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The annihilation process of pointlike topological defects moving irreversibly is studied as a model
for the growth of order in quenched systems with O(N) symmetry in D =N dimensions. On the
basis of the time-dependent Ginzburg-Landau model (TDGL), the defect picture is shown to be val-
id in any dimensions. We consider defects with pairwise power-type interaction. By a mean-field
assumption we find that the total number N (1) of defects decreases as N (¢) ¢~ 27+ 1) where B is
the exponent indicating the separation dependence of the force. We show analytically that this
power law is valid for B <D <2p and confirm the analysis by the simulation of molecular dynamics
of defects for various B’s in two dimensions. The distribution of defect density is well represented
by the binomial distribution function in this parameter region. To keep the distribution uniform is
a key of exhibiting mean-field behavior. The TDGL model realizes the mean-field power law only

in two dimensions.

I. INTRODUCTION

During recent years, much effort has been devoted to
understanding the ordering process of systems quenched
below critical temperature. ! It is now thought that to-
pological defects are formed in the early stage after a
quench, and then the macroscopic ordering can be
characterized by the degrees of freedom of the defects.?
In such problems, systems with discrete degeneracies
have been well studied. The twofold-degenerate (Ising-
type) system is known to be described as kink or interface
dynamics, the kinetic theories*® of which have been suc-
cessfully developed and confirmed by both numerical®
and experimental”® studies. In the last several years, n-
fold-degenerate systems such as the Potts model’ and
Clock model'®!! have been investigated. On the other
hand, continuously degenerate systems (CDS) have been
less explored. This is partly due to the experimental
difficulty of the order growing too fast to observe in many
CDS, such as magnetic systems and superfluid “He. Re-
cently, an example of CDS has been observed in two-
dimensional (2D) nematic liquid crystals.'> One can ex-
pect that some liquid crystals can be objects of experi-
mental study. Further, the production and the annihila-
tion processes of defects in the early universe, namely,
monopoles, cosmic strings, etc., is an interesting related
problem. '3

Let us consider nonconserved order parameters with
O(N) symmetry in D-dimensional space often called mod-
el A.'* If N>D +1 systems have no defects, which is
analogous to the large-N limit case, the ordering process
can be described by an integrodifferential equation for a
single variable. It has been studied numerically and
theoretically by Mazenko and Zannetti,’> and by
Pasquale and Tartaglia.!® They have found the structure
function in a form scaled by a characteristic length /(t)
increasing as [(¢) < t*, p=1. Another system investigat-
ed so far is the 3D O(2) system, where vortex strings play
a crucial role. The statistical theory for the strings'’ has
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been studied by extensive use of the Ohta-Jasnow-
Kawasaki method originally applied to interface dynam-
ics. The correlation function of the string density exhib-
its a scaling behavior with p=1. Performing the com-
puter simulation of coupled-cell dynamics for a system
with the same symmetry, Nishimori and Nukii'® have ob-
served that random vortex strings are formed in the early
stage and then shrink. They found that the length of the
strings decreases as ¢t %709 which is slightly slower
than the theoretical prediction. The difference may arise
from some simplification in the theory, such as the
neglecting of the recombinations of strings and the self-
induction approximation for their interaction, and the
finite-size effect in the simulation. These results rather
confirm the validity of the defect scenario for the order-
ing process.

In the present paper, we consider the D =N cases,
where the topological defects are point singularities. '’
We have already reported a preliminary numerical result
for the molecular dynamics of point defects correspond-
ing to 2D O(2) model.?® That simulation has shown that
the number of the defects N (¢) decreases as ¢ ~!, and the
mean separations of pairs of identically signed defects
d , and of ones of oppositely signed defects d , _ both
increase as t!/2. Because N (t)xd ;2 is satisfied, we con-
cluded that the defects with an identical sign are distri-
buted randomly during the growth process. We found
also that the ratio d , , /d , _ has taken a constant value
1.61+0.1 after a transient stage, different significantly
from the initial value d, ,/d,_=1. We add in the
present paper some detailed information of this growth
process. A suggestion for high-dimensional systems
D =3 is also given.

