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Using the generalized Landau model [Phys. Rev. A 36, 1484 (1987)], the temperature and fre-

quency dependence of the complex dielectric constant of the ferroelectric smectic-C* (Sm-C )

phase and the corresponding smectic-A (Sm-A) phase is calculated. It is demonstrated how the
dielectric response of the Sm-C* phase generally consists of four modes —two high-frequency po-
larization modes and two modes of lower frequency that are connected to the reorientation of the
director, commonly denoted the soft mode and the Goldstone mode. In the Sm-A phase only two
modes are present —one doubly degenerate soft mode and one doubly degenerate polarization
mode. The temperature dependences of the dielectric strengths and relaxation frequencies of the
modes in question are calculated, and simplified expressions of these quantities are given. The most
important feature of the generalized Landau model is the presence of a biquadratic coupling be-
tween tilt and polarization in the free-energy density of the system and we show how the general
thermodynamic and dielectric properties of the system depend on the strength of this coupling.
Comparing the results of the calculations with existing data, we finally conclude that the model pro-
vides a description of the Sm-C -Sm-A transition that takes all experimentally known features of
the dielectric properties of the system into account in a qualitatively correct way.

I. INTRODUCTION

The possibility of developing electro-optical devices
by the use of ferroelectric smectic-C' (Sm-C') liquid
crystals has increased the interest for these systems con-
siderably during the past few years. Gradually, a vast
number of experimental data has become available, and
today at least the qualitative behavior of many-important
quantities of the system can be considered to be estab-
lished in the literature. In a recent paper we reported
the measurements of the complex dielectric constant of a
room-temperature ferroelectric liquid crystalline mixture
close to the Sm-C* —Sm-A transition. In the same paper
we also showed how we, by a generalized Landau expan-
sion of the free-energy density, ' could develop a theory
which enables us to calculate the temperature depen-
dence of the static dielectric constant eo( T) of the system
in agreement with experiment.

In order to describe the ferroelectric Sm-C* phase one
generally introduces two two-component order pararne-
ters [c.f. Eqs. (1)]. Thus, the dielectric response of the
system consists (apart from the usual electronic contribu-
tion) of four modes —two high-frequency polarization
modes and two modes of lower frequency connected to
the relaxation of director fluctuations. The two latter
modes are commonly denoted the soft mode and the

Goldstone mode. In the Sm-A phase the system exhibits
two degenerate modes —one high-frequency polarization
mode and one (soft) mode of lower frequency connected
to the relaxation of director fluctuations. In the present
work we will calculate the dielectric strengths and the re-
laxation frequencies of the dielectric modes of the system
as well in the Sm-C* phase as in the Srn-A phase by the
use of the generalized Landau model.

The soft mode is mostly connected to amplitude
changes of the director but also to a certain extent to the
phase changes. The reverse is true for the Goldstone
mode. One difficulty when calculating the complex
dielectric constant of the system is to establish in which
way this mixing of phase and amplitude changes of the
order parameters enters into the eigenmodes of the
dielectric response. Solving this problem, and assuming a
Debye-like relaxation, we consequently are presenting a
complete theoretical calculation of the temperature- and
frequency-dependent complex dielectric constant e*(to, T)
of the Srn-C* and Sm-A phases.

II. THE DIELECTRIC CONSTANT OF THE SMECTIC-C
AND -A PHASES

The ferroelectric Srn-C* phase represents a spatially
modulated structure. ' ' Because of the chirality of the
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(P, &

EDDIC, (T)= lim
E~O E (2)

where E is the magnitude of a static applied electric field
and co being the permittivity of free space. Except very
close to T„ the relaxation frequencies of the modes con-
tributing to the dielectric constant of the Sm-C* phase
are well separated. In Fig. 1 we show the typical frequen-
cy dependence of e in such a case.

The disturbance of the equilibrium order parameters
which are given by Eqs. (1) when an electric field is ap-
plied to the system can be divided into two parts. These
are amplitude changes (magnitude of tilt and polariza-
tion) and phase changes (direction of tilt and polariza-
tion). In such a way the dielectric response of the system
will consist of four parts (apart from the high-frequency
electronic response b,e,&)

—two which are connected to
director reorientations and two connected to reorienta-
tion of the polarization. Linear combinations of the
former two are what commonly are denoted the soft

molecules, the tilt locally breaks the axial symmetry
along the long molecular axis and induces a transverse
in-plane polarization perpendicular ' to the direction of
the tilt. Introducing the order parameters g=g&x+gzy
and P=P x+P y to denote the tilt and the polarization,
respectively, we can write

g, =Oocos(qz), gz
=9osin(qz),

P„=—Posin(qz), P =Pocos(qz),

where z is the coordinate normal to the smectic planes
(which are taken to be parallel to the xy plane) and

q =2m/p is the wave vector of the pitch. From Eqs. (1)
we see that the average macroscopic polarization of the
system is zero. In this paper we will be interested in the
dielectric properties of the medium which are connected
to electric fields which are applied parallel to the smectic
layers.

