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A cell dynamical system model, which realistically incorporates diffusion, is developed to study
various aspects of late-stage crystal growth. The algorithm is computationally efficient, allowing the
development of complex spatial structures to be studied, and is motivated by renormalization group
considerations. We establish the existence of an asymptotic dense branching morphology and relate
it to diffusion-limited aggregation. Our findings indicate that the radius of a dense-branching struc-
ture grows linearly with time, despite being diffusion controlled, in agreement with experimental ob-
servations of the growth of spherulites. A clear morphological transition from kinetic-effect-
dominated growth to surface-tension-dominated growth is observed, marked by a difference in the
way growth velocity scales with undercooling. We also study the evolution of interfacial instability
and find scaling behavior for the interface power spectra, indicating the nonlinear selection of a
unique length scale, insensitive to short length-scale fluctuations.

1. INTRODUCTION

Dendritic crystal growth! is well-known example of
pattern formation in nonequilibrium systems, where sim-
ple mechanisms may generate complex structures due to
intrinsic dynamic instabilities. It is closely related to oth-
er pattern formation phenomena such as viscous finger-
ing, electrochemical deposition,® as well as diffusion-
limited aggregation (DLA).* Much effort has been devot-
ed to the understanding of the dynamics of both pattern
formation and selection in these systems.

The canonical example is crystal growth from a super-
cooled melt, where the primary physical process is
diffusion of the latent heat released while the liquid
solidifies. The motion of the liquid-solid interface is con-
trolled by the rate of this latent heat diffusion. The re-
sulting crystal usually takes the form of a branching den-
dritic structure with appropriate crystallographic sym-
metry. The frequent branching events and thus the com-
plex interface geometry, result from the diffusive instabil-
ity attributed to Mullins and Sekerka.’ Close inspection
of the single-crystal dendritic structure reveals that it is
composed of nearly parabolic tips decorated by side-
branches.

Recent studies of dendritic growth! have focused on
steady-state properties, and in particular, on understand-
ing the dynamical selection of the parabolic needle crys-
tal and its stability. It is now believed that surface ten-
sion is a singular perturbation of the continuous family of
steady-state uniformly translating crystals (needle crys-
tals) that exist in its absence. Furthermore, the crucial
role of crystalline anisotrophy has been elucidated;® den-
drites only form if there is anisotropy present in the
growth process. With both surface tension and anisotro-
py present, a unique, stable needle crystal is selected.’

Despite the progress made in steady-state problems,
the interesting regime of time-dependent nonlinear
growth has never been fully explored, in most part due to
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the numerical difficulty in solving the formidable moving
boundary problem. Important questions remain to be
answered by time-dependent nonlinear studies. One of
the questions concerns the origin of sidebranching:
whether sidebranches are caused by noise or some deter-
ministic mechanisms. Although it is generally believed
that the selected needle crystal is linearly stable,® with
continuous noise being responsible for the side-
branches,” ' it is conceivable that a satisfactory under-
standing of sidebranching may come only from nonlinear
analysis. Furthermore, the validity and effects of the
quasistatic approximation must be critically examined.
This approximation essentially replaces the diffusion
equation with Laplace’s equation; when this is done in
the laboratory frame, this amounts to taking the infinite
diffusion length limit. As we shall see, a finite diffusion
length is responsible for the selection of a constant length
scale of the growth structure in the late stage of growth,
whilst the quasistatic approximation may generate a
length scale that grows in time. Another question re-
gards the existence of the dense-branching morphology.!!

Ubiquitous as it is, dendritic growth along well-defined
crystallographic directions does not seem to be the only
mode of growth in solidification. It is frequently found
that a compact branching structure with stable radial en-
velope occurs, for example, in the melt growth of a wide
class of polymeric and other materials.'>!* Ben-Jacob
et al. referred to this structure as the dense-branching
morphology (DBM) and proposed that it is an alternative
mode for diffusion-controlled growth.'* They also re-
garded the radial fingering patterns in Hele-Shaw cells
and patterns in electrochemical depositions as examples
of this morphology.® However, it is not clear!! whether
or not the DBM, as identified by Ben-Jacob et al., truly
exists, whether or not it is only a transient to DLA struc-
ture, and whether or not it can be explained merely on
grounds of diffusion-controlled growth.