In Sec. II, we show that the defect scenario can be gen-
erally adopted for the ordering process in the model A of
N =D. We give a simple derivation of the interacting
force between a pair of defects first derived by Ostlund.?!
Next, we show that the rate equation for the density of
defects leads to a power-growth law under a scaling as-
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sumption. Finally, we discuss its applicability in a pa-
rameter space (D,f3), where f3 is the exponent indicating
that the force between defects depends on the separation
ras r P We suggest that the mean-field exponent is not
valid for the ordering in D = 3.

In Sec. III, we report some simulation results for the
defect kinetics. The growth exponent p=1 is shown
more accurately than in the previous work. We obtain
not only the averaged values N(¢), d, ., d, _, but also
the distribution function of the density of defects. Exam-
ining cases of 571, we test the theoretical prediction for
the applicability of the mean-field argument in Sec. II.

II. MEAN-FIELD REGION AND GROWTH EXPONENT

A. Model

The model A for N-component order parameter ¥ is
given by

Y __ OF
ot Y/
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(1)

Consider the growth process after the system is brought
into the ordered state ¥ >0 from the disordered state
¥ <0. In the early stage after a quench the amplitude
|| =W grows as driven mainly by the local force generat-
ed by the second and third terms in F[¢]. The neglect of
the nonlocal term ¢|V|? yields

the solution of which is given by

) Ae!
)= N
(1+(A4 /% )]

where 4 =W(0)/[1—%(0)*/¥,]'" and V¥, =(6y /g)'"?
is the equilibrium value of W. Thus the growth time of ¥
is given by ¥ !, In the stage t ~y ~!, because of the ini-
tial fluctuation, all possible orientations of the ordering
will be represented among domains. The domain size is
estimated as /,~(c /y)!/?, because the phase of ¥ obeys a
diffusion-type equation with the diffusion constant c.
This means that topological defects distributed with the
mean separation /,.2> Thus the late stage can be de-
scribed by the motion of defects.

The interaction of point defects has been calculated by
Ostlund for a typical configuration.?! Here we will
derive the energy by a dimensional consideration. A sim-
ple configuration of a defect of winding number +1 is
written by

Ur) =W, (r—r1y)/|r—r

outside the core region. Because the gradient of ¥(r) at
[r—ry| ~R is of order of V.,/R, the energy is estimated
as Fy;~(c/2) [|V|*dPR ~c WL LP ™2, where L denotes
the linear size of the system. When two defects of wind-
ing numbers +1 and — 1 are approached each other by

d,, Y(r) is distorted in an area of d,dP !, where d,
denotes the vertical length of the distortion area. Gen-
erally, for finite d, and d, F, is given by Fd~d”df*3.
This means that the distortion area can lower the energy
by collapsing into a singular line in high dimensions
D =3. Therefore, we conclude that F,~d, for D >3.
For D=2, d, is of the same order of d, and then we have
Fd~d§§); that is, F; depends logarithmically on d,. Ac-
cordingly, we have the energy as

(2)0,-ajlr,~~—rj| for D>3, ()
i,j

F=
> o;0;ln[r;—r,| for D=2, (3)
{iyj)

where o; is an integer denoting the winding number of a
defect i, and ¥, ;) represent the sum over all distinct
pairs of defects. The logarithmic interaction in 2D is well
established in the study of the phase transition and the
critical dynamics. For high-dimensional cases, it is not
necessarily clear whether the superposition of pair in-
teractions is valid. Equation (3), however, would be a
first approximation for the present problems. We then
write the equation of motion for defects as

dr;  QJF i ¢

(4)

1

where we introduce an exponent 3 at a matter of conveni-
ence later. In the present model, =1 for D=2, and
B=0 for D 23. Since two oppositely signed defects are
attracted to each other and move irreversibly, they van-
ish eventually when they get close to the core radius .

B. Mean-field exponent

On the basis of the assumption that the ordering pro-
cess can be scaled by a single length /(¢), we estimate the
growth exponent. If defects with 0 =+1 and —1 of the
same number N (¢) are distributed randomly and homo-
geneously, one can write the rate equation as

dN (1)
dt

-=—al(t)N(t),

where the coefficient «a(¢) denotes the inverse of the mean
collision time of pairs with opposite signs. Putting the
characteristic pair separation by /(¢), we obtain with use
of Eq. (4)

alt)~1 ()~ B+ (5)

Since N ~'/P~](t), we then have

dN (1)

dt
which yields

_N(t)lD*B+l)/D

N(t)Nt—D/(B+1)’ I(I)NII/(B+“ . (6)

For the real defect systems, this immediately gives
N(t)~t~! for D=2 (B=1) and N(t)~t ? for D=3
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(B=0). The dimensional argument for Eq. (4) also gives
the relation (6).