Let us introduce the complex dielectric constant
e"(co, T)=e(co, T} je"(c—o, T), where co=2rrf is the angu-
lar frequency of the applied electric field and T is the
temperature of the system. In general several relaxation
mechanisms, each of which is connected to a characteris-
tic eigenfrequency f;, are contributing to e*(co,T). In the
case of ferroelectric liquid crystals in the Sm-C* phase
we expect two relaxation modes connected to the reorien-
tation of the director, two polarization modes, and (at
least} one mode connected to the electronic properties of
the medium. For each mode, at a given temperature, the
contribution to the dielectric constant decreases with in-
creasing frequency of the field, from the low-frequency
value (f « f;) to zero, which is the value adopted when
the frequency of the applied electric field is so high
(f &)f, ) that the mode cannot follow the electric field.
The difference between the low- and high-frequency con-
tribution of the mode to the total dielectric constant is
called the dielectric strength of the mode and will be
denoted he, (T). This quantity is related to the average
induced polarization, ( P; ), of the corresponding mode
by
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FIG. 1. Sketch of the frequency dependence of the real part
of the dielectric constant of the Sm-C* phase.

mode (b,es is the dielectric strength and fs the eigenfre-
quency) and the Goldstone mode (heo is the dielectric
strength and fo the eigenfrequency). The relaxation fre-

quency of these two modes are normally of the order of
fs —1 —10 kHz and f& —10—200 Hz, respectively. The
relaxation frequencies of the polarization modes have
been reported by Benguigui to be of the order of 500
MHz. This means that the study of these two modes are
often beyond the experimentally feasible range. We will
distinguish between the polarization soft mode (b,@ps is
the dielectric strength and fps the eigenfrequency) and
the polarization Goldstone mode (b,epo is the dielectric
strength and fpo the eigenfrequency), respectively.

In this paper we will present a theoretical calculation
of the part of the dielectric constant of the Sm-C* and
Sm- A phases which is connected to fluctuations of the or-
der parameters j and P. This means that in order to ob-
tain the total dielectric constant we have to add the
(high-frequency) contribution he, ~. The complex dielec-
tric constant of the Sm-C* phase can be written

b,eo( T) AEs( T) b, vapo( T)
e(co T)= . + . +

1+jest~ 1+jets 1+jcotpg

«ps( T)
+ . +be„(T),1+jcutvs

(4)

where t, =I/2mf, is the relaxation time of the corre-
sponding mode. In the Sm-A phase only amplitude fluc-
tuations are present and the system exhibits a doubly de-
generate soft mode and a doubly degenerate high-
frequency polarization mode. The complex dielectric
constant can in this case be written
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III. THE GENERALIZED LANDAU MODEL
OF THK FERROELKCTRIC SMECTIC-C PHASE

In order to describe the thermodynamic properties of
the ferroelectric Sm-C* phase we have previously intro-
duced a generalized Landau expansion of the free-energy
density of the system. By the use of this model we
have shown that we are able to calculate most thermo-
dynamical properties of interest in a qualitatively correct
way. In one of these papers, we showed explicitly how
the generalized Landau model can take into account all

the experimental features of the static dielectric constant
of the system in contrast to previous calculations, ' "
which were based on a too simple Landau expansion. In
this work we will show that the generalized Landau mod-
el can also be used to calculate the dynamical properties
of the Sm-C* phase. A full review of the generalized
Landau model can be found in any of the three papers
quoted above. Consequently, only a brief summary of
the model is presented below.

The free-energy density go(z) is given by a Landau ex-
pansion in the order parameters g and P:

go(z)= 2a(g+—gp)+ ,'b(g+—(2) + 6c(g+—(~) —A g, —
g2 + K3-

dz dz 2

2 2
d(2+

dz dz

+ (P„+P )
—p P„+P +C(P„g~ Pg, )

—,'Q(P—„(—2 Pg, )—+ ,'ri(P„+—P )
2e ~ "dz ~ dz

—d((i+4') ki d,
—4 d,

where only the coeScient a is assumed to be temperature
dependent: a =a(T —To) From E. qs. (1) and (5) we can
derive the equations governing the tilt, polarization, and
pitch of the system to be

a80+b80+c80 080PO ——C+ 8O Pa=0, (6)
3

~P3 + Qg2 P C+ g2 g —0
E' 3

1 Po
q = A+@ +deo

K3 t9o

tric modes, which were introduced in Sec. II. A general
disturbance of the equilibrium state of Eqs. (1) can be re-
garded to be composed of two parts. First, the ampli-
tudes 0o and Po of the order parameters can change, and
secondly the phase of the order parameters can change so
that the sinosoidal ansatz of Eqs. (1) will no longer be val-
id. As a result of this, the relaxation behavior of the Sm-
C* phase consists of two director orientational modes-
the soft mode (mostly amplitude changes) and the Gold-
stone mode (mostly phase changes) —and of two polar-
ization modes. Denoting the amplitude changes by 58,
and 5P, and the phase changes by 582 and 5Pz, respec-
tively, we can write the order parameters in the presence
of an electric field as '

where a, b, c, Z, and C are renormalized constants
g, =80cos(qz)+58, cos(qz) —582sin(qz),

A — 4Ad 3da=a —,b=b —,c=c-
K3' K3

'
K3

C=C+1 1 p — Ap
e K3' K3

(2 =80sin(qz)+ 58~sin(qz)+ 58zcos(qz),

P„=—Posin(qz) —5P t sin(qz) —5Pzcos(qz),

P =Pocos(qz)+5P, cos(qz) —5Pzsin(qz) .

