (orthogonalization) terms in (29). Other atomic
processes are bound-bound transitions with emission and
absorption of plasmons represented by H (pl a~a) and
H ( a ~pl a ), respectively:

H (a~pl e), where

H(pie~a) = g e kC q(kq ~ V(pie~a)~v)a

H (a~pl e) = [H (pl e~a)]

with

(kq ) V(pl e~a)
~
v)

(32)

H(pla~ a)= g &„Cq(vq~V(pla~a)~p)a„,
q, v, p

q(&q }

(4m'e IQK )(2ne co lAfiq~)'~2
K( q, )

H(a~pl a) =[H(pl a~a)]
(30) X gq, k-q —K, rciI' (k)

with

—g b,„„,gq „,+q „KP„(k')
k'

(33)

(vq ( V(pl a~a) (p)

(4ne IQK )(2menqIMiq ')
k, K

K()q }

Relations (32) represent spontaneous breaking of the
atom into a plasmon and a free electron (plus the fixed
proton), and the inverse process of plasmon-induced
recombination, whose diagrams appear in Fig. 6. Within
the BG approximation and considering the single-atom
energy eigenstates (24), we have that the terms with large
parentheses in the matrix elements (33) reduce to

&&kqk KP,*(k—q+&)4„(k), (31)
gq, —K, )c (t,,(k) —g Q„(k')b, i, i, , =0 (34)

and with diagrams shown in Fig. 5. As in the case of
free-bound and free-free transitions induced by the
plasmon field, the matrix elements (31) contain the func-
tion gq k K, whose singularities have been interpreted as a
manifestation of the collective excitation of a plasmon,
represented in this case by the operator Cq in (30). The
last two terms in the Hamiltonian (19) containing
plasmon operators are described by H(pie~a) and

in a way analogous to the second equation in (25). Again,
the situation is that in the absence of external perturba-
tions, the atom is stable so that the matrix elements (33)
vanish.

The other terms in the Hamiltonian (19) arise as a
consequence of applying (17) to the short-range (screened
Coulomb) electron-electron interaction V, , Their expli-

FIG. 5. Diagrammatic representation of bound-bound transi-
tions of the atom induced by emission and absorption of
plasmons.

FIG. 6. Diagrammatic representation of H (pl e~a) and
H(a~pl e).
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cit expressions are

2 Af At A A
V, , = g (2' /QK )e z+xe z. Kez, ek,

k, k', K

K()q )

H (ee+ ea)—= (47re /QK )iP,(k)e g+Ke g K. ekd„, ,
k„k', I(., v

K()q )

(35)
H(ea~ee) =[H(ee~ea))

H(ea~ea)=—

with

k, k', p, v, K
K(&q )

(4ne /AK )P,"(k' K.)—P„(k')

A At f A
X(e g+Kl P„eg —e g+K& P„eg),

A f Ar„=—eq —g bg qeg, P), =(&g)
k'

(36)

and with diagrams given in Fig. 7. We have expressed
the interaction Hamiltonians (35) in terms of the orthogo-

A fnalized plane-wave operators ez and e z (Ref. 20) to keep
the expressions compact, although it is straightforward to
express them in terms of the free plane-wave operators ek
and e z by use of relation (36). The term V, , gives the
short-range (K & q, ) electron-electron collisions in the
field of the proton. The effect of the bound states on this
reaction is apparent from the fact that the electrons are
described by plane waves orthogonalized to the bound
states, the electrons being free before and after the in-
teraction with no possible binding to the proton. The
binding of one of the electrons after the interaction is de-
scribed by H(ea+ ee), which —represents the process of
three-body (two electrons plus the fixed proton) hydrogen
recombination. The inverse process of collisional ioniza-
tion is described by H(ee~ea). Finally, electron-atom
scattering and the electron exchange between a free elec-
tron and the bound electron are given as the first and
second terms of H(ea+ ea) in (35). A—s was the case with
some other terms in the Hamiltonian (19) [see Eqs.
(20)—(23) and related comments], there exists unscreened
analogs of the interaction Hamiltonians (35). As men-

tioned before, here we take into account, through BP
theory, the effects of the medium on the reactions. One
of these effects is the (static) screening of the field of the
particles which shorten the range of effective interactions
to distances of the order of A,D. This fact is made explicit
by the constraint K )q, in the sum of K in (35), with

q, -A,D'. Although dynamical screening of tightly bound
states is very small and overestimated by static (Debye)
screening, we are concerned in this paper primarily with
loosely bound states for which static screening is a good
first approximation.