C. Estimation of scaling region

If pair annihilations occur locally, the local excesses of
defects or antidefects are left, so that the defects and the
antidefects are segregated from each other as the annihi-
lation proceeds.?> On the other hand, the long-range in-
teraction has a role of making the distribution uniform.
When both effects are balanced, the mean-field scaling
will be satisfied. We investigate the region of that scal-
ing. Introducing the density field p.(r) for defects of
o =11, we can write a force on a defect at r:

r—r
ir_rl’B+l 4

f=+ [dPrép(r) (7

where 8p(r)=p_ (r)—p_(r). To know the diffusing
property, consider the variance of the force
ot =(|f12)= [ dPr dPr"(8p(r)8p(r"))

(r—r')-(r—r")
|r___r1|B+l‘r_ru p+1 - (8)

We assume that the distribution at time ¢ is Gaussian
similar to the initial distribution:

r_ )2
(8p(r')8p(r")) = Ay exp _l_r_l'_II , 9

21(1)?

where
Ay={(8p*) =2p3[1—{p(r)p_(r)) /p}],
pe={(p% ) =(p%) .

Because {p,p_)/p} should be independent of time for
the self-similar growth, we have

Ag~N(@)?~1(1)"?P . (10)

Substituting Eq. (9) into Eq. (8), we then execute the in-
tegration over a region £<|r'|<L, £<|r’|<L, and
EZ|r'—r"| <L, and estimate the dominant term for
£—0and L — oo, where £ and L are the core radius and
the linear size of the system, respectively. Since the cal-
culation is straightforward but somewhat complicated,
we present the detail in the Appendix. The result is

L?7281(t)"? for D>28,

o7~ {1()7* for <D <28,
E*P=P1()7? for D<B.

(11a)
(11b)
(11c)

We specify the regions in the parameter space (D,3) cor-
responding to Egs. (11a)-(11c) by (a)-(c), respectively.
The excess density is diffused by this force fluctuation.
The diffusion length is given by nD(t)~ofa(t)h1. From
Eq. (5) we have n,(¢)~I[(¢) for the region (b), which
means that the diffusion length is proportional to the
mean separation of nearest-neighbor pairs. Hence the
self-similar growth will be observed in this region. One
should note also that o, does not depend on the upper or
lower sizes only in (b). This implies that the assumption

of self-similarity in growth cannot be justified in the out-
side regions (a) and (c).

On the border lines, o, depends logarithmically on L
or £, where the initial condition may be essentially
relevant to whether the mean-field scaling is satisfied.
For a case where the defects are randomly distributed in
the initial state, which is the most plausible initial condi-
tion for quenched systems, the sign of equality should be
attached as seen in Egs. (11a)-(11c). This is because on
D =2, the long-range force can make the distribution
appropriate to the self-similar growth whereas on the
short-range boundary D =p3, defects will be annihilated
locally more rapidly than the distribution is rearranged.

III. SIMULATION OF DEFECT-ANTIDEFECT
ANNIHILATION

We perform a simulation for the system described by
Eq. (4). In the present simulation the winding number o,
of a defect is constrained to be o, = +1 or —1, which we
call here defect and antidefect, respectively. Although
higher-order defects are formed in the early stage of evo-
lution, they are annihilated faster than unit defects be-
cause (i) the interaction is proportional to the winding
number and (ii) the collision of a pair with different wind-
ing numbers yields a lower-order defect. Therefore, the
late stage of evolution is described by a system of unit de-
fects.

If all the pair interactions are taken into account, the
calculation time increases proportional to N3, where N,
denotes the initial defect number. To simulate a system
as large as possible, we truncate the interaction range as
follows. Dividing the system into square cells {(i,j)}
with the same size, we sum the force on a defect in (i, )
cell from the ones in the neighbor cells
{(ixk,j£D|0<k,I<i.}. This is reasonable because the
forces from far defects would be canceled out on account
of the randomness of the distribution.?* This approxima-
tion reduces the calculation time to the order N,. We as-
sume the periodic boundary condition. %

