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The concept of rnacrokinetic distributions is used to investigate the macroscopic dynamics of an

assembly of electrons in a weakly ionized gas in the hydrodynamic regime. In this regime, the ma-

crokinetic distribution {MKD) is shown to obey an equation that is equivalent to the Boltzmann

equation in the time scale of electron-density transport. Formal, approximate solutions to this

equation are obtained whose range of validity depend on the magnitude of the spatial derivatives of
the density. Specific conditions on the magnitude of these derivatives have been obtained. Explicit
expressions for the MDK are presented for the case of a quasi-Lorentz gas model. They have been

used to evaluate the electron current density in the hydrodynamic regime and to obtain expressions
for the mobility and dift'usion coefficient. In the regime of large electron-density gradient, these

coefficients have been found to depend on the normalized gradient. The consequences of these re-

sults are illustrated for the case of constant collision frequency.

I. INTRODUCTION

The ensemble-averaged dynamic behavior of an assem-
bly of electrons in a background gas under the influence
of a space-time varying field may be described at a micro-
scopic level by the space-time-dependent velocity distri-
bution function, f(v, r, t) (where v is velocity, r is posi-
tion, and t is time). Given the initial state of the assem-
bly, the distribution function at any other time may be
obtained from either a kinetic-type equation, such as the
Boltzmann equation (BE), or from Monte Carlo simula-
tions. Once the distribution function is known, desired
space-time-dependent macroscopic properties (which can
be measured) can be calculated by velocity averaging over
the microscopic distribution the corresponding micro-
scopic properties.

In general, the macroscopic variables that characterize
the macroscopic dynamics of the electron assembly de-
pend on average properties of the microscopic distribu-
tion over an extended velocity interval; moreover, their
dynamical changes occur over space-time scales that are
coarser than those of the microscopic distribution. This
distribution has a resolution in space-time scales corre-
sponding to those of a two-body collision, and thus con-
tains more information than necessary to provide a char-
acterization of the assembly in terms of macroscopic vari-
ables. A distribution function, with less space-time reso-
lution (coarser), and equivalent (as far as macroscopic
properties) velocity dependence than that of the micro-
scopic distribution, can equally serve to determine mac-
roscopic properties of the assembly, and to obtain closed
equations of evolution for the macroscopic variables that
characterize the dynamics of the assembly.

There exists a number of coarser distributions each
characterized by a different space-time resolution. This
resolution is dictated by the characteristic scales of varia-
tion of the dynamical macroscopic variables. Since these
distributions are velocity-dependent (i.e., kinetic vari-

ables) with macroscopic scales of resolution, they are col-
lectively referred to as macrokinetic distributions
(MKD). A procedure for obtaining MKD is to expand
the microscopic distribution functions in terms of those
eigenfunctions of the acceleration plus collision operators
in the BE (these operators are defined in Sec. II) with ei-
genvalues whose real part corresponds to the desired
resolution. However, for space-time-dependent accelera-
tions this may not be possible, and alternate, less compact
expansions (for example, in terms of either a local field or
eigenfunctions of the collision operator only) would have
to be used. Moreover, since, in general, the expansion
coeScients have no physical significance, it is desirable to
use alternate approaches for obtaining the MKD.

An alternate, physical, approach is to first identify the
macroscopic variables that describe the dynamics of the
assembly. Their equation of evolution contains the
characteristic space-time scales that define the resolution
of the description. These scales are then used to obtain,
from the BE, the equation for the MKD. Since the
characteristic scales of the macroscopic equations depend
on the distribution, the procedure outlined above must be
carried out self-consistently (see Sec. II). Although not a
unique set (rate coefficients can in principle also be used),
the velocity moments of the distribution can serve to
define the resolution scales of the MKD. Increasing reso-
lution is obtained by choosing an increasing number of
moments in the description, which are selected by order-
ing the moment equations according to their characteris-
tic space-time scales and keeping those with less or equal
resolution than desired. Each finite set of moments thus
selected defines a resolution scale and a corresponding
MKD.