All the contributions to (19) have been described. The
omitted terms (within the RPA) are those containing
more than one bound electron in the initial and/or final
state. As an example of the application of the representa-
tion, we calculate in Sec. IV the plasmonic recombination
cross sections (in Born approximation) to the highly ex-
cited and perturbed levels of hydrogen. Explicit evalua-
tions are made for n, =10' cm, k&T=0.5 eV, and
(qA, D) =0.1. This mechanism was recently proposed,
and more recently an evaluation of the transition rates
for Al at metallic densities was carried out. ' Plasmonic
recombination is energetically allowed because the
plasmon energies are larger or of the same order of mag-
nitude as the binding energies of the highly excited and
perturbed states of hydrogen. In a similar way it is found
that plasmon energies also match energy differences be-
tween highly excited states of hydrogen, so that bound-
bound transitions induced by the collective field are also
energetically allowed. Examples of this situation are the
transitions 8s~7g and 8p —+7f (Ref. 22) for ksT-0. 5

eV, n, —10' cm, and (qA.D) -0.1. For free-free emis-
sion, and because of the continuum of energies for the ini-
tial and final states, the only requirement for the process
to occur is that the electron in the field of the proton be
able to reach the critical velocity v, for real-plasmon
emission. In semiclassical terms this requirement is met
by incoming electrons with a sufficiently small impact pa-
rameter (see Appendix A).

IV. PLASMON-MEDIATED RECOMBINATION

A rough estimate of the order of magnitude of the
plasmonic recombination cross section can be obtained
with the help of the expression

17[(g~ )3/2/(k T)9/2]a2 (37)

(c)

which is derived in Appendix A based on semiclassical
arguments, and where the energies should be given in eV.
For n, =10' cm and k&T=0. 5 eV, cr„-3ao.

The quantum-mechanical differential cross section
o(8, $) and the transition rate Ware related by

0(0,$)= W/4, (38)

&e)

FIG. 7. Representation for (a) short-range electron-electron
collisions in the field of the proton, (b) collisional ionization, (c)
three-body hydrogen recombination, (d) electron-atom scatter-
ing, and (e) electron-exchange reaction.

where 4 is the flux of incoming particles. For electrons
with momentum Ak,

4, =v„/B=Ak/Qm, , (39)

where 0 is the volume of the system. For a plasma in
thermal equilibrium, the transition rate W(vq/k) for an
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electron with momentum Ak being captured by a fixed
proton, into the state v with emission of a plasmon of
momentum iraq, is given by

Z

with

~(vq/k}=(2~/&}I(vqlTlk)l'fkgqpq(Eq }, (40)

fk =n, (2irfi /m, ks T) exp( fi k—/2mks T),

g = I/[exp(%co /ksT) 1]—,
p (E )=[II/(2ir)']q [d(lip), )/d ]

=(II/8ir )(q/3fipi~AD), .

(41)

X

p ~(
I

x I

and with (vql Tlk) the T matrix for the recombination
transition. In (41), f& is the electron distribution func-
tion nearly Maxwellian for the values of density and tem-
peratures we are considering here, g is the plasmon
(Bose-Einstein) distribution, much larger than unity in
this case, " and p (Eq ) is the final-state density of
plasmons. In leading order, the T matrix (vql Tl k }

reduces to the Hamiltonian matrix element
(vql V(pla~e)lk) given by (27), which can be rewritten
as

( vq I V(pl a ~e ) I
k )

FIG. 8. Spatial arrangement of vectors K, q, and x for the
evaluation of the integral sq(x).