In this paper, we investigate the time-dependent
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crystal-growth process using an effective cell dynamical
scheme (CDS) model.!> Lacking a feasible analytic
method, this model provides a useful alternative to solv-
ing the partial differential equations. Our CDS model is
not obtained from a discretization of partial differential
equations; although it does reduce to them in the contin-
uum limit, it contains the essential physics of crystal
growth. We hypothesize that there exist universal scaling
phenomena in the crystal-growth process, which are ex-
hibited by a class of dynamical systems regardless of the
precise details of each system. In this sense, our model is,
we believe, in the same universality class as genuine crys-
tal growth; accordingly, we expect that qualitative
features and scaling results from our simulations should
be experimentally testable. The CDS method was first
proposed by Oono and Puri,!* and has been successfully
applied to the study of universal features of phase separa-
tion and fluid dynamics.'> 16

We concentrate on the late-stage morphological as-
pects of crystal growth. A detailed description of the
model is given in Sec. II. This model vividly simulates
the complete time-dependent crystal-growth process, re-
covering a variety of different growth morphologies ob-
servable in real experiments. In Sec. III, we exhibit a
morphological transition from a crystal growing along
the axial direction to one growing along the diagonal
direction, as the degree of undercooling is varied, as has
previously been reported in studies of the boundary-layer
model of solidification.!” In Secs. IV and V, we present
evidence showing that the asymptotic growth structure
under weak anisotropy is a DBM with fractal dimension
2, rather than a DLA-like structure. We thus identify
the DBM as another growth mode beside dendritic
growth, which accounts naturally for the widespread oc-
currence of spherulites.'*!* In particular, the radius R is
observed to depend linearly on time ¢; this scaling law has
often been interpreted as implying that spherulitic
growth is not a consequence of diffusion-controlled dy-
namics. Our simulation conclusively demonstrates that
R ~t can follow from diffusion-controlled growth, as sug-
gested earlier.!? Studies on the power spectra of the in-
terfacial instability in Sec. VI indicate the nonlinear selec-
tion of a unique length scale for the growing solid-liquid
interface. Qualitatively similar findings have been report-
ed in other studies of interfacial growth, which have not
been able to attain such late stages in the evolution of the
interface.!®! Finally, the implications of our simulations
on the origin of sidebranching are also discussed.

II. CELL DYNAMICAL SYSTEM MODEL
OF SOLIDIFICATION

The process of crystal growth from supercooled liquid
can be described by the continuum model:?°

d,u=DVu , 2.1)
li

v,=—DVu-n ? (2.2)

u,=A—dy(0)k—B(O), . 2.3)

Here u(x,7) is the dimensionless temperature field, D is

the diffusion constant, v, is the velocity of the interface
along normal n,u, is the temperature at the interface, A
is the dimensionless undercooling that acts as the driving
force for crystal growth, d,(8) is the anisotropic capillary
length, k the curvature of the interface, and B(6) is a ki-
netic coefficient. The angle 6 is the angle between n and
a crystallographic direction. Temperatures are expressed
as  dimensionless variables by the relation
u(x,t)=[T(x,1)=T,]/(L/C,), where L is latent heat
and C is the heat capacity of the liquid at constant pres-
sure. Boundary condition (2.3) is a modification of the
Gibbs-Thomson condition, in which the second term on
the right-hand side (rhs) accounts for the equilibrium sur-
face tension effect, while the term —pv, represents the
linear interfacial kinetics, reflecting the fact that a mov-
ing interface is slightly perturbed from local equilibrium.

In our lattice model, crystal growth occurs on two-
dimensional square lattices, easily extendable to a hexag-
onal lattice or to three-dimensions. Lattice sites are la-
beled i and assigned two variables: a continuous temper-
ature u;” and a binary-valued phase field ¢7 € {0,1} with n
denoting the discrete time. ¢,=1(0) if site i is solid
(liquid). The growth process corresponds to the updating
of space (u/,¢")—(u*!,¢7*!) according to the follow-
ing rules:?