(10)

IV. THE TEMPERATURE
AND FREQUENCY-DEPENDENT DIELECTRIC

CONSTANT OF THE FKRROELECTRIC
SMECTIC-C PHASE

A. The dynamic equations

In order to write down the complex dielectric constant
as it is given by Eq. (3), we must calculate the dielectric
strengths and the eigenfrequencies of the four ferroelec-

We will only consider tne case when the testing electric
field is applied parallel to the smectic layers and assume
that a homogeneous, time-dependent electric field
E=Eoe "'x is applied in the x direction. Substituting the
ansatz of Eq. (10) into Eq. (5), the free-energy density can
be written as g (z) =go+gz(z)+gz(z), where gz is the ex-
tra contribution due to the changes of the order parame-
ters and gz is the contribution due to the electric field.
Only retaining terms quadratic in the changes we get (we
introduce a prime to denote a derivative with respect to
the z coordinate):
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g2(z) =58, ( —,'a+ ,'b—80+ ', c—80 —Aq+ —,'K3q —
—,'QP0 —6 dq 80)+582( —,'a+ ,'b—80+,'c—80 —Aq+ —,'K3q —2 dq 80)

+5P2
2c

——00 +—gP +5P +—gP2 3 2 2 1 1 2
o 2 o 2 2z 2 o

—58,5P, (pq+ C+2QP080)

—5825P2(pq+ C+ QP080)+58, 582( —A+K, q
—3d 80)+M', 582(A —K,q+d 80)

+ ,'K, (—58', +582 )+IJ(5P258I —5P, 582),

g~(z) = —E P=E0[Posin(qz)+5P, sin(qz)+5P2cos(qz)]e'"' . (12)

The equations governing the static dielectric response
have been derived by us previously. The results of this
derivation imply that the most general time and space
dependence (in the limit of small electric fields) of the
director and polarization changes defined by Eqs. (10) can
be written as

I

viscous torque I "'"'"' is related to the time derivatives of
the order parameters as I'""""'=—y58,
= —jcoy58, 0sin(qz)e' ' and so on. We thus just have to
add terms of the type —jcoy58, 0 to the left-hand side of
Eqs. (14) in order to obtain the dynamic equations of the
system:

58, =58,0sin(qz)e' ', 582=5820cos(qz)e' '

5P, =5P,psin(qz)e~ ', 5P2 =5P20cos(qz)e J ' .
(13)

From Eqs. (10)—(13) it is possible to show3 that the equa-
tions governing the changes of the order parameters in
the static limit (co=0) are given by

( b ) Jo3)'s—)58]p+ b2582p+ b 35P
&p+ b45P2p =0,

b258&o+ (bs jo)po)5820+ b45P&0+ b65P20 =0

b358lp+b45820 (b7+J~'Yps)5P10 Ep

b458~0+bs5820 (bs+j ply po)5P20=E0 .

(16)

b
1 501p+ b 2502p+ b 35P ~p +b45P2o =0

b258(p+ b35820+ b45P~p+ b65P2p =0,
b 3 58&0+b45820 b7 5Pio Eo

b4M)0+bs5820 bs5P20 =Ep

(14)

where the constants b; are defined as

b&
= a 3b0p 5&0p+2Aq 2q E3+QP~&+12dq 0o2

b2= —2Aq+2q K3 4dq 80, —

b3 pq +C +2QPp0p

b4= —pq,
a b 0p Q 0p +2+q —2q /3 +4 dq 0p

b6 =pq +C+ QPp0p

1
b7 = 00@+3&Pp

(15)

1
b, =—+gP", .

Equations (14) have been derived just by applying the
Euler-Lagrange equations to the extra free-energy density
contribution of Eqs. (11) and (12), which is due to the
presence of the electric field. If we instead want to calcu-
late the dielectric response at a finite co we can reason in
the following way. The dynamic equations can be formu-
lated as a set of balance of torque equations, I'"""
+I "'"'"'=0. The left-hand side of Eqs. (14) (with the E
terms of the two last equations moved to the left of the
equality sign) is just the elastic torque I'""". The

To be general we have introduced four different viscosi-
ties in Eqs. (16). Two of these, yo and ys, are the ordi-

nary rotational viscosities' ' connected to director reori-
entations. The way in which we have introduced yG and

ys is such that close to T, we can expect" yG -—ys. We
should also point out that instead of our way' of defining
the Goldstone mode rotational viscosity yG, some au-
thors prefer to introduce' ' an effective rotational
viscosity yz which is related to our y~ by the relation

yo =yGsin 0. The two viscosities ypo and yps connected
to the polarization modes are related to the rotation of
the molecules around their long axis.

The fact that, concerning their order of magnitude, the
relaxation frequencies of the four eigenmodes fall into
two groups (fs,fo «fps, fpo) permits us to simplify the
way of solving Eqs. (16). When studying the polarization
modes we are dealing with frequencies which are so high
that the director can no longer follow the electric field,
and 58,0 and 58,0 can be put equal to zero. Mathemati-
cally this can be expressed in such a way that we are
studying the system in the limit of infinite rotational
viscosities yz and ys. On the other hand, when studying
the low-frequency director modes we use the fact that the
molecular rotation around the long axis is so fast that for
each director configuration the polarization takes its cor-
responding equilibrium infinitely fast. Mathematically
this can be expressed by putting yps and ypG. equal to
zero in Eqs. (16). The accuracy of this approximative
way of solving Eqs. (16) is of the order of fslfps
-kHz/MHz-10 . This small loss of accuracy is negli-
gible compared to experimental errors. Furtheron, the
fact that the final expressions derived in this way are
much more transparent will permit us to gain a better
physical understanding of the system.
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B. The polarization modes —high-frequency dielectric constant

As discussed above, when studying the polarization
modes we are dealing with frequencies which are so high
that the director can no longer follow the electric field,
and 50,0 and 5020 can be put to zero. The high-frequency
response of 5P,0 and 5P20 is then given by the last two
equations of Eqs. (16)