where e is a unit vector in the plasmon direction, and P
in front of the integral means we take the principal
value. The singularity at e K=(m, /A'q)ip is isolated
to one dimension by use of cylindrical coordinates with z
axis parallel to e as shown in Fig. 8. Complex integra-
tion allows us, in Appendix B, to reduce (45) to

2'ale coq

fLAq

' 1/2

~qkv Q ~qkx~k', k (42) Alee
s (x)=+ i Kp

A'q

eP~q +I(m /fiq)CO IZI

e
Aq

where

'"f d xP+(x)ei(k q) xs (x—), (43)
I, (p, lzl ) +—iIi(p, zl ) (46)

with

4me

C

Aq K
CO N

m e

where the upper (lower) sign is valid for z = 0 (z (0). In
(46), Kp(x) is the modified Bessel function of zeroth or-
der, and I, and I2 are given by

u Jp(m, pc@ u/Rq) —(m, /riq)~ z)uI, (p, lzl)= du e
0 u +1

In (44) we have neglected the term ))iq k/m, compared
with piq (BG approximation}. For k&T-0. 5 eV and

n,, —10'8 cm, the error is less than 5% in the worst
case that occurs when q-q, -kD', and k and q are
parallel. The first term in (42) represents the Born ap-
proximation for the T-matrix elements, and the second
term arises as a consequence of orthogonalizing the k
dependence of the matrix elements to the bound-electron
subspace. Since in the representation developed in Sec.
III the effective interaction between the particles is so
greatly reduced, we expect the Born approximation, to
which we shall restrict the present calculations, to be a
good first approximation.

To evaluate s (x) we note that for K &q,. the term in-
side the square bracket in (44) vanishes in the BG approx-
irnation, and so the constraint K )q, in the summation
can be dropped. Thus, in the continuum limit

[g» ~(fl, /8ir ) f d K],
sK x e -K

s {x)=—,P d'K— (I /Aq)co —e K

(45)

(47)Jp™pM u /Rq) —(~ /Rqk&
Ii(p, Izl ) = du e

0 u +1

These integrals cannot be solved in closed form for
arbitrary values of Io and z. However, when

FIG. 9. Spatial arrangement of vectors q, x, and k for the
evaluation of S &,
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(m, /Aq)a)~ ~z~ &&1, the main contribution to the integrals
arise from the range u ((1,making it possible to expand
the factor (u +1) ' in terms of a series of powers of u

and to solve the integrals analytically. In the course of
solving S i, „we shall find that (m, /A'q)cu ~z~ is indeed
much larger than one, but for the moment we choose to
keep I, and I2 in integral form.

S k is evaluated in spherical coordinates with q along
the z axis as shown in Fig. 9. Then q x=qr cosO' and
k x =kr cosy =kr [cosg cosg'+sing sing' cos()t) —

st ') ].
The wave function )t)„(x) with v=(nlm ) is

u„,(r)
P„(x)= Ci

'
Pi (cosg')e ™'

1/2 (4&)

Cm— 21+1 (I —m)!
4' (I + m)!

where the functions u„ i(r) are taken to be the solutions
of the radial Schrodinger equation for the Debye-Hiickel
potential. The function s (x) is a function of p and z;
therefore, with p = r sinO' and z = r cosO', we have
s (x)=s (r, g'). Thus

/p d ( ) d ( gI )
j ) ic ( osi) —q)r gosi)'

( 8& )pm( g ) dy&
—I [mp' —kr smesme' sos( 0 0'))—

qkv I rru„I r cos e s r,
&

cos (49)

Doing the change of variables x =r/ao (ao the Bohr radius) and y =cosg', defining 5, —=kao sing, 52 ——(k cosg —q)ao,
and using the integral representation of the Bessel function of order m, we obtain

3/2

S &,,=, i™e ' ~Ci dx xu„ i(x)f dy s (x,y)P) (y)J (5ix&1—y )e (50)

We note that the argument of the Bessel function is an even function of y, and that the associated Legendre polynomials
Pi"'(y) satisfy the relation Pi (

—y)=( —1)™Pi(y). The other two terms in (50) can also be written as sums of odd
and/or even functions of y. With all this we can change the range of the y integration to [0,1]. Replacing (46) and (47)
into (50) and changing the range of the y integration yields

with

2 3/2 1/2
4rrm, e ao i'"e

4~ (I +m)!