(a) At time step n, all perimeter sites defined as liquid
sites (¢; =0) with at least one nearest solid neighbor are
identified. Crystallization occurs only on these perimeter
sites. Remelting from solid to liquid is forbidden.

(b) Determine if perimeter site i is to crystallize. The
condition for crystallization is

w, <A[1+8q(i,m)]+A [ 3

J Eneighbors

0,6,—6), (2.4

where j is summed over neighbors of /i with weights
w;=2 for nearest neighbors and ;=1 for next-nearest
neighbors; 1(i,n) is a random number uniformly distri-
buted in [—1,1] and 0=8<1 is the noise amplitude.
Condition (2.4), coupling the temperature field and phase
field together, corresponds to the Gibbs-Thomson bound-
ary condition (2.3). This can be recognized by noticing
that the term —(3; @;¢;, —6) approximates the local in-
terface curvature just as in the DLA simulations,?> where
interface curvature is calculated by counting the number
of solid particles in a box centered at the interface.
Hence, the parameter A plays the role of capillary length.

Our model is deterministic by construction, in contrast
to DLA-type simulations. However, randomness or noise
can be rather conveniently incorporated if desired, either
by choosing a random initial seed or by adding a stochas-
tic term to the undercooling; this is the purpose of the 7
term in equation (2.4). The latter mimics persistent noise
in real crystal-growth experiments.

(c) Let all perimeter sites that satisfy condition (2.4)
solidify simultaneously, and add latent heat /, to those
sites by increasing the local temperature:

ui~>u,~+la . (2.5)

(d) Finally the temperature field is relaxed through
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diffusion,
scheme:

according to an explicit finite difference

u,=u[+£((u)—ui), (2.6)
m

where D is the diffusion constant, m is an integer, and ( )
denotes an average over nearest neighbors (NN) and
next-nearest neighbors (NNN) in the same spirit as in
step (b):

(w)=13 u;+;

JENN

u; . (2.7)
JENNN

o

Here we consider the symmetric model so that the
diffusion constants in liquid and solid are identical. Phys-
ically, temperature field relaxation occurs more slowly
than the relaxation of the phase field, so (2.6) is repeated
m >1 times. The continuum limit (2.1) is recovered as
m >>1.

Note that the effect of crystalline anisotropy is inevit-
ably contained in (2.4) as a result of the underlying square
lattice and discreteness of the phase field. A more subtle
observation is the implicit presence of the nonequilibrium
effect of interfacial kinetics mentioned above. The non-
equilibrium Kkinetic effect,?® in essence, reflects the fact
that the interfacial attachments of the crystallizing atoms
or molecules occur within a finite characteristic time,
rather than instantaneously. Now observe the inequality
< in condition (2.4). It implies that a perimeter site may
be “‘under” cooled below the threshold temperature need-
ed for crystallization. This is equivalent to the statement
that a qualified perimeter site has to wait for a certain re-
laxation time before it can crystalize. Hence an effective
kinetic effect is present. Such a nonequilibrium kinetic
effect is, in general, more complicated than the
oversimplified linear form Bv, in equation (2.3). Unfor-
tunately, we have little quantitative control of either the
anisotropy strength or of the extent of kinetic effects, and
so we assume that these dependences are implicitly con-
tained in the undercooling A. This difficulty hinders
direct quantitative comparisons between simulations and
the steady-state analytic theory.! In fact, we do not ex-
pect agreement with analytic theory in general because of
the dependence of the anisotropy strength and the kinetic
coefficient on undercooling. This is clear in our model
and, presumably may also be true for experiments.

The parameters D, m, A, and /, merely determine the
length, time, and temperature scales of the simulation
and may be set to convenient values and kept fixed. The
undercooling A is the control parameter that we may ad-
just. For the sake of numerical efficiency, all arithmetic
operations are performed in integers rather than
floating-point numbers. Our algorithm is extremely fast
and well suited for massively parallel processors such as
the Connection Machine. The simulations reported here
were performed on VAX 780 and MicroVax computers,
typically taking of order 2 h, CPU to generate the cluster
of 85171 particles in Fig. 2(b).

