
PHYSICAL REVIEW A VOLUME 42, NUMBER 2 15 JULY 1990

Langmuir oscillations against a single-ion pulse or cavity background
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Nonlinear plasma oscillations against a background supporting an ion pulse or cavity are con-
sidered. We treat two physical cases. The first is that of a cold plasma, the second of a cold-
ion-warm-electron plasma. The ion background includes a hyperbolic-secant-squared pulse or
cavity but is otherwise uniform. An exact solution is obtained for the cold-plasma case. Infinite
electric-field gradients result after some time, followed by a three-valued electric field, a physical im-

possibility. Thus some modification is called for. When the electrons are assumed to be thermal

these infinite gradients can be limited. This will be the case if the ratio of pulse strength to back-
ground density is less than y' '(A.D/I) ', where A,D is the Debye length and I a characteristic width

of the pulse. Applications are briefly discussed.

I. INTRODUCTION II. SOLUTION FOR COLD ELECTRONS

This paper addresses the problem of how the presence
of a localized ion pulse or cavity in6uences electron
Langmuir oscillations. Single-ion density cavities appear
in the stellar atmosphere, in Q-machine experiments, and
in double and triple plasma devices. ' There is also a pos-
sibility of observing conditions described here, with the
hyperbolic-secant-squared ion profile, when Langmuir os-
cillations become coupled with ion acoustic solitons. Fi-
nally, we are considering adapting our results to describe
oscillations near a grid. Exact solutions found here indi-
cate that after some time, regions of very steep electric-
field gradients should appear in the immediate vicinity of
the pulse. Ways of proceeding once these infinite gra-
dients are achieved are reviewed briefly. One of these
procedures, that is, introducing a finite electron tempera-
ture, is then made on the basis of an approximate calcula-
tion. The density bursts can then be finite and their dy-
namics are easily described. They will move away from
the pulse with a velocity that grows from zero and be-
comes uniform after a while.

Mathematically, the tool that will enable us to find
these exact solutions (and the approximate one for
thermal electrons) is that of introducing Lagrangian vari-
ables. Several plasma physics problems have already
been solved by doing this. However, the number of
exact solutions known to date is not yet so large that
another solution should not be considered with some in-
terest. Importantly, the situation treated here is funda-
mental when considering a range of plasma physics ex-
periments. The more realistic solution in which the elec-
tron temperature is nonzero and the resulting density
maxima are finite may also be of some practical
significance. Extensions, such as two pulses or a pulse
and a cavity side by side, are envisaged.

In the calculation we take the ion density to be time in-
dependent and peaked at x =0. We take

n;(x, t)=no[1+asech (kx)], a& —1 . (2.1)

Thus o;)0 describes a pulse and a (0 describes a cavity.
The initial electron density is uniform:

n, (x,O)=no . (2.2)

This will give an initial electric field. To find it we use
Poisson's equation:

E =4tre(n n), —
Bx

yielding

E(x,O) =4trenoak 'tanh(kx ) .

(2.3)

(2.4)

t)n, B(n, u, )

Bt Bx
(2.5)

Bv Bv„ —eE
(2.6)

Equations (2.3), (2.5), and (2.6) give a complete descrip-
tion of the plasma. We now introduce the Lagrangian
coordinates (xo, ~) and an auxiliary function g

P= f u, d~, x&)=x —g, ~=t .
0

(2.7)

The initial electron velocity u, (x,O) is taken to be zero.
The field (2.4) created by the charge imbalance around
the pulse or cavity will drive the system in a nonlinear
mode.

The equations for the electron density n, and velocity
v, are, in the Quid model of a cold plasma,
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The coordinate xo thus follows a fluid element in its
motion. Importantly, convective derivatives reduce to
partial derivatives. Our equations simplify in the new
coordinates to

B "r)f
n, 1+ =0, (2.8)

Ve eE
B~ m,

BE
=4@en; v, .