Z'1" +Z2" +Z',", m +1 even,
X i(Z" +Z'"+Z "), m+I odd, (51)

Z, ' = f dxxu„i(x) f dyPi (y)J (5,x(l —y )' )Ko(b, x(1 —y )' )X '

0

—sink xy

coskq xy
(52)

Z2' = f dx xu„ i(x)f dyP) (y)J (5ix(1 —
y )' )X '

5
' f du e

u +1

(') ~ 1
u'J„(b, ,x (1 —y')'~'u )

Z3' = f dxxu„i(x) f dyP) (y)J (5,x(1—y')'")X .
5 f "du e

(53}

(54)

where the density-independent quantity b =(mao') /
A'q) & 0.5 for ki) T & 0.5 eV. For highly excited states, the
function u„ i(x) will have a large amplitude at large
values of x. For example, for kD —100a0 we see from
Fig. 10 that the amplitude of u„o(x) is large for values of

i). 15 '

x )&1. The same is true for u8, . Therefore, as already
mentioned before, the main contribution to the last in-

tegrals in Z2" and Z3" will come from a region u «1.
Doing the expansion

(u +1) '= g ( —1)'u '
&=0

0.08 '

0 ~ ~ 0 ~ ~

uJD(h„x(1 —y')' u) g „y„f du e
0 u +1

= g (
—1)'

z
+' P„+,(y), (55)

(2s + 1)!

, =0 (6 x) '+

r/a

FIG. 10. Eigenfunction ugp(r)=rRgp(r) for A. D
= ~ (solid

line) and A, D
= 100ap (dotted line).

u Jo(b, x(1—y-')' u } g „y„f du e
0 u'+1

(2s +2)!= g (
—1)'

~, +', P„+,(y) .
()5, x) ' (56)
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Because b, x )) I and 1P((y)1 ~ 1 for the range 0 ~y ~ 1,
then we keep only the first term in the series (55) and (56),
an approximation which will be verified later by explicit

( ) (
(J

)

calculations. Thus the integrals Z,' and Z," can be
rewritten in the approximated form

20

Z2' =b' —f dx ' f dyP( (y)J,„(6(x(1—y )' -')y
o (a x) o

sin62xy
X ' —COS52Xy

157I
0-

0
w

l00

L
200

( ) „u„((x)
Z,"=—a ' dx

(b, x)
q

X f dyP( (y)J (5tx(1 —y )' )(3y' —1)

cos62xy
X '

Sin 52xy
(58)

Therefore, with (51) and (52) and (57) and (58), S&k,, is

given in terms of three two-dimensional integrals, which
can be solved numerically without many complications.

The differential cross section, in Born approximation,
for plasmonic recombination is with (40), (41), and (51)

2 D ao (21+1)(l—m)!
3 (kao)(qAD) (&+m)'

I Zt +Z2+ Z31 fk g la 0 . (59)

Taking n, =10' cm, kit T =0.5 eV, and (qkD) =0.1,
we have for all the levels with m =0

(T(Born}(g p)= ' (21+1)1Zt+Z2+Z31
ao

—A'k /2m k~TXe ' ao, (60)

with k fixed by %col and c.„l through the conservation of
the energy. The radial wave functions u„((x}appearing
in the integrals ZJ (j = 1,2, 3 ), and the corresponding
eigenenergies c.„& were obtained numerically by integra-
tion of the Schrodinger equation for the screened
Coulomb (Debye-Hiickel) potential. The analytic solu-
tions for the (unscreened) Coulomb potential were used to
check the program. The results agree up to four decimal
places. The eigenenergies were also compared with the
results of Rogers, Graboske, and Harwood and Roussel
and O' Connell which represent the most complete refer-
ences in this problem. Our results for XD =100ao agree
well with those of Rogers, Graboske, and Harwood, ex-
cept for the bound states 9i and 9k, with energies
3.3X 10 and 2.0X 10 Ry, respectively, not explicitly
reported in their Table II, but implicitly included
through their Table III. This situation had been previ-
ously reported by Roussel and O' Connell, who obtained
for these states the same energies. The two-dimensional
integrals Z were solved by semiopen trapezoidal rou-
tines (for the x integrals) and by X points Gauss-
Legendre routines (for the y integrals) where X was
varied from 10 to 64 with the results differing by less than

FIG. 11. Functions f„o(0} (solid line} and f»(0) (dashed

line).