III. MORPHOLOGICAL TRANSITIONS

We first simulate crystal growth from the center of a
square lattice of size as large as 1400X 1400 sites. By
varying the control parameters, the model generates a
wide variety of growth morphologies that have been ob-
served in real crystal-growth experiments, as shown in
Figs. 1 and 2. The evolution of the interface as well as
the temperature fields can be monitored over the com-
plete growth process to the very late stages. Growth ini-
tiates from a 5X5 seed with half of its sites randomly oc-
cupied. The initial temperature is zero everywher: ex-
cept on solid sites, where is has the value A. In Figs. 1
and 2 we show some typical crystal growth patterns. Fig-
ure 2 shows clusters grown under different undercooling,
with all the other parameters kept constant. Gray levels
in the picture reflect the temperature scale of the
diffusion field.

We have invariably observed that at relatively large
undercoolings A >0.125, the crystal patterns are dense
dendritic structures growing preferentially along the sym-
metry axes [Fig. 2(a)]. In contrast, for small undercool-
ings A <0.125, we observe a less frequently branching
dendrite, growing dominantly along diagonals, as illus-
trated in Figs. 2(c) and 2(d). There is an intermediate re-
gime of almost isotropic growth, shown in Fig. 2(b),
where the branching or tip-splitting events occur in a
seemingly random manner. This morphology will be
identified as the dense-branching morphology (DBM),*
to be discussed later.

This transition of growth direction can be readily com-
pared with observations of dendritic growth of NH,CI
crystals in an aqueous solution.’* There, a transition
from dendrites oriented along the {( 100) direction to den-
drites oriented along the {111) direction is found as the
degree of supersaturation is increased, accompanied by
an intermediate regime where nonstationary dendritic
tips split periodically. A transition in growth direction in
experiments on Hele-Shaw cells with a grid imposed on
one of the plates has also been reported.'’

In addition to the explicit demonstration of Fig. 2, the
morphological transition also manifests itself in the veloc-

FIG. 1. Dendritic crystal grown with the lattice model. Grey
levels represent temperature value of the diffusion field. Param-
eters are D =4.0, m =5, A=0.015,,=1, A=0.195, and 6=0.1.
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(c)

(d)

FIG. 2. The morphological transition from axial to diagonal growth. All crystals are grown at A=0.01, §=0.2, but with different
A. (a) A=0.15, the cluster has 85171 solid particles; (b) A=0.125, with 144522 particles; (c) A=0.1, 94072 particles; and (d)

A=0.05, 47 305 particles. The scale of picture (d) has been doubled.

ity plot as a function of undercooling. We define the
growth velocity v =dR /dt, where R is the rms radius of
the crystal aggregate. In all simulations, R shows linear
growth R ~1 at sufficiently late stages of the growth, after
an initial transient of R ~t!/? behavior, as shown in Fig.
3. This linear growth behavior is independent of the
amount of noise in the simulation, and is also robust to
variations of the crystalline anisotropy.

Figure 4 displays v as a function of undercooling A,
averaged over 15 clusters grown with random initial con-
ditions. At A~0.125, where the morphological transi-
tion occurs, there is an abrupt change of dependence of v
on A. The v(A) dependence is fitted with approximate
power laws in the inset of Fig. 3. We obtain v ~A>> at
large A and v ~A!? at small A. The change of velocity
scaling seems to be a common feature in several systems
exhibiting morphological transitions. In electrodeposi-
tion, it is observed!’ (see Fig. 4 of Ref. 17) that the inter-
facial growth velocity follows v ~ V3! at large voltage V,

changing to v ~ V%% at small voltages. Steeper changes,

even jumps in velocity scaling were reported in Chan
et al’s NH,CI crystal-growth experiments.?*

The morphological transition observed in crystal
growth and Hele-Shaw cells'”'* is due to the fact that
surface tension and kinetic anisotropies act in different
directions. At low driving force, the interface moves
slowly, relaxing through energetics considerations, which
favor a diagonal orientation so as to minimize the interfa-
cial free energy. At higher driving force, however, the in-
terfacial kinetics effect gradually dominates the growth in
axial direction. In recent studies of the boundary-layer
model of solidification, it is found that taking into ac-
count of the kinetic anisotropy, linear stable needle crys-
tals grow in different directions as the undercooling is
varied. There also exists a region of undercooling, where
needle crystals completely lost their stability, giving way
to the DBM.? These results are compatible with our ob-
servations here.
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FIG. 3. Rms radius of crystal aggregate as a function of time
for the crystal in Fig. 2(d). The two solid lines in the graph have
slopes 0.5 and 1.0.