(2.9)

(2.10)

The first equation can be integrated to give

n, =no 1+
Bxo

(2.11)

and the second and third combine to give

8'
2 8

3 Pe+to, {1+asech [k(xo+P)] j =0 .0 (2.12)

This equation can be integrated:

+to', {g+ak 'tanh[k(xo+g)] j =0,
8

(2.13)

x =(x+f)/k,
t =~0, ' J d g

'
I
—2aln[cosh(x +P') /coshx ] P' j—(2.15)

(2.16)

the constant of integration being zero according to (2.4)
since P(0)=0. Upon integrating once again and using in-
itial conditions, we obtain

q2 — to2 g2 2to2 ak —
21n

X {cosh[k(xo+P)]/cosh(kxo) j . (2.14)

We now rescale the variables, introducing /=kgb,
t=s& 7 X =kxp to obtain an exact solution in paramet-
ric form. This amounts to, in terms of n, and Eulerian
variables x, t, interpreting the integral in (2.16) such that t
increases monotonically:

FIG. 1. Phase plane solution curves {I/r f) for chosen values
of kxo. (a) a =0.3, pulse; (b) a = —0.3, cavity.

period of the motion T is a function of xo, in contradis-
tinction to the cold plasma, uniform ion background
case, for which T=2m!to, . Both features are seen from
the figures. Figure 1 shows curves in phase space corre-
sponding to our solution for chosen xo and both a &0
(pulse) and a &0 (cavity). We see that, as xo ~~, we ob-
tain perfect plasma oscillations (circles), but for finite xo
the curves are not circles. To follow the motion of one
fluid element labeled by a given xo through one period,
we go around the corresponding phase curve once. Both
g, and 1( are thus periodic functions of time provided T is
finite. We now simply calculate T(xo) numerically by

n, =no (2.17)

=a {—2a in[cosh(x +g)/coshX] —g
Bx

tanh(x +P') —tanhx

I
—2a in[cosh(x+g')/coshx] —g j

~

(2.18)

2Tt
(d pe

This is an exact solution in parametric form: x =x(x, P),
t=t(x, P), n =n(x, g) Howeve. r, some features of the
solution are more simply seen by methods other than us-

ing (2.15)—(2.18) to plot n (x, t).
The following two particular features of the above

solution will now be needed. (i) The motion of each indi-
vidual fluid element, labeled by xo, is periodic; (ii) The

kx()

FIG. 2. Each electron fluid element, labeled by xo, oscillates
with its own period T. Dependence of T on kxo for a=0.3 and
—0.3.
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taking two times (2.16) up to the zero of the denominator.
The result, both for the pulse and the cavity, is shown in
Fig. 2, where T is seen to be a function of x0 tending to
2m. /co, as x ~~ in both cases:

T(xp~ ce ) =2', ' f dt/i'(2ag' f—' )
'~ =2rrltoz, .2lal

0

So P is always a periodic function of r, but the period de-
pends on x0. We can write this as

g=P(xp, r/T),
where the period of the second variable is now 1. Thus

BQ df
( T2)~, dT

Bxp Bxp Bxp

where the prime denotes differentiation with respect to
the second argument. As g' takes both signs, the secular
component will sooner or later cause the denominator in
(2.17) to vanish (later on we will, in fact, calculate
dT/dxp explicitly for small a). Thus, for some finite time
~, n, becomes infinite, and then three-valued in Eulerian
coordinates (without the ion pulse or cavity, dT/dxp is
zero and no explosive behavior is expected). This general
effect was mentioned by Dawson and a corresponding
exact solution for a periodic ion background was given by
Infeld, Rowlands, and Torven. This knowledge is now
seen to yield an exact, explosive solution for a single ion
pulse or cavity background.

III. TREATMENT OF INFINITE DENSITIES

Once the solution gives infinite density and subsequent-

ly three beams competing for the same space (same x}, it
must be abandoned in its present form. This is primarily
because it gives three different values for E, the three
values for n not necessarily being quite so damning.
What actually happens?