In this paper, an analysis of the macroscopic dynamics
of the electron assembly in the coarsest space-time scale
is presented. By analogy with neutral gas kinetics, this
regime is referred to as the hydrodynamic regime. For
electron in gases, it is defined by the scale of resolution of
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the density. In the Sec. II, the various regimes that can
be defined through the use of the moments is reviewed.
In Sec. III, the hydrodynamic regime is discussed in de-
tail. An illustration is given in Sec. IV using a quasi-
Lorentz gas model. Concluding remarks are given in Sec.
V.

II. MACROKINETIC REGIMES
AND DISTRIBUTIONS

The state of the electron assembly can be described at a
microscopic level by the distribution function f (v, r, t) in
( v, r ) space. This distribution obeys the BE; namely, '2

d,f+v Vf+ E V„f=I(f),
m

d, n+V (nu)=vn,

d, (ne)+V (ev) qE nu—= v,ne, —

B,(nu)+V (vv) — En = ——v nu,q

(2a)

(2b)

(2c)

where, n(r, t), e(r, t), and u(r, t) are the electron density,
mean energy, and average velocity, respectively; the an-
gular bracket implies an average over the distribution,
c.= —,

' m U, and v, v„and v are the (space-time-
dependent) effective ionization, energy-exchange, and
momentum-exchange frequencies, respectively. These
frequencies are defined by

vn = f I(f)dv,
—v,no= —,'mv I dv,
—v nu= vI dv .

(3a)

(3b)

(3c)

An integral without limits implies integration over all
space. Since it is difficult to ascribe physical significance

where E=E(r, t) is the electric field (prescribed), and
I(f) is the linear scattering operator. No specific form
for the operator I need be assumed at this time. At the
macroscopic level, the assembly is characterized by a
"state vector, " Hz, whose components are moments of
the distribution and the corresponding MKD, f~~ '. That
is, H~=(S~, f/''), where S~=(m, j=1, . . . , N) with
mj. being a velocity moment of the distribution (a scalar,
vector, or tensor). The dimension of Sz, N, and its com-
ponents, m, are selected depending on the space-time
resolution desired for the description. Alternatively, Sz
and fM

' define the scale of resolution of the macroscopic
description. S~ and fM

' are obtained as follows.
First, the moment equations [obtained by taking ap-

propriately weighted integrals (in v space) of Eq. (1) (Ref.
1)] are ordered according to their characteristic scales.
This step requires a priori assumptions about the relative
magnitude of these scales, which can be made from phys-
ical consideration. In any event, the ordering used need
to be confirmed after a self-consistent description is ob-
tained. The first three, time-scale ordered moment equa-
tions are

III. THE HYDRODYNAMIC REGIME

In this regime, the electron assembly is characterized
(by definition) by H, =(S,,fM"). The evolution of the as-
sembly is determined from Eq. (2a) with the current den-
sity given by

nu(r, t)=J(r, t)= Jvfl"dv (4a)

and the rate v by Eq. (3a}, with f =fM'. Thus, the equa-
tion for f~" [Eq. (6) below] and Eq. (2a) form a closed set.

It is convenient in some situations to write the current
density in this regime as,

to higher-order moments, their equations of evolution are
seldom written down. The higher moment equations
would also have to be ordered accordingly. It is assumed
that their characteristic times are smaller than those
defined above. Note that, in general, r, (=v, ')) r
( =v ') for weakly ionized gases.

The first three moments, n, c, and u and their equation
of evolution, Eq. (2), can be used to develop three levels
of descriptions, each characterized by a space-time reso-
lution scale. The most coarse-grained description (i.e.,
lease resolution) has a time scale of the order of v
(=r); that is, the scale of the density equation. From
Eqs. (2a)—(2c), since v & v, & v, there is a time for which
the mean energy and average momentum of the electrons
have relaxed to a state of quasiequilibrium where their
subsequent variation is in the scale of ~. In such a scale,
the dynamics of the system is determined from Eq. (2a}.
Consequently, Sz contains one component, n; i.e.,
S, =(n(r, t)}. The equation for the corresponding MKD
fM" is obtained by averaging the BE over times shorter
than v. An equivalent approach is used in Sec. III to ob-
tain this equation. By analogy with classical gas kinet-
ics, s the time regime for which this description is valid
(namely, the longest time scale} is named the hydro-
dynamic regime. However, in contrast to gas kinetics,
the properties of this state can be derived from a single
macroscopic variable (instead of three), the density. This
definition of hydrodynamic is less restrictive than that
used in the literature which in addition assumes a specific
form for the distribution (see Sec. III).