IV. ASYMPTOTIC GROWTH MORPHOLOGY

In this section, we investigate the long-time properties
of growth and try to answer the question: what is the
asymptotic (#— o) growth structure in the absence of
crystalline anisotropy? Is it a ramified DLA-like struc-
ture or the DBM —a branching structure with stable cir-
cular envelope and radial symmetry? This question has
been addressed for the radial fingering patterns in Hele-
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FIG. 4. Growth velocity v vs A with A=0.01 and §=0.2. In-
set is the same data plotted with log v vs log A.

Shaw cells. Ben-Jacob et al. suggested'* that the finger-
ing pattern is DLA-like at early stages and eventually be-
comes a DBM. This issue remains controversial and is
the subject of discussion by several authors.!! The ex-
istence and origin of DBM are not well established. The
solidification system differs from a Hele-Shaw system in
that the governing equation is the diffusion equation rath-
er than Laplace’s equation. It is then natural to investi-
gate the effect of finite diffusion length (or conversely the
quasistatic approximation) on the asymptotic morpholo-
gy.
Scaling length and time by d,/A and d3/DA?, and the
temperature by A respectively, we cast the continuum
model (2.1) into the following form:

A-Qu /3t=Vu , (4.1)
v,=—Vu-n, (4.2)
u,=1—«, 4.3)

where we have neglected the kinetic term and considered
the ideal case of the isotropic one-sided model. We now
have a well-posed question regarding the asymptotic mor-
phology of Egs. (4.1)-(4.3), which can only depend on
one parameter, namely A. In addition, Egs. (4.1)-(4.3)
show a formal analogy to the Laplacian radial fingering
in Hele-Shaw cells under zero viscosity ratio and constant
driving force, if we take the A—0 limit.

The fractal dimension D, of a radial structure is

defined as N ~R D»’, where N is the number of solid parti-
cles within radius R. Figure 5 shows NR ~? versus R for
the final crystal aggregate in Fig. 2(a). The structure has
D;~2.0since NR ~2_constas R — .

-0.5 | 1
0] 2

I R
FIG. 5. Dependence of number of particles in the crystal, ¥,
on radius R. A=0.15, A=0.01, and §=0.2. The solid line has
a slope of —0.29 to guide the eye. NR ~>*—const as R — o im-

plies D,=2. For a DLA-like structure NR “2~R %% its plot
in the figure would follow the solid line as R — <.
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It is also instructive to consider a quantity that we
might call the differential fractal dimension, & f(R)‘ We
further regard 8,(R) as a slow-varying function of radius
R:

_ d(logN)
& (R)= J(logR) (4.4)

In Fig. 6, we plot 8,(R) for undercooling A=0.15,0.175.
Within statistical accuracy, we see that Sf increases
monotonically with R from a more or less DLA-like
value 1.7 to the asymptotic DBM value 6,=2. Once
8,(R) is independent of R over a large range of R,
genuine fractal dimension can then be associated with the
structure.

We have carried out simulations for A>0.12 on
1400 X 1400 lattices with the same consistent result. Un-
fortunately, data for A <0.1 are not sufficient to draw
definitive conclusions, hindered by both the enhanced an-
isotropy effect and the slow growth. We recall that in
our simulations, both anisotropy and kinetic effects are
present. Therefore, strictly speaking, we are not simulat-
ing the ideal system Egs. (4.1)-(4.3). The ideal DBM
with radial envelope can only exist in the absence of an-
isotropy. This condition seems to be roughly satisfied at
A~0.125, where the competition between kinetic and
surface tension anisotropies balances. The simulations
strongly support the DBM as the asymptotic morphology
of Eq. (4.3). Although it is conceivable that at very small
undercooling, D, could attain an asymptotic value other
than 2, our data indicate that such a scenario is rather
unlikely. We propose that for all nonzero A0, asymp-
totically D,=2; only when A—0, can the system be
thought of as the analogue of the Hele-Shaw system,
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FIG. 6. Fractal dimension 6, of the pattern varies with ra-
dius R under different undercoolings. Typical error bars are
shown on a few points.