1%.The results for the differential cross sections are

(7 (too"" '( g }= 5. 34f8o ( g )a o,
(7' '""'( g ) =4 26f ( g )a '

}=0.67f„,(g)a,',
(T(BornI(g} 1 69f (g)a2

(61)

I.2,

0.8 4

CO

0 g ~

IOO

e(deg }
200

FIG. 12. Functions f,o(0) (solid line) and f~((0} (dashed
line).

with the functions f„((g) displayed in Figs. 11 and 12.
Io Born approximation it is possible to evaluate the

matrix elements (42) without neglecting the term
Rq k/m, compared with (o( as was done in (44).3' The
difference between the two results for the case of transi-
tions into the state Ss is 2.3%, which is lower than our es-
timated maximum error of 5%. The contributions from
the integral Z3 were found to be less than 1% of those
from Z, +Z2 for all the cases, something which might be
understood from the fact that there is an extra factor
(b, x) ' in the integrand of Z, as compared with Z2, to-
gether with the fact that the important contribution to
the x integral comes from the range 6 x —10 . The in-

tegrals Z2 and Z& arising from the second terms in the
expansions (55) and (56) gave values that were four
orders-of-magnitude smaller than Z2 and Z&. Again this
is to be expected because the integrands of Z2 and Z3
contain extra factors (6~x) as compared with those of
Z2 and Z3, respectively. Therefore, the approximations
(57) and (58) to Z, and Z, are totally justified.
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Comparing (61) with the semiclassical result, we see
that there is a fair agreement between the semiclassical
estimate and the formal quantum-mechanical calcula-
tions of plasmonic recombination cross sections, especial-
ly for small angles where f„&(0)-1. To get an idea of the
importance of the collective mechanism, we would have
to compare it with the usual radiative and three-body
modes. For the highly excited and perturbed (screened)
levels of hydrogen such calculations have not been done
for the values of density and temperature assumed here.
However, from Bethe and Salpeter we can obtain a
rough estimate for radiative recombination cross sections
(in vacuum) into the levels n =8,9 of hydrogen. The
cross sections for the radiative mode are found to be at
least five orders-of-magnitude smaller than those of the
plasmonic mode. The effect of the smallness of the
plasmon phase space (as compared with the full photon
phase space) due to the constraint q & q, will tend to be
canceled by the effect of screening on the radiative cross
sections, ' but a final conclusion must await more de-
tailed calculations. On the other hand, it is known that
the excitation of plasmons makes a contribution to the
stopping power of the plasma that is comparable to that
of the short-range (two-body) charged-particle interac-
tions. This suggests that three-body recombination and
the plasmonic mode may be of comparable importance.
Recent calculations ' show this to be the case at metallic
densities. In connection with this we should remark that
since screening leads to a finite and small number of
bound states, and since plasmonic recombination to low-

lying levels of hydrogen are not energetically allowed as
real processes, the region of the energy-level spectrum in
which the plasmonic mode might be important is very
narrow (8&n &9, for n, =10' cm and k&T=0. 5

eV). ' In this region our use of static rather than dynam-
ic screening should be a good first approximation.

V. CONCLUSION

The Bohm-Pines Fock-Tani representation for a fixed
proton immersed in a finite-temperature electron gas was
obtained. The major feature of the representation can be
summarized as follows.

(i) The particles in the system interact individually
through short-range screened Coulomb potentials.
Screening, which tends to reduce the cross sections for
hydrogenic transitions of the highest-bound states with
respect to their vacuum values, is contained in all the ma-
trix elements for the different channels in the Hamiltoni-
an.

(ii) Long-range interactions are accounted for by the
emission or absorption of plasmons. This leads to
dynamical effects caused by the medium as a whole. In
some sense the medium behaves as if it were a third parti-
cle that (by participating dynamically) allows several nov-
el processes to occur.