One school of thought ' argues that the infinite densi-

ty appearing in the model is not in itself a serious prob-
lem, as the integrated density is finite, whereas three plas-
ma beams can coexist. However, as the field E must of
course be single valued, Poisson's equation (2.3) should be
altered so as to include n„+n, 2+ n, 3 and indeed after a
while five, seven, and so on beams may appear. Instead
of investigating an exact solution, one now proceeds nu-

merically. For example, a theory of pump energy conver-
sion to a plasma has been obtained by doing this. All this
is based on the collisionless model (no friction between
beams) and we will come back to the problem of its appli-
cability in a moment.

A second simple scenario assumes we still have just one
electron beam at any given point and discontinuities
separate the beams. As there is only one n, at a given

point, Poisson's equation need not be altered. This is the
collision dominated plasma model. (There are plasma
mechanisms other than collisions for keeping streams
apart that we will not discuss. )

Whether one of these two extreme models is applicable
or not will depend on the slowing down time ~, of an
electron of one beam inside a second beam (we forget

about the third beam in these simplistic considerations).
If we denote the relative velocity for two beams by
hv =v„—v, z and the temperature of the second beam by
T, then

r, -(b,v) /n, 2lnA

at low temperatures T, and

r, —T /n, 2lnA

at high T." Here 1nA, the Coulomb logarithm, does not
vary appreciably over a wide range of plasmas, and is
usually roughly between 10 and 20. The collisionless
model will apply if ~, ))L /b, v, where L is a characteris-
tic length for the experiment. This is the case for high,
andean be for low T.

Only the above two limits are at all tractable by fluid
methods. Thus we can so cope with total interpenetra-
tion of the beams and total opaqueness. The former is
usually assumed in plasma physics, the latter in gas dy-
namics. ' Intermediate situations are difficult, so these
two have had more than their share of attention.

In what follows we will concentrate on situations such
that infinite densities are never reached, leaving models
based on the above two cases to a later paper. We must
of course introduce more physics, namely a thermal
spread for the electrons from the beginning. We will see
that when this thermal spread exceeds a critical value the
bursts will be finite (finite maxima of n} Below. this criti-
cal value of T infinite densities persevere as they did in
our T=O model (a real plasma is never zero tempera-
ture). Some of the ideas of this calculation were used in a
recent paper by Infeld, Rowlands, and Torven, but the
following is the first systematic exposition. We will just
consider the pulse case a & 0.

If the electrons are thermal with temperature T, and
adiabatic exponent y and g is assumed small, we general-
ize (2.13) to (first reference of 5):

+co&, P =P
2

—ak 'tv&, tanh[k(xp+ P)],
(3.1)

P'=co~, yAD=yKT, /2m, .

This is more tractable in the form

$2/ Q2+f=P —ak 'tanh[k(xp+f)],
BH Bx

%=co,r, P'=co, P . (3.2)

In our calculation a is assumed small and p«a. A
lowest order calculation in which p is neglected (small f;
cold electron calculation; a limit of the exact solution of
Sec. II}yields

a2@,
+g, = —ak 'tanh(kxp }, g&(0) =P,,(o)=O,

(3.3)

solved by
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g, = —ak 'tanh(kxo)[l —cos(i+X)]= A, (1—cos8o) .

(3.4}

This suggests we look for the finite temperature solution
in the form A (1—cos8) and also introduce multiple time:

0+ 1+

A +(P/2) —A BX/Bxo
BT$ Bxp

—(a/2) A /cosh (kxo) =0 . (3.6)

If P=O, BA /Br, =0 and from (3.6)

We have, by separating terms proportional to sinO and
to cosO, in next order

X=ar, /2cosh (kxo)

= —ar&tanh(kxo)/k cosh2(kxo) .
(3.7)

2—(P/2) A, +2 =0,
87i Bxo Bxp

(3.5)
Thus, from (2.11), dropping the subscript in r, ,

np

1 —[ A, ak tanh(kxo )cosh (kxo )sin8]r+ (1—cos8)
0

n0

1+[a tanh (kxo)cosh (kxo)sin8]F —acosh (kxo )(1—cos8)
(3.8)

This is the small-a limit of (2.17). Note the secular term
in the denominator.