"Nonhydrodynamic" (higher resolution) descriptions
can systematically be obtained by using an additional mo-
ment in Sz. Thus, the next less coarse-grained descrip-
tion is in terms of S2=(n(r, t), nÃ(r, t)} and the corre-
sponding MKD fl'. This description is valid for times
of the order of v, '. From a practical point of view, the
description with most resolution is in terms of
S3=(n(r, t), na(r, t), nu(r, t)} and fM'~I which is valid for
times of the order of v '. Note that the functional
dependence of f~' corresponds to that of the normal
solutions of the BE for classical gas kinetics as intro-
duced by Chapman-Enskog. ' However, as shown in the
Sec. III, the context in which this functional dependence
is used in this paper di6'ers from that of Chapman-
Enskog in that it also represents spatial gradients of the
corresponding moments. These nonhydrodynamic
descriptions will be discussed in a subsequent paper.
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J=Wn —Dp Vn +Jz, (4b) a„y'" —fa„f"'vdv V.n+ f I(fM')dv
where W is the drift velocity, Dp is the diffusion tensor,
and JR accounts for other contributions to the current
density that depend on derivatives of n greater than the
first (W and Do are, in general, space-time dependent}. A
significant amount of work has been devoted to the
theoretical determination of W, Dp and v, ' "
equivalently, to the closure of Eq. (2a). These investiga-
tions fall into two categories according to the method
used; namely, the free path" and the perturbed distribu-
tion function methods. "" In all approaches, the back-
ground (or zeroth order) electron distribution has been
taken to be space independent. The effects of nonequili-
brium (arising from density gradients, for example) are
then taken into account by introducing the concept of a
free path [method (1)] or by perturbing the distribution
directly [method (2)]. Approaches based on the perturba-
tion method have, in general, yielded more accurate re-
sults. They are characterized by the expansion of either
the distribution function in terms of spatial derivatives of
the density "" ' or the spatial Fourier transform of
the distribution in a power series in the spatial wave num-
ber. ' In all cases, the lowest-order solution is spatially
uniform so that the expansions are valid in the limit of
small density gradients. The results that have been ob-
tained have elucidated a number of phenomena, such as,
the properties of the diffusion tensor ' and the effect of
ionization on electron drift and diffusion. '

In the approach presented in this paper, an evaluation
of W, Do, and J~ follows from Eq. (4a) after substituting
an expression for fM'. The equation for fM' is obtained
by changing the time scale of the BE [Eq. (1)] from the
fine grained to a ~ scale. This can be achieved using a
technique introduced by Bogoliubov. Mathematically,
the change can be accomplished by the following rela-
tion:

f(v, r, t)=fM'(v, n(r, t)) .

That is, in the ~ scale, the space-time dependence of the
distribution is implicit through a dependence on the den-
sity. Physically, this is equivalent to saying that the
space-time dynamics of the assembly is determined by the
density. In the literature, the distribution function in the
hydrodynamic regime has been further restricted to have
a density dependence of the form of a (linear) expansion
in terms of gradients of the density. '" This regime cor-
responds to a subset of that presented in this paper.
Thus, the changes in f can be written as

E V„fM+(fM+nd„fM ) v+N(fM ) =I(fM ),
(8a)

where N (fM ) is a nonlinear term given by

N(fM)= (fM+—nr}„fM) f (fM+nB„fM)vdv.
n

—f I(fM )dv (8b)

Equation (8) is an integro-differential equation in four
variables (v, n) [in contrast to seven variables (v, r, t) in
Eq. (1)]; however, it is nonlinear [whereas Eq. (1) is
linear]. The nonlinear term arises from the changes in
the shape of the distribution due to changes in the parti-
cle density at r as a function of time.