where the DLA value D r~1.7 seems to be found. This
statement can be summarized by a static scaling hy-
pothesis for the cluster size:

N(R,A)=RPAf(R /6(A)=R"PAF(RA%),  (4.5)

where the function f satisfies f (x)~x Pora 4
x—+ow and f(0)=const. &£(A) is a characteristic
length scale at which the structure crosses over from
DLA to DBM. We assume that £&(A)~A "¢ at small A,
with ¢ being a positive exponent that can be estimated as
follows. For R >>&, N~R2A%%7PPtA’: the total latent
heat generated is NI,, causing the temperature to rise in
the area 7R 2. Thus we expect that NI, ~7R2-A, leading
t0 $=(2—Dppa )~ ' ~3.45. A scaling hypothesis of simi-
lar spirit was proposed for the Hele-Shaw flow by Lee,
Coniglio, and Stanley.'!

Another property that distinguishes the DBM from
DLA is that the DBM has an approximate radial en-
velope moving with constant velocity. This property (i.e.,
R ~t) was shown in Sec. III for all undercoolings.
Analogous to &, we also expect v to follow a power law
v~A% at small A, a being another positive exponent.
For comparison note that v ~A* for steady-state needle
crystals in two dimensions.”® However, for the DBM,
there is no reason a priori that guarantees that a=4. Our
data are not sufficient to accurately estimate a and ¢ due
to anisotropy effects. With anisotropy, instead of getting
a unique value for a, two values are obtained correspond-
ing to different morphologies. Accurate determination of
a and ¢ would be useful to understand the difference be-
tween steady-state growths and the late-stage nonlinear
growths.

V. SPHERULITIC CRYSTALLIZATION

In most diffusion-controlled crystal-growth systems,
one obtains dendritic single crystals with apparent crys-
talline symmetry. In certain systems, however, a more
complicated structure known as the spherulite is
found.!>”!* Spherulites are polycrystalline aggregates
composed of a radiating array of crystalline fibers,
branching successively at small, noncrystalline angles,
with secondary fibers oriented slightly but appreciably
different from the parent fibers. Random generation of
fibers then form a space-filling structure, which is more
or less radially symmetric.

Spherulites are encountered in many systems. They
are frequently found in igneous rocks and glassy minerals
grown from viscous and impure melts and in organic
compounds that exhibit cholesteric liquid-crystal phases.
Spherulitic growth is also the dominant morphology of
melt grown polymers. Many of these polymeric systems
also exhibit dendritic growth if the conditions for growth
are altered slightly.

Previous investigators have been intrigued by the
stable spherical envelope and the linear R ~¢ growth, but
have discriminated against explanations based on
diffusion-controlled growth,?” because it is taken for
granted that isotropic diffusion-controlled growth leads
inevitably to R ~t¢!”2. Furthermore, circular fronts
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would be destroyed by the Mullins-Sekerka instability,
giving rise to dendritic growth.

The existence of the DBM at weak anisotropy offers a
natural explanation for the spherulitic morphology. We
have shown that although the Mullins-Sekerka instability
renders the interface unstable to constant tip splitting at
short length scales, the finite diffusion length is responsi-
ble for the stabilization of the interface on longer length
scales, at late stages. Furthermore, R ~t follows unambi-
guously at late stages. The initial transient of R ~¢'/?
also finds its counterpart in spherulitic growth.?® The
crucial common feature in the systems exhibiting spheru-
litic growth is the large amount of disorder (due to im-
purities, chain entanglements in polymers, etc.) which
effectively destroys the local effect of crystalline anisotro-
py at the growing interface. This then leads to a destruc-
tion of the global crystallographic symmetry of the grow-
ing aggregate. We conclude that we have demonstrated
explicitly that diffusion-controlled growth does lead to
the qualitative and scaling features of spherulitic growth,
as suggested previously.'?

VI. INTERFACIAL STRUCTURE

Studies in the previous sections have focused on the
global aspect of the crystal-growth process. In this sec-
tion we analyze the dynamical evolution of interfacial in-
stabilities from short to large length scales, in a planar
geometry.