First, we randomly distribute defects and antidefects of
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FIG. 1. (a) The number of defects, (b) the mean separations
d. . and d. _ of nearest-neighbor pairs of defect-defect and
defect-antidefect, and (c) d, . /d , _ vs time for the B=1 case.
The solid lines represent the power law expected by the mean-
field argument (6). Time is indicated in units of At.
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FIG. 2. Distribution function of the number of defects in square cells for the 8=1 case. The dashed lines indicate the binominal

distributions determined by the total number and the cell size.

the same number N in a square of unit area. Then we
update the defect positions by the Euler difference
method with a unit step Az. On the evolving process, we
annihilate the pairs of defect-antidefect coming within
the core radius £. The cell number (i, ) for each defect is
reassigned step by step, and the cell size is changed so
that the average number of defects per cell, n_, is kept to
be constant. Note that the whole procedure needs calcu-
lation time proportional to N at most. The following re-
sults have been obtained under the parameter values
i,=3and n,=2.

Figure 1 shows a result for 3=1: (a) the number of de-
fect N(¢) and (b) the mean separations of nearest-
neighbor defect-defect and defect-antidefect pairs defined
by
N(1)

2 min[ {| r‘] )

d, ()= 1<jSND}T,
+_

N(

where (+) and (—) denote defect and antidefect, respec-

tively, and the i =j term is excepted for d, _. Twenty
dys
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FIG. 3. (a) The number of defects, and (b) the mean separa-

tions of nearest-neighbor pairs d,, and d,_, and (c)
d,,/d,_ vs time for the 3=0.5 case. The solid line has a
slope of —3% given by Eq. (6). The dashed line in (c) is the
asymptotic ratio of the =1 case.

runs with different initial distributions were done for
averaging. After a transient stage, the system exhibits
Nt~ d,, «d,_ <t which agrees with the mean-
field argument (6). The averaged value of d , , /d , _ for
over 20 runs is found to be initially 0.99+0.02 as expect-
ed from random distributions, while in the scaling region
the ratio becomes d | | /d , _ = 1.6 [Fig. 1(c)]. This value
is characteristic of the correlation between defects and
antidefects.

Next we count the number of defects m in 9 cells cen-
tered at (i, j) for each (i,j)’s and compute its relative fre-
quency F(m) representing the density distribution func-
tion. The result is shown in Fig. 2, which is in good
agreement with the binomial distribution function

Fg(m)={N!/[m(N—m)]}{m)™(1—{m)/N)¥"
(12)

where (m ) denotes the averaged m. This indicates that
the spatial distribution of defects continues to be random
during the evolution as well as the initial state.

Figures 3 and 4 show respective results for 8=0.5 and
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FIG. 4. (a) The number of defects, and (b) the mean separa-
tions of nearest-neighbor pairs d,, and d._, and (c)
dy . /d, _ vstime for the =2 case. The solid line has a slope
of — 2 given by Eq. (6).
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FIG. 5. Evolutions of the distribution of defects for (a)
p=0.5, (b) B=1, and (c) B=2 from the same initial
configuration. Defects and antidefects are shown by circles and
triangles, respectively, and the time T is indicated in units of Az.
(a) At =0.2X107%, (b) Ar =0.1X10"%, and (c) At =0.2X 107",

2. For the B=2 case, we obtained N (¢) <t ~ %% This ex-
ponent is less than the theoretical value. In the 8=0.5
case, the density decreases faster than the expected one.
These deviations are understood qualitatively as follows.
Figure 5 shows the three cases started from a single dis-
tribution, where one can see that (i) the mean separations
of defect-antidefect decrease with the range of force and
(ii) the excess regions of defects or antidefects appear
solely in the case of B=2.% These circumstances agree
with the theoretical expectation in Sec. IIC. Figure 6
represents the density fluctuation. The short-range case

TIME=0 MEAN=17.01 TIME=60

ST.DEV.=4.08

915

(B=2) exhibits the broadening of F(m) corresponding to
the segregation in Fig. 5(c). On the other hand, in the
long-range case (8=0.5), F(m) narrows because the
long-range force flattens the density fluctuation.