Formal solutions to Eq. (8) can be obtained using per-
turbation procedures. To simplify the algebra (for the
sake of clarity), assume that the electric field is in the z
direction [E =Eo(z, t)a„where a, is a unit vector in the z
direction] and that the density gradients are also in the
same direction (Vn =B,na, ). It is convenient to obtain
an alternate representation for Eq. (8) by explicitly
displaying the nature of the n dependence of fM. This is
done primarily to assist in the physical interpretation of
the various approximations to be used for the solution of
Eq. (8). Since electron-electron collisions have been
neglected, the functional form of fM should not be
affected by the magnitude of the electron density. Thus,
its density dependence can only be through normalized
derivatives of n; namely, g, =d,'n ln, i =1, . . . , ~. That
1st

fM(v, n) =fM(v, tg; ) ),
where

(g, ]=(B,nln, B,nln, . . . ) .

Then,

+v VnB„f"'+~E V„f'"=I(f'"} (6)

with the condition that ffM'dv=n(r, t). Letting

fM"=n(r, t)fM(v, n (r, t)),
where ffMdv= 1, Eq. (6) can be rewritten as

8,f =B„fM"B,n,
Vf =a„f"'V. ,

V„f=V„fM'

(sa)

(5c)

8 g;
d.fM= &d, ,fMd. g, = gd, fM

ng]

Substituting in Eq. (8a),

qEp 0 g;
8, fM+5&fM™g Bs fM =I(fM ), (9a)

The equation defining fM' can be found using Eqs. (1),
(2a), and (5). The time derivative of the density may be
eliminated from Eq. (5a) by using Eq. (2a). After placing
Eqs. (2a) and (5) into Eq. (1), the following equation is ob-
tained for the MKD:

where

fiv=g, (U, —u) —g B,g f 8 f v, dv+ fI(f )dv .

(9b)
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These equations can also be written in terms of the ith
spatial derivative by noting that B,g;=g;+1 —g;gi. 5v
has the units of frequency and represents a change in the
scattering rate in and out (depending on sign) of various
regions in velocity space due to modifications to the dis-
tribution resulting from density gradients [first two terms
of Eq. (9b)] and from ionization [last term of Eq. (9b)].

Equation (9) is the (complete) working equation from
which various approximations to f~ can be obtained.
The first such approximation is the neglect in all subse-
quent discussions of all but the first factor in the expres-
sion for 5v. This corresponds to a linearization of 5v
(higher-order contributions can readily be included). De-
pending on the magnitude of the gradient terms in Eqs.
(8a) or (9a) [last two terms on the left-hand side (lhs)] as
compared to the electric field term (first term in lhs}, solu-
tions for the hydrodynamic distribution can be obtained
that differ in their range of validity. These solutions are
discussed in the following subsections.

General expressions for the current density, Eq. (4a),
can be readily obtained by inserting these solutions in Eq.
(4a). This is illustrated in Sec. IV for the case of a quasi-
Lorentz gas mode1.

~ED', f i
I—(f &

) = —u, g &fo for 5' (12a)

with solution

f i
=g', h, (v),

where

(12b)

EQB, hi I(h—, )= u,fo— (12c)

and

f h, (v)dv=0 .