Simulations are performed in rectangular cells starting
from a horizontal substrate of linear dimension L with
periodic boundary condition imposed horizontally. The
initial interface profile is a linear superposition of
different Fourier modes with random complex
coefficients. The maximum height is normalized to ~ 10
lattice units. Figure 7 demonstrates a typical growth pat-
tern at A=0.165. Although we are using a different cell
geometry, qualitative results obtained in previous sec-
tions such as the linear growth rate and compact growth
structure are essentially unaltered.

Inspecting Fig. 7, we observe the development of inter-
facial instability from a short transient to a seemingly
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FIG. 7. Sample morphology of the growth from a planar in-
terface. A=0.1625, A=0.01, and §=0.2. Periodic boundary
conditions are used in the horizontal direction.

steady growth with a characteristic length scale. Inter-
face structures can be well probed quantitatively by
studying their power spectrum. In our case, we first elim-
inate overhangs of the interface by projecting it onto the
substrate, resulting in a projected interface 4 (x,t). The
power spectrum can then be calculated:

L 2

> h t)expligx;)| ,
=1

P(g0=—=| 6.1

L2
where g is the wave number.

Power spectra for A=0.165 from ¢ =500 through 1700
are presented in the inset of Fig. 8. Results are obtained
on a L =600 substrate, averaging over 20 independent
runs with random initial conditions. To check whether
or not the growth has indeed reached the steady state, we
further scale power spectra by the interface width
w(t)=1/L3E_ [h(x;,t)—h]?, where & is the average
of h over the substrate. After scaling, the power spectra
for different times collapse nicely onto a single curve, as
shown in Fig. 8.

Two features can be identified from the power spec-
trum P(q,?). The first is the selection of a unique length
scale from the continuum of perturbations with all possi-
ble wavelengths. This nonlinear selection mechanism, in-
sensitive to short-wavelength fluctuations or noise, is very
different from the dynamical selection principle in
steady-state problems. It operates in the late stage of the
growth so it cannot be understood within the linear sta-
bility analysis. The selected length scale I can be related
to the average wave number g of the pattern by /=1/3.
Here q(A)Z(fqP(q)dq/fP(q)dq), where g increases
monotonically with A. For the interface with power

®

[

q®Plg,t) /WAl t)

Wave-number q/mr

FIG. 8. Scaled power spectra P(gq,t) of the growing interface.
Different symbols represent times from =500 to 1700. The
unscaled data are shown in the inset.
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spectrum Fig. 7, we find §=0.11 or /~30 lattice units.
For comparison, the fastest growing mode in the
Mullins-Sekerka instability corresponds to a wavelength
less than 10 lattice units.

Another feature evident from Fig. 7 is that P(gq)~gq
for large g: the short-wavelength fluctuations have the
spectrum of random surfaces under thermal capillary
roughening. This result demonstrates that, in contrast to
the case of steady-state problems, where the short-
length-scale surface tension strongly affects the global
shape of the needle crystal by behaving as a singular per-
turbation, here the short-wavelength fluctuations are ir-
relevant to the selection of a large length scale I during
growth. Similar scaling behavior of the interface power
spectra has been observed and discussed by Harris
et al.'* in a spin Monte Carlo study as well as by Jasnow
et al.' in boundary-integral-type simulations. In the
latter case, however, in contrast to finding a constant
length scale as t— o as in Ref. 18 and in our simula-
tions, the authors observed the characteristic length scale
growing linearly in time. This result may be intrinsic to
the quasistatic approximation and their constant flux
boundary condition. In addition, in Ref. 19, the correla-
tions are along the interface, not in real space.

=2

VII. NOISE

The effect of noise is the central issue concerning the
origin of dendritic sidebranching. As discussed by Mar-
tin and Goldenfeld,'” there can be two mechanisms of
sidebranching: sidebranching from a deterministic insta-
bility or from selected noise amplification. The deter-
ministic instability in turn can be a nonlinear one,
presumably involving limit cycles, or can be a simple
linear instability. The noise induced sidebranching mech-
anism is commonly believed since the steady-state
theories' seems to predict linearly stable free dendrites.
A key distinction between the two scenarios is that the
latter requires persistent noise to generate the side-
branches, whilst the former does not. Experiments have
been performed toward this end but the results are not
conclusive.”’