5P 1"0
= 5P30 = . (17)

b7+Jcga Ps b8+ 1~7PG

The corresponding contributions to the dielectric con-
stant can now be calculated by the use of Eqs. (2), (10),
and (13) to be

so«= = — (sin(qz) ) — (sin (qz) ) — (cos (qz) ) = — (5P10+5P20),
0

(18)

where 5P,0 and 5Pzo are given by Eqs. (17). From Eqs.
(15) and (18) we thus get the dielectric strengths and the
eigenfrequencies of the polarization modes to be

~0~&PS=

1
5P10

b
( Eo+b35810+b45820)

7

1
5Pzo = ( —F'0+ b45810+ b 65820)

8

(22a)

(22b)

QB2+ 3~P2

(19)

Substituting these two equations into the first two of Eqs.
(16) we can write

E05E'P~ =
2 —+gP1 2

0

b3 b4
(X+

ploys�

)581o+qZ582o= +0 +
7 8

(23a)

1 1fps
= ——080+ 3gP 0

PS E

b4 be
qZ5810+( Y+j03&G )5830 Eo +—

7 8

where we have introduced the quantities L, Y, and Z

(23b)

1 1
fpo = +rjPo—

77$ pG
E'

(20) bX= —b, —
b8

b2

b7
(24a)

Equations (19) and (20) imply a very simple result con-
cerning the product of the dielectric strengths and the
eigenfrequencies of the polarization modes

b
Y= —b-

b

b6 2

=q E— p
b8 1——AB0+ 3gP0

1 1&d'ps«ps= &ofpo~Epo=
27TX ps 27TQ PQ

(21)

Thus we see that it is possible to determine @ps and y pG
directly from a measurement of the high-frequency com-
plex dielectric constant of the system.

C. The director modes —low-frequency dielectric constant

%e now go on to study the director modes, which are
of much lower frequency than the polarization modes.
This fact will be used in order to simplify the calcula-
tions, which we will perform in the limit when the eigen-
frequencies of the polarization modes are assumed to be
infinite. This assumption simply means that the molecu-
lar rotation around the long axis is so fast, that for each
director configuration the polarization takes its corre-
sponding equilibrium value infinitely fast. As discussed
at the end of Sec. IVB, mathematically this can be ex-
pressed by putting yps and ypo equal to zero in the dy-
namic equations (16). Thus we can write the two last
equations of Eqs. (16) as

=q K3,

b2 b3 b6
qZ= —b4 + +

4 7 8

(24b)

(24c)

When deriving the second equality of Eq. (24b) we have
utilized Eqs. (6)—(8). Furtheron, in Eq. (24b), we have in-

troduced a renorrnalized elastic constant K3 K3—p l(1/e Q80+3gP0)—. For the set of parameters we
are using in the numerical calculations of Sec. VI this re-
normalization is negligible.

Before we proceed to solve Eqs. (23) we shall estimate
the magnitudes of the coefficients which enter these equa-
tions. To do so we need the values of the material param-
eters which enter the Landau expansion of Eq. (5). These
have been estimated elsewhere by us for DOBAMBC and
here we will use these values as a set of "typical" parame-
ters of the Sm-C' phase. The temperature dependence of
Eqs. (23) lies in X. For estimation purpose we neglect the
term proportional to cB in X and get approximatively
X-2a(T, —T) where we have used the approximate rela-
tion 8 =al2b(T, —T). Furtheron, the terms qZ and
Y=K3q are of the same order of magnitude except close
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to T, where Z approaches zero. Taking K3 5X10
N, 2m. /q —2 )Mm and a-5 X 10 N/m K, we see that X is
much larger than both Y and qZ except in a narrow tem-
perature interval ET-0.01 K just below T, .

When diagonalizing Eqs. (23) in order to obtain the
eigenmodes of the system, as an intermediate step by put-
ting the determinant of the system of equations equal to
zero, we get the following equation determining the
eigenfrequencies:

frequency part of the dielectric constant and is just the
sum of the dielectric strengths of the polarization modes
which were already given by Eqs. (19). By substituting
Eqs. (27) into Eq. (28), only retaining the leading terms of
each mode, we get

b
COTE = + +

2 b7 bs Xb7 1+jabots

2

(X+joys )( Y+jco YG )
—

q Z =0 . (25) (29)

X
27TQ s

q'K3
G

21Tj Q 27TQQ

(26a)

(26b)

Also observing that the coe%cient b4 is much smaller
than both b 3 and b s, the solution of Eqs. (23) can be writ-
ten as

Excluding the small-temperature interval hT estimated
above we can safely neglect the term q Z in this equa-
tion (T, —T» b, T=q Z ((XY), the solution of which
is then given by putting each of the two parantheses
equal to zero. The eigenfrequencies of the soft mode and
the Goldstone mode are then obtained by identifying
X+jcoys=X(1+joys/X) =X(1+jcuts) and so on. We
thus get the corresponding eigenfrequencies f, =1/2mt,
as

and the dielectric strengths of the soft mode and the
Goldstone mode are then given by

b
EO~ES

2Xb
(30a)

b6
Epk&g =

2Yb28
(30b)

By the use of Eqs. (7) and (9) we can prove the identity
'2

b6 Po

00
(31)

Po
EOAEG =

2K, q~o

2

(32)

and consequently we can write the Goldstone mode
dielectric strength as

1 b3 1—58 +E ' b X 1+jets
b6qZ

b8Y X— Y
XQ

b3qZ—5L9 +E " bY 1+jcot~
b7Y X— Y

VG

1

1+ja)t~

(27a)

1

1+j~t&

(27b)

1
ED~Esfs

~Vs 7

(33a)