(iii) Different scattering and reactions channels are
easily identified by looking for the terms in the Hamil-
tonian involving the right combination of creation and
annihilation operators for the reacting particles.

The first two features characterize the BP collective

A~ E
2am,, e ln(q, U /co )

(Al)

Taking q, —(&4vrkD) ', so that t.he condition q, kD & 1 is

representation of the system, and the last one appears as
a result of describing atoms by elementary operators in
Fock-Tani representation. ' ' An important conse-
quence of the above is that we explicitly exhibit a series of
collective mechanisms for atomic processes in plasmas
such as bound-bound and free-free transitions of elec-
trons in the field of the proton with emission or absorp-
tion of plasmons. Another consequence of the represen-
tation, which was already mentioned in Ref. 4, is that the
negative shifts 6 of the energy due to absorption and
emission of virtual plasmons by the particles of the sys-
tem give rise to an effective potential for the hydrogen
atom in the electron gas, which is very similar to the
Ecker-Weizel potential used to interpret the plasma shifts
of the discrete and continuous spectra of hydrogen.

As an application of the representation, we evaluated
cross sections (in Born approximation) for plasmon-
mediated recombination into the highly excited and per-
turbed levels of hydrogen for plasma conditions such as
those occurring in stellar atmospheres. The plasmonic
cross sections appear to be much larger than those for the
radiative mechanism and might be even comparable or
larger than those for the three-body mode as Rasolt and
Perrot ' recently found for Al at metallic densities and
temperatures of the order of 100 eV. These results could
have strong implications for the basic theory of radiative
equilibrium of partially ionized plasmas and also in pre-
dicting and diagnosing the state of high-density laborato-
ry systems.

In a future work, we hope to include orthogonalization
corrections and higher-order approximations for the ma-
trix elements of plasmon-mediated recombination of hy-
drogen for temperatures and densities ranging from
those of stellar atmospheres (n, —10"—10' cm
ksT-0. 5 —5 eV) up to those relevant to recombination
x-ray laser experiments (n, —10 ' cm, k Ts-100 eV)
and laser inertial confinement fusion (ICF) (n, —10
10 cm, ks T is several keV).
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APPENDIX A: ESTIMATE FOR o„
The mean free path for plasmon emission by an elec-

tron with velocity U and energy E is
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satisfied, yields for the critical velocity

u, -tu /q, —(4mks T/m, )'
C

and for the critical kinetic energy

E =—mU 27Tkg T .

(A2)
—p /2mk& T

e

f P Pmax
—p /2mk~T

~ e 'dp
all p

1 2
3 m.

count the plasmon degeneracy. They are given by

3/2

(A8)

From the semiclassical picture of Fig. 13, for the recom-
bination process the probability of plasmon emission by
the electron in the field of the proton is

Ace /k~ T kg T
g,~=(e ' ' —1) '=, for ksT»Atu, .

%COP
(A9)

P-na/A, , (A4)

with a the impact parameter of the incoming electron,
which must be small enough for a low- (zero) velocity
electron to be accelerated to E, at perihelion:

Replacing (Al) —(A4) (with v =v, and E =E, ) and (A6)
into (A7), and since 1n(q, u, /cv )-1, we obtain, with (A8)
and (A9), expression (37).

E„,=O=E, —e /a,2 (A5)
APPENDIX B: THE INTEGRAL sl(x)

so that With (45) and Fig. 8, we have e~ K =K„
K x=E, cos(P„—P„)+E,Z, and

a =e /E, = — a0,
mk, T '' (A6)

with E„, the total energy, % the Rydberg constant, and

a0 the Bohr radius. For k~T 0.5 eV and n, ~10'
cm, then a/A, D &0.086 «1, so that the use of the un-

screened Coulomb potential in (A5) is justified for the
present purposes. The semiclassical cross section O.„is

s (x)=
q

E~Jo(pE, )fX dr( j
0 Qj +gZ

(BI)

iK Z
oc K,e

P dE,
rtcuq — ' (m, /Aq )cuq E, —

2
+sc + flow g pl

(A7)
where Jo(u) is the zeroth-order Bessel function. Defining
t =pE&, p =pK„a =(mlftq)ptoq, and b =z/p, and in-

terchanging the order of the integrals in (Bl) yields
Here f~,„ is the fraction of the total number of electrons
with momentum less than p,„, where p,„-(m,Acu )'

is the maximum momentum allowed by conservation of
energy for the plasmon emission, and g l is the plasmonic
distribution function which is introduced to take into ac-