We notice that (3.8) implies that after a while, when T.

exceeds a ', the third term (3.6} dominates the second.
Equation (3.6) can thus be approximated by

and this integrates to

=(a/P)[sech (kg) —sech [k(g+p)]] .
a1

(3.15)

X (p/2) X
BXo

—a/2 cosh (kxo) =0 . (3.9)
We are now in a position to draw BX/Bxo as a function of
xo (this is just —p, as a function of g+p) (see Fig. 3) by
using this result and (3.4); we could also draw n (x, r):

We now take X'= —X, r= pr to obtain

BX' /Br+ ,'(BX'/Bx ) =——a/2Pcosh (kx ) . (3.10)
n =no/[1+( A sin8)X„+ A„(1—cos8)],

x =xo+ A (1—cos8) .
(3.16)

Differentiating by x0,

BX BX B X
B1 Bxo Bxo Bx o

=ak tanh( kxo ) /P cosh ( kx o ) . (3.1 1)

Upon introducing p=BX'/Bxo, this takes the more famil-
iar form

Once again, we will try to see what is happening without
doing this.

Importantly, the denominator in (3.16) now remains
finite if

i A BX/Bxo
~

& 1 for all trajectories labeled by xo.
In terms of the original, unscaled variables, this yields the
condition

~P ~P+P =ak tanh(kxo ) /P cosh (kxo ) .
Br Bxo

(3.12)

We now perform a "second Lagrangianization, " a trans-
formation from coordinates xo, r to g, r, where g=xo—jo p dr', to obtain

Bp =ak tanh[k(g+p )]IPcosh [k(g+p )],
O'T

(3.13) kx,

Thus, expressing a11 in terms ofp,

0 p
a

=ak tanh[k(g+p)]/pcosh [k(g+p)],

p(0) =p, (0)=0; (3.14) FIG. 3. Schematic of phase plane solution curves (Bg/Bxo,
kxo) for pulse, a=0.3, and chosen values of kg.
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a /(y' kA.D) (1 . (3.17)

Infinite densities will be avoided if T, )2m, co~, a /yk K,
which is just (3.17) in terms of the temperature. When
this condition is satisfied, densities rise to a finite max-
imum value and this maximum is initially stationary at
xo = [cosh '( —', )'~ ]/k, the maximum of tanh(kxo)/
cosh (kxo). For large r, most phase points will have
reached the asymptotic regions where phase curves in
Fig. 3 are almost straight lines and the maximum will
move away from the ion cavity with velocity approaching
(P/a)' [an exact analysis could be performed from
(3.15)]. Eventually By/Bxo will become three-valued
(though not five or more) and use of our model must stop.
However, quite an improvement over the cold plasma
picture has been achieved at the price of some approxi-
mations and a further coordinate transformation. Densi-
ties are now finite and some interesting physics has been
described before the onset of multivaluedness.

IV. SUMMARY

By introducing Lagrangian coordinates, it has been
possible to give an exact solution corresponding to cold
plasma, Langmuir oscillations against an ion cavity or
pulse. This solution leads to infinite densities after finite
time. Various ways of dealing with this problem are dis-
cussed. By introducing a second coordinate transforma-

tion that formally resembles that from Eulerian to La-
grangian coordinates in the warm-electron —cold-ion
model, it has been possible to solve this extended problem
and obtain density bursts limited to no/(1 —a /
ki,Dy' ). The density maxima appear at finite distances
from the cavity +k 'cosh '( —', )' (one on each side of
the cavity), stay there more or less immobile for a while,
and then move away at velocities approaching plus minus
a maximal value. All this assumes that the electron tem-
perature exceeds a critical value. The predictions of this
paper could probably be checked by simple experiments
(see introduction).

From a mathematical point of view, it is interesting
that a second application of the same procedure, i.e., in-
troducing coordinates that reduce the convective to a
partial derivative B, +vB„ to B, in some space, should be
so powerful. Perhaps calculations in which this is done
as many as three or more times will be useful in the fu-
ture. Here introducing a thermal spread and this ap-
proach made it possible to avoid infinities and delay mul-
tivaluedness. It is also noteworthy that three is now the
maximum number of values for n.
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