Equations (26), (30a), and (32) represent our final expres-
sions of the soft mode and Goldstone mode relaxation
frequencies and dielectric strengths. We notice from
these equations that if we multiply the relaxation fre-
quency with the dielectric strength of each mode we ob-
tain two particular simple expressions which are suitable
to use if we want to measure the rotational viscosities of
the system

2

1
E, AE—0 2

1 1 b3 ~~10 b6 ~~20+
b7 b8 b~ E b8 E (28)

where we again have utilized the fact that b4 &&b3 b6.
The first of these three terms represents the high-

where we have only retained terms of the order of 1/X in
the solution. From Eq. (27a) we see that the amplitude
fluctuation 58,O consists of two parts comparable in mag-
nitude, the first of which contributes to the soft mode
while the second is contributing to the Goldstone mode.
This last term should thus be compared with the two
terms in the expression of 58zo of Eq. (27b), which also
contribute to the Goldstone mode. Of the three terms
contributing to the Goldstone mode two are smaller than
the third one by a factor of the order 1/X and can thus
safely be neglected in the temperature interval
T, —T&b, T. From Eqs. (18) and (22) we can write the
contribution to the dielectric constant as

'2
Po

&o~&ofo =
4myG 0

(33b)

PE cosy —K36 y" = —y~O j . (34)

The result of Eq. (33b) thus shows that it is possible to ex-
perimentally determine the Goldstone mode rotational
viscosity by a measurement of the four quantities AeG,

fo, Po, and 8& without the need of doing any assumption
of the material parameters which enter the model. Such
an evaluation of yz has been done by us and has been
presented elsewhere. '

Finally we will show how the expressions of AeG and

fG can be derived in a different way using the "switch-
ing" equation, i.e., the equation which is normally used
when analyzing the electro-optical switching' of the fer-
roelectric Sm-C* phase, as a starting point. With the
present choice of coordinates, this equation' ' can be
written



42 THEORETICAL MODEL OF THE FREQUENCY AND. . . 883

We should notice in connection to Eq. (34) that the way
in which we introduce' ' the rotational viscosity y6
differs from the convention of some other authors' '
who prefer to introduce an effective rotational viscosity

y& =y|-sin O=yGO . We again introduce a time depen-
dence of the electric field as E =Eoe~"' and expand q2(z)

to first order

being in the Sm-A phase, a homogeneous electric field
will couple to spatially uniform changes of the order pa-
rameters and accordingly we put d/dz =—0 in the expres-
sion of the free-energy density. In this way we get

g= —,'a(g+gz)+ . (P„+P )
1

y(z) =qz+5y . (35)
+ C ( P„j2 Pg—, ) Eo—e' 'P„, (40)

Assuming 5p to have the time and space dependence
5y=5tPocos(qz)e J ' we can linearize Eq. (34) and arrive at
an equation determining 5yo

where the last term is the contribution to the free-energy
density from a time-dependent electric field E=Eoe~ 'x.
The equation of motion, which we will write down as a
set of torque balance equations, can now be written

PEQ+K3 t9 g 5fQ jcopGH 5g7Q

This equation implies

(36) =oSA~' ~p YPA
l

(41)

EQPQ 1

K3q 8 1+(jcoyo/K3q )

The induced polarization is calculated as

(37)
where ys„and yp„are the rotational viscosities of the
two modes in question. Introducing a time dependence
of the order parameters as g;=g;oej"' and P;=P;,e~ '

Eqs. (40) and (41) give

(P„)= —Po(sin(qz+5p) ) = —,'P05q20—Foe'"' . (38)

—(a g, o
—CP o) JtoysA(z =0,

f20+ 0) J~YSA420

(42a)

(42b)

From Eqs. (36) and (37) we get the Goldstone mode part
of the dielectric constant

1
Pro+ Ck—o Eo Jcoy pAP o 0,

E'
(42c)

p2
1

sob, eG =—(P, ) =
E '

2K,q'g 1+(J aery G /K, q')
(39) 1—P,o

—Clio J~y pAP, 0—
E

(42d)

From Eq. (39) we directly get fo and b,eo and by com-
paring with Eqs. (26b) and (32) we see that the result of
the present analysis agrees with the previous one. We
can thus conclude that our expressions of fo and b, eo are
exact results as long as Eq. (34) is applicable for describ-
ing the Goldstone mode dynamics of the system.

U. THE TEMPERATURE-
AND FREQUENCY-DEPENDENT

DIELECTRIC CONSTANT OF THE CHIRAL
SMECTIC- A PHASE

In this section we will study the complex dielectric
constant of the chiral Sm-A phase. In this phase only
amplitude fluctuations are present and the system exhib-
its a doubly degenerated soft mode and a doubly degen-
erated high-frequency polarization mode. The complex
dielectric constant has in this case the form given by Eq.
(4). In order to make the presentation complete, we will

give below a brief derivation of the expressions of AEs~,

fsA = I /2mtA, hepA, and fPA
= I /22rtpA, i.e., the dielec-

tric strengths and eigenfrequencies of the Sm-A soft
mode and the Sm- A polarization mode, respectively.