IV. DISCUSSION

In this paper we have considered the irreversible pair-
annihilation process of point defects as a model for the
late-stage ordering in quenched systems. By considering
the fluctuation of force causing effectively the diffusion of
excess density of defects or antidefects, we have shown
that the temporal behavior can be classified into three re-
gions in the space of relevant parameters (D,). In the
region (b) of B <D <28, the diffusion length in the mean
collision time grows in proportion to the mean separation
of defects, where the mean-field behavior is exhibited.
The system in the region (a) of long-range force
(B < D /2) exhibits anomalous diffusion, where the densi-
ty fluctuation flattens the initial random distribution. In
the region (c) of short-range force (D <p), the local
excesses of defect or antidefect density leave without
diffusion. From this consideration we have concluded
that the (2,2) system obeys the mean-field power law, but
the high-dimensional system does not. Thus the dimen-
sional (mean-field) argument for ordering dynamics is not
generally valid, although it is successful in deriving the
power laws in scalar order-parameter systems.

The simulation leaves two main questions. First, what
function of time describes the change of the defect densi-
ty in the regions (a) and (c) (the non-mean-field exponent
have not been derived theoretically), and second, do sys-
tems on the border (3=D) between (b) and (c) exhibit the
mean-field behavior if the initial distribution is appropri-
ate? These are interesting kinetic problems even if apart
from ordering dynamics. From the equation of motion
given in Sec. IIB, we concluded that the high-
dimensional cases D >3 belong to the region (a), where
the growth process would be faster than the mean-field
power law. Although we have performed a simulation
for (D,B)=(3,0), the system is numerically unstable be-
cause of extremely long-range force, so that a definite re-
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FIG. 6. Distribution function of the number of defects in some temporal stages for (a) 3=0.5 and (b) B=2. The dashed lines are

the binominal distribution functions defined by Eq. (12).
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sult has not been obtained. The numerical unstableness
corresponds to the argument that o , diverges as L — .

We left a further basic question as to whether the in-
teraction energy can be decomposed to pairwise terms.
Nonlinearity arising from high dimensionality makes it
complicated. Nevertheless, it would be meaningful to de-
scribe the ordering process in three dimensions by the ki-
netics of topological defects, because (i) recently defects
were found numerically to play a crucial role in the phase
transition of the 3D Heisenberg model,?® and (ii) the or-
dering in the 2D system is successfully described by the
model of defects with pairwise interaction as well as the
phase transition, though the interaction of topological ex-
citations intrinsically cannot be superposed even in low-
dimensional systems. No information is available at
present on the nonlinearity modifies the pairwise expres-
sion of energy.
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APPENDIX

We derive Eqgs. (11a)-(11c) from Egs. (8)-(10). Substi-
tuting (9) into (8) and transforming variables r’ and r’’ as
r—r'=R,and r""—r'=R,, we have

P =2L" "3 a,L gy ip—1,

n=0
P§=2§D—E_l 2 angzngD“B~2n ’
n=0

© LD*ZB—Zn D —B+2n—1

Q:

where we define
g5=f;dx xdexp[—x2/21(1)] .

The asymptotic behavior for L — « and £—0 is estimat-
ed as

1(£)®*! for 6> —1,

8o leot1 forp<—1,

o2=4, [ dR,dR,dQ,dQ,RP'RP™!

exp[ —R3/21(t)*]R,(R, —R, cosH)
RETY(R}+R2—2R R, cosf)PH1/2 "’

where R, =|R,|, Q; is a solid angle, and 6 the angle be-
tween R, and R,. Integration with respect to {1, and Q,
and the partial integration for R, yield

R AoK]
0' = e—_—
7 2(1—-B)N3—RB)
where

P =x?7F72 [dR R?~2u(R,x)exp[ —R?/21 (1],

[P,—P,—(D—B—1)Q],

0= [ [dR,dR,R? P3RD "2(R,R,)
Xexp[ —R3/21(1)?],
u(x,p)=(x +y)PF—|x —y]’~ B,

and K, =27P/2/T(D/2) is the element of solid angle.
Using the power-series expansion for u (x,y),

2n+1
u(x,y)=2x3"P > a, % for x >y +¢&,
n=0
where
2n
[1 3—B—m)
_ m=0
T T

and exchanging x and y for x <y —¢§, and performing the
integration, we obtain

B+4n —1

2 e i — g — i |
2 | 2,801 T D _pion — 18282 (D —2B—2n)ND —Bt2n —1)52P 26
n=0

[

which yields

[AOLD_ZBl(t)D for D>283,
of~ (Al (*P 7P for B<D <28,
A E*P P for D<B.

(A1)

Substituting Eq. (10) into Eq. (A1), we obtain Egs.
(11a)-(11c).
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