In our deterministic simulations, we incorporate the
effect of noise either through a random initial seed or by
adding perturbations persistently. We find that sufficient
randomness in the initial condition is enough to generate
random sidebranching structures throughout the whole
growth process. Noise also seems to be unimportant to
the late-stage wavelength selection, as shown in the previ-
ous sections. In Fig. 9 we show a crystal grown without
noise under the same conditions as those for the crystal in
Fig. 2(b); one can observe that other than differences in
short-length-scale randomness, the large scale structure is
quite similar.

Thus our simulation suggests that, while the
amplification of noise is sufficient, it is not a necessary
condition for sidebranching. This conclusion is support-
ed by a recent stability analysis of the boundary-layer
model of the solidification where it is found that the com-
petition of surface tension and kinetic anisotropy is
sufficient to cause linear instability of the needle crystal;

thus inducing sidebranchings.?® The irrelevance of noise
to the selection of late-stage growth patterns is also
shown by other authors.'%!°

VIII. SUMMARY

To summarize, we have developed a deterministic lat-
tice model of crystal growth, which provides an efficient
way of studying the generic features of the solidification
process, fully treating the interface dynamics. In particu-
lar, we are able to investigate the complex structures that
evolve at late stages. We find a morphological transition
induces by the competition between surface and kinetics
anisotropies. Under weak anisotropy, the growth struc-
tures crossover from a fractal, DLA-like, pattern at early
times to the DBM, at long times.

Our study reveals that at long times, a dynamical selec-
tion principle, distinctly different from that in steady-
state problems, is operating here. It is important to note
the insensitivity of the nonlinear selection to short-
length-scale fluctuations. This is indeed confirmed in our
simulations. Noise is present either because we choose a
random initial seed, or explicitly by adding randomness
at each time step. We find that our results as described in
the previous sections, do not depend on which of the two
mechanisms is operative. We believe that in the complex
crystal-growth processes, both the nonlinear and the
steady-state selection principles are present. The first
determines the global structure, while the latter selects
the local needle crystal shapes.

Our findings also are relevant to the question of the
origin of sidebranching. We find that sufficient random-
ness at the initial stage is enough to induce continuous
sidebranching, due to nonlocal diffusion fields; a per-
sistent noise is not necessary. Hence it seems that side-
branching can be attributed to the competition between
the two types of anisotropy. This scenario is supported
by a recent study of the boundary-layer model.”> The
competition of the two anisotropies can destroy the linear
stability of needle crystals, thus inducing sidebranching.
More work is needed in this direction before a clear pic-
ture emerges. Our preliminary conclusion on this matter

FIG. 9. Crystal grown without noise (§=0). Other parame-
ters are identical to those of Fig. 2(b).
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is that persistent noise may be a sufficient condition for
sidebranching to occur, but is not a necessary condition.

In addition, we have also demonstrated the existence of
several length scales in the late stages of growth, £, I, and
the diffusion length defined as /=D /v. It remains to see
what is the relation between these lengths and to deter-
mine the exponents in the dependence of these quantities
on undercooling, either through numerical or analytic
studies.
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FIG. 1. Dendritic crystal grown with the lattice model. Grey
levels represent temperature value of the diffusion field. Param-
eters are D=4.0, m =5, A=0.015,/,=1, A=0.195, and §=0.1.



(c) (d)

FIG. 2. The morphological transition from axial to diagonal growth. All crystals are grown at A=0.01, §=0.2, but with different
A. (a) A=0.15, the cluster has 85171 solid particles; (b) A=0.125, with 144522 particles; (c) A=0.1, 94072 particles; and (d)
A=0.05, 47 305 particles. The scale of picture (d) has been doubled.



FIG. 7. Sample morphology of the growth from a planar in-
terface. A=0.1625, A=0.01, and §=0.2. Periodic boundary
conditions are used in the horizontal direction.



FIG. 9. Crystal grown without noise (5=0). Other parame-
ters are identical to those of Fig. 2(b).