We expand the free-energy density in the order param-
eters g and P and take go(z) to be the one given by Eq.
(5). In the Sm-3 phase g and P are zero in equilibrium so
the fluctuations corresponding to 60, and 5P, , which
were introduced by Eqs. (10), can here be taken to be the
components of g and P themselves. The dielectric
response is by definition the response taken in the limit of
zero electric field, and thus we only retain terms of
second order in g and P in Eq. (5). Furtheron, the system

Equations (42a) and (42d) imply (,0 =0 and P 0=0, while

Eqs. (42b) and (42c) can be rearranged to read

(a+J~YSA)(20+CP o=O (43a)

1
C420+ +J~3 PA P o Eo . (43b)

When solving Eqs. (43) we will proceed in the same
way as when we solved the dynamic equations (16) of the
Sm-C* phase. Using the fact that the polarization mode
frequency is much higher than that of the director mode,
we first study Eq. (43b) in the limit of such high frequen-
cies that the director can no longer follow the electric
field. As discussed at the end of Sec. IV B, mathematical-
ly this can be expressed by putting ysA= ~ in Eq. (43a)
implying (20=0. In this case Eq. (43b) has the solution

EPo Eo1+j~eypA
(44)

From Eq. (44) we get the relaxation frequency and the
dielectric strength of the Sm- A polarization mode to be

1
fPA=

27TE7 PA

EQEEpA = 6'

(45a)

(45b)

We now proceed by studying the director relaxation for
frequencies which are much lower than the polarization
mode relaxation frequency. Just like when studying the
director modes in the Sm-C' phase the fact that the re-
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laxation frequency of the polarization mode is much
larger than that of the director mode can be expressed by
putting ypA equal to zero in Eq. (43b). Doing so we solve

Eqs. (43) for P„p

E2C2 1Po= &+
a —eC 1+jrpysA/(a e—C )

(46)

a eC —=a(T —T, )+(K, ep )q—p . (47)

From Eqs. (46) and (47) we now get the Sm-A phase soft
mode dielectric strength and relaxation frequency

1
fsw [a( T —T, )+(K3 ep )q p]—,

~3 SA

E2C2

a(T —T, )+(K3 —eu )qp

(48a)

(48b)

Finally we derive from Eqs. (45) and (48) the expressions
of the products of the relaxation frequencies with the cor-
responding dielectric strengths of the two modes

E2C2
ecfsA ~~sA

~3 SA

1fp~«PA=
2~7 PA

(49a)

(49b)

The constant a in Eq. (46) is given by a =a( T —Tp). In-
troducing the wave vector of the pitch at T„
q p=q(T=T, )=( A+a(uC) /( K3—ep ) and the expres-
sion of the Sm-C*-Sm- A phase transition temperature
T, = Tp+ I /u(A /K3+ C Z) we can derive the following
equality:

the bilinear one (the C term), i.e., the smaller P is the
more important is the biquadratic coupling. In Fig. 2 we
show the quantities Po/Oo, b3/b7, and q for five different
values of P. The calculations have been performed by
rewriting the equations into dimensionless ' form and
thus the scales on the vertical axes are not related to any
physical units, but should be considered as arbitrary
units, and we should only pay attention to the shapes of
the calculated curves. The values of the material parame-
ters used in the calculations are those introduced by us as
a standard set of parameters of the Sm-C' phase (Ref. 3,
Table II), only P and d are changed from these values.
Experimentally, the ratio Po/Oo adopts one value at T,
and increases monotoneously towards a saturated value
away from T, . The classica1 Landau model just predicts
Pp/9p to be constant. From Fig. 2(a) we see that the
curve calculated for P= 1 (where we have also put d =0)
corresponds to this classical limit. By lowering P (and at
the same time increasing d), i.e., allowing the biquadratic
coupling to become more important, we see how the
Pp /Op curves are gradually taken into more realistic ones.
Concerning the pitch p =2m/q, it is an experimental

i
'o

e,
(arb. units )

VI. NUMERICAL RESULTS

A. Some general features of the generalized Landau model

Before we shall evaluate the results in the preceding
section numerically, we want to discuss brieAy some gen-
eral properties of the generalized ' Landau model which
we used as a basis for the calculations. The most essen-
tial feature of the generalized Landau model, in contrast
to the simpler "classical" one introduced by Pikin and
Indenbom, is the presence of the biquadratic coupling
(the 0 term) between tilt and polarization in the free-
energy density of Eq. (5). That this biquadratic coupling
is important has been verified by NMR measurement' '
and can also be understood' from sterical reasoning. In
order to show how the presence of the 0 term in the
free-energy density takes the predictions of the model
from the trivial ones given by the classical Landau model
to the more realistic ones given by the generalized Lan-
dau model, we will introduce a dimensionless parameter

b3

b7

(arb. units)

{arb.units)

0.6

0.8

1.0

I I I

-4

T —
T( $4C)

o.a~
1.0

-2 0

I I I I I I I I I

(c)

1/2C-

n'" (50)

The important feature of this parameter is that it is a
measure of how important the biquadratic coupling (the
0 term) between tilt and polarization is compared with

FIG. 2. Temperature dependence of Po/00, b3/b7 [cf. Eqs.
(15) and (30a)] and q (the wave vector of the pitch) calculated by
the generalized Landau model. The parameter P is a measure of
how important the biquadratic coupling between tilt and polar-
ization is compared with the bilinear one.
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which have been reported are performed only at frequen-
cies well below the relaxation frequencies of the polariza-
tion modes. The only exception known by us is the work
by Benguigui, but he only discusses the eigenfrequencies
in a qualitative way and not the corresponding dielectric
strengths in his report. What normally is experimentally
determined as e„ is thus the sum AE'ps+atE'po+kE
where Ae,

&
is the general electronic background which is

not included into the model. In order to resolve these
three contributions one has to increase the frequency
range of the measurements well beyond the 500 MHz
which is the value Benguigui has given for the eigenfre-
quencies of the polarization modes. Thus there exists
presently no experimental data with which we can com-
pare the outcome of the calculations concerning these
modes.