2

s~(x)= f dt tJO(t) P f dp
&PRO 0 — p —Q p 2+ t 2

(B2)

The integral inside the large parentheses is solved using
complex integration. In the complex co plane, we close
the contour in the upper half plane for b & 0, and in the
lower half plane for b & 0, as shown in Fig. 14. The poles
are at co=+it and co=a. The contribution from the path
Ctt (CR ) to the integral from b )0 (b &0) vanishes as
tv exp( —~b~lmtv) when the limit ~cu~ ~ is taken.

I b+0

L
t=Reau

L
L

FIG. 13. Semiclassical picture for plasmonic recombination.
FIG. 14. Integration contours for the evaluation of the

principal-value integral in (82).
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Therefore, Cauchy's theorem and the calculus of residues
give

tJ, (t)
s (x)=+ i f dt (ae*'~ ~' —ae ~ ~'+ite ~ ~')

p~q o t +Q'

(83)

P 4s

e.„,2

+)
Ab O y R

t= Rem
I

b~O «C
RA

I rn~

b)O q (p)
CRB

~" ' t=Re~

b+0
where the upper (lower) sign is valid for b ~0 (b &0).
Setting t =au, using the integral representation of the
modified Bessel function of zeroth-order Ko(xy), FIG. 15. Integration contours for the evaluation of I'„~) and

I& 'in Appendix B.

Jo(xu )
Ko(xy}=f du

0 +P
(84)

The analytic continuation of the modified Bessel func-
tions K„(z) and I,(z),

and replacing explicitly the expressions for a and b, we
obtain after some algebra relation (46). It is possible to
obtain the same result without changing the order of the
integrals in (Bl), although the calculations are more la-
borious. To show it we use (84) to rewrite (81) as I,(ze™~) = e™"I,(z), (811)

K,(ze™~) =e ™"K,,(z) —in. sin( m vm )csc(vm. )I„(z),

(810)

s~(x) = 2 I~ +I~ if b )0,
I„'+Ia' if b &0, (85)

with m an integer, and the relation Io(z) =Jo(iz) with z a
complex number, allows us to write

Iz +I& =i7rae'~ 'Ko(a)

with
tJ, (t)

i tr —dt (a +it)e
t +a

(812)

—ibt

dt Ko(t) if b((0,
o t+a

ibt
I' '=P dt K (t) if b(+0,

o t —a
(87)

and with a and b as in (82). Using the complex-co plane
(see Fig. 15), Cauchy's theorem, and the calculus of resi-
dues, one has'

I„+I = i trae —'~ "~'K (a)

tJ, (t)
+i tr f dt (a it)e-

t +a
(813)

Ko(co)-(m /2co)' e (1—1/co+ ); (814)

Therefore, (85), (812), and (813) together with (84) give
(83), which is the result we were trying to obtain. It
remains to show that the contributions from the large
semicircular paths in Fig. 15 vanish. For large ~co~,

Ko(co) behaves as

I„' '= —f dt Ko(+it) if b~(0,
o a+it

Its '=+i traKO(a)e +—' '
(88} therefore, for b )0, and with R „=

~
co ~, we have with

(814)
lb'

lim dao Ko co
R~ oo C~ CO+a

+ f dt Ko(+it) if b~(0 .
o a+it (89) +RE

lim maxR„2 toe ' Ko( co )

cu —a
=0 . (815)

The contributions of C~+', Cz ', Cz+', and Cz ' to I„,
B

I~, Iz, and I~, respectively, will be shown to vanish.

Similar arguments give the same results for C&+', Cz
B

and C'+'.
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