The two director reorientational modes of the Sm-C'
phase are commonly denoted the soft mode and the
Goldstone mode. These two modes generally consist of
linear combinations of amplitude and phase fluctuations
of the director. Solving the dynamic equations (23) we
showed that if we exclude a temperature interval
ET-0.01 K below T, this mixing is negligible and we
can consider the soft mode to consist only of amplitude
fluctuations while the Goldstone mode consists only of

phase fluctuations to a high degree of accuracy. We
should, however, observe that the reverse is not true be-
cause not all the amplitude fluctuations go into the soft
mode as can be seen from Eq. (27a). The part of the am-
plitude fluctuations which goes into the Goldstone mode
can, however, be neglected compared to the large contri-
bution which is given by the first term in Eq. (27b). As
good approximations of the soft mode and the Goldstone
mode dielectric strengths we thus can use the expressions
given by Eqs. (30a) and (32), respectively. From these
equations we see that the quantity b3/bz plays an analo-
gous role for the soft mode as does Po/8& for the Gold-
stone mode. In Fig. 2 we see that in the classical limit
these quantities are the same, but as P is lowered, i.e., as
the biquadratic coupling between tilt and polarization is
becoming more important, b3/b7 develops a pronounced
maximum approximately 1 K below T, . This maximum
is responsible for the bump in des, which can be seen in
Fig. 3(b). From a theoretical point of view the existence
of this maximum can be understood because it appears in
a temperature interval where the calculated polarization
shows ' a very sharp increase with T, —T, an increase
which is more pronounced the stronger is the biquadratic
coupling. By plotting 1/b, es versus temperature, as is
done in Fig. 5, we see that for a strong biquadratic cou-

60- (a)

fg t0

(Hz}

fs

(kHz)

200—

0
-10 -2 0

T-TI ('C)

1000

(MHz}

500

(c)

1500

&ps

(MHz)

(d)

Sm-C~
l

Sm-A

0
-10

0 z I

-6 -2 0

T
—

TI. ('C}

FIG. 4. The calculated relaxation frequency as a function of temperature of the four dielectric modes of the Sm-C* phase which
are included in our model. The parameter P is a measure of how important the biquadratic coupling between tilt and polarization is
compared with the bilinear one.



42 THEORETICAL MODEL OF THE FREQUENCY AND. . .

pling we get one linear behavior close to T, and another
one far away from T, . By extrapolating this last line we

see that this line will not cross the corresponding line ob-
tained in the Sm-A phase at T=T, and for a small finite
value of 1/b es as is the case in the classical limit, but the
crossing of the lines will occur for T (T, and for a nega-
tive value of I/des. As is seen from Figs. 3(a) and 3(b)
the intensity of the soft mode is rapidly drowned in that
of the Goldstone mode as the temperature of the system
is lowered from T, . This makes it possible to
separate ' ' the contribution from the two modes only
in a temperature interval which is of the order of a few
tenths of a degree just below T, . One way to study
the soft mode in a broader temperature interval into the
Sm-C* phase is to apply a static electric bias field parallel
to the smectic layers. If the bias field is strong enough
the helix of the system is unwound and thus the Gold-
stone mode is suppressed. In a recent study of this type
performed by F. Gouda the soft mode was studied in a
4-K broad temperature interval below T, . By plotting
I /b, es versus temperature a behavior was obtained which
agrees with the crossover behavior of 1/des which we

calculate for a system with strong biquadratic coupling,
and thus the theoretical behavior of the soft mode dielec-
tric strength displayed in Fig. 3(b) is confirmed by experi-
ment.

In Fig. 3(a) we have plotted the dielectric strength of
the Goldstone mode as a function of temperature. By
comparing the magnitude of the four dielectric strengths
displayed in Fig. 3 we see that concerning the low-
frequency part of the dielectric constant almost all contri-
bution comes from the Goldstone mode. In order to get
a physical understanding of the Goldstone mode dielec-
tric strength we make the following reasoning. The cou-
pling of the polarization to the external field increases
with Po ~ This suggests AeG. Po as the response cannot
depend on the sign of Po. Furthermore, the elastic ener-

gy associated with the pitch is given by gz =E3q Oo/2 as
can be seen from Eq. (5). This suggests b,eo- I/K3q Ho.

All together we thus expect beo-Po/K3q 6(o which is
exactly what is given by Eq. (32). In Fig. 2 we showed
the temperature dependences of the pitch P =2m/q and
the ratio Po/Oo calculated by the use of Eqs. (6)—(8). By
comparing this figure and Fig. 3(a) we see that the pro-
nounced maximum of Aez a few degrees below T, can be
understood to be connected to the maximum of the pitch
(minimum of q). Furtheron the factor (Po/9&) which
enters the expression of he~ is emphasizing the sharp de-
crease of the Goldstone mode dielectric strength close to
T, . We finally point out that the calculated performance
of b, EG which is displayed in Fig. 3(a) is well in accor-
dance with existing experimental data. '

In Fig. 4(b) the relaxation frequency is plotted of the
soft mode as a function of temperature. We notice that
this has a very strong temperature dependence, showing a
cusplike minimum at T, . In solid ferroelectrics the slope
of the fs(T) line is twice as large in the low-symmetry
phase than in the high-symmetry phase close to T, .
This result is also valid in our case. We should also note
that the calculated value of fs at T, is finite. By symme-

try considerations we must demand ys( T, ) =y s~( T, ) and
from Eqs. (26a) and (48a) we get

(51)

[Here we should point out that Eqs. (26) are exact at T,
because of the fact that the quantity Z equals zero at T, ).
Only the response to a modulated external field with a
wave vector equal to qo can exhibit a relaxation fre-

quency of the soft mode which goes to zero at T, .
The calculated Goldstone mode relaxation frequency is

shown in Fig. 4(a). The way in which this varies with
temperature can be qualitatively understood in the fol-
lowing way. The restoring force of the Goldstone mode
is the twist elasticity of the system. The corresponding
elastic energy is proportional to E3q . Thus the corre-
sponding relaxation frequency should be proportional to
this quantity. That this is the case is seen from Eq. (26b).
From Fig. 4(a) we also notice how the calculated curves
gradually transform into the results of the classical Lan-
dau model as P is increased towards unity. As a con-
clusion we thus notice that the general behavior of the re-
sults of the calculations, using a value of the parameter p
of the order of approximately 0.2—0.7, is well in agree-
ment with existing experimental data. ' '

In the present calculation we have excluded a small-
temperature interval AT-0. 01 K just below T, . This
temperature interval is, of course, insignificant as long as
we only want to achieve a theoretical guidance to experi-
ments. From a principle point of view it is, however, in-

teresting to know how the solutions to the dynamic equa-
tions (23) look like also in the very vicinity of T, . Here
the mixing of amplitude and phase fluctuations in the
eigenmodes becomes larger and the exact solution to the

200

l

«s
(arb. units)

100

FIG. 5. The calculated temperature dependence of the in-

verse of the dielectric strength of the soft mode. The parameter

p is a measure of how important the biquadratic coupling be-

tween tilt and polarization is compared with the bilinear one.
For a small biquadratic coupling (P=0.6), I/Des displays a
straight line in both phases. If the biquadratic coupling gets
larger (P=0.2), 1/b, es displays a crossover behavior in the Sm-
C* phase with one linear behavior close to T, and another one
far away from T, .
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dynamic equations gets rather involved. At T„however,
everything simplifies because it is possible to prove that

here the two eigenmodes are degenerate and both consist

of equal parts of amplitude and phase fluctuations. As by

the symmetry of the system amplitude and phase fluctua-

tions are degenerate at T, we must demand

y s(T, ) =y o(T, ). Thus from Eq. (26b) we get

(K3 —ep, )qo
fo(&, )= (52)

showing by comparing with Eq. (51) that fo ( T, )

=fs(& )=fsA('r )

The experimental verification of this degeneracy of the

two modes at T, is, however, a very subtle task due to the

different frequency scales of the modes. As the slope of
the fs( T) graph is of the order of 10 kHz/K, it is obvious

that a very accurate determination of T, is needed in or-

der to answer this question. From a theoretical point of
view it is, however, clear that as far as a Landau model,

simple or complicated, is used to describe the system we

always get as a result that the soft mode and the Gold-
stone mode are degenerate at T, .

VII. DISCUSSION

In this paper we have shown how we by the general-

ized ' Landau model, which is introduced by Eq. (5), can
calculate the temperature-dependent complex dielectric
constant in agreement with its experimental behavior for
ferroelectric liquid crystals near the Sm-C* —Sm-A phase

transition. We have shown how the results depend on the

parameter P, which is a measure of how important is the

biquadratic coupling between tilt and polarization and

conclude that values of p between approximately 0.2 —0.7
are relevant in describing the system.

Previous calculations ' ' of the dielectric constant
of the Sm-C* phase based on the classical Landau model

introduced by Pikin and Indenboorn have failed to de-

scribe its experimental behavior in a proper way. These
calculations predict a constant value of the Goldstone
mode dielectric strength eoheo=C e /2(K3 —ep )qo.

By comparing this expression with Eq. (32) we see the
similarities and differences between the two models.
Whereas the wave vector of the pitch adopts a constant
value within the classical model, the generalized one de-

scribes the temperature dependence of q in a correct way.
Furtheron, the constant C e, which in the classical mod-

el equals the (constant) ratio between polarization and

tilt, is, in our expression, replaced by Po/00, which in the

generalized model has been given a realistic temperature
dependence. The soft mode dielectric strength is given as

Eorms=C e /2[(K, —
e)M )q o+2u(T, —T)] by the classi-

cal Landau model. The denominator in this expression
corresponds to our X [cf. Eq. (24a)]. These two quantities
do only differ by some minor details. The large difference
between the generalized model and the classical one lies

in the fact that we have replaced the constant C e by the

quantity (b3/b7), a quantity which we have plotted in

Fig. 2(b). This factor can, in some sense, be regarded to

play the same role for the soft mode as the quantity

(Po/Oo) does for the Goldstone mode and permits us to
describe the crossover effects in I/b, es (cf. Fig. 5) which

has also been recently observed.
In Figs. (2) —(5) we have demonstrated that our model,

which in the limit p= 1,d =0 is identical to the classical
one, gradually transforms the two simple predictions of
the classical model into more realistic ones. The essential
feature of the generalized Landau model is, as discussed
before, the presence of the biquadratic coupling (the 0
term) between tilt and polarization in the free-energy
density of Eq. (5). The larger is the biquadratic coupling,
the smaller is p. We thus see that in order to describe the
dielectric properties (and also the basic thermodynamic
quantities) of the Sm-C' phase in a correct way the pres-

ence of the biquadratic coupling is essential. All the ob-

served anomalies in the thermodynamic behavior of fer-

roelectric liquid crystals approximately 1 K below T, can
be explained as crossover effects between the regime close
to T, where the bilinear coupling (the C term) between

tilt and polarization is dominant to the regime far from

T, where the biquadratic coupling is the most important
one.
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