EoB„f2 I(f2 )
—= —u, g 2h i for 52 (13a)

with solution

f, =g2h2(v),

where

(13b)

From Eq. (12), 8 .f i
=h, (v), and B,f, =0, i ) l. Thus,

t

Eo&„h2 —I (h2 ) = —u, h, (13c)

A. The density gradient expansion: small spatial derivatives

[This form of expansion is used throughout this paper.
However, as mentioned in the introduction to this sec-
tion, various ordering for the terms in the lhs of Eq. (9a)
are to be investigated. ] Substituting this expression into
the scaled form of Eq. (9a), and equating the coefficients
of each power of 5 to zero, leads to the following equa-
tions:

EOB, fo I(fo)=0 for 5—
Pl

with the condition

(1 la)

fodv=1 . (1 lb)

Equation (1 la) has the form of a steady-state, hoinogene-
ous Boltzmann equation, and fo can be identified as the
(zeroth-order) steady-state distribution of a homogeneous
assembly of electrons in a homogeneous field defined by
the value of the field at (z, t) This is the. distribution that
exists at (z, t) if local equilibrium with the field is as-
sumed. From Eq. (1 la), fo is found to be only a function
of v, fo(v), and

B,fo(v)=0, i ) 1 . (1 lc)

Thus,

To ease the record keeping, introduce a small parame-
ter 5 into Eq. (9a) by letting 8, —+58, , and thus g; =5'g .
Then the gradient terms are found to be of order 5, 0(5);
whereas all others are of O(1). Using 5 as a basis for a
perturbation expansion, the distribution may be ex-
pressed as

(10)

and

f h2(v}dv=0 .

Equations for 5' can be obtained similarly. To each order
in 5, the solution for f, is a product of a function of v

only [h;(v)] and g . This is a consequence of the assump-
tion that the last two terms in the Ihs of Eq. (9a) are of
the same order. Contributions from nonlinear terms con-
taining products g g', cancel out.

Combining Eqs. (7), (9), and (11)—(13),

fM (» n ) =n (fo +5g i h i +5'g 2h 2 +

=n(f +og, hi+g2h2+. . . ) . (14)

This solution for fM"' is the density gradient expansion
(DGE). It has previously been a priori assumed for the
distribution in the hydrodynamic regime. '" Explicit
evaluation of the distribution function requires the solu-
tion of Eqs. (lla), (12c), (13c), etc., for the h s. The
range of validity of this solution is determined from the
condition that g;=0(5'). This condition is further
quantified in Sec. III C.

%ithin the small spatial derivative regime, it is possible
to obtain a distribution with a larger range of validity
than that of Eq. (14) by considering g, and g2 to be of the
same order, and both of 0 (5) (in fact, many such distri-
butions can be obtained by considering groups of g, to be
of the same order). In this case, the right-hand side (rhs)
of Eq. (12a) for f, needs to be modified to include terms
of 0 (5) that depend on g2 (or other g,.'s). Similar
modifications need to be made to the higher-order equa-
tions [Eq. (13a), etc.]. An example of this procedure is
given in Sec. IV A. The resulting distribution reduces to
Eq. (14) in the limit g2 ((g, .
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B. Local hydrodynamic equilibrium

For g, +, =g, g, , i.e., g, =const in space, Eq. (9a) be-
comes,

an expansion about a nonuniform state whose functional
'form" is that of a distribution in local hydrodynamic

equilibrium. The solution to Eq. (16a) may be written,
formally, as

~. fM I(—fM)+. fM»=0 (15a) plv
fo Qo(" gl ) "p

2 / gl
2qEo

(17a)

where fM =fM(v ), only a function of v. Using this result
in Eq. (7), where

fM (v n)=n(z t)fM(v) . (15b) qEo
8„, Qo =I'( Qo ) (17b)

For conditions of local hydrodynamic equilibrium in gas
kinetics, the distribution function depends only on the lo-
cal hydrodynamic variables (not their spatial derivatives).
Since for electrons in the hydrodynamic regime, the only
hydrodynamic variable is n, the analog for the distribu-
tion in local equilibrium is that of Eq. (15b). In steady
state, Eq. (15b) is the distribution function obtained by
Phelpsz' for an exponentially growing (in space)
discharge.

C. Large density gradient g &

qE()
a, f,+.,g',f,=I(f, ) for no,

z
(16a)

with

fodv= 1 . (16b)

This equation is of the form of Eq. (15a); however, gI
here is not a constant. Thus, the lowest-order solution fo
is space dependent, and Eq. (10) in this case constitutes

%hen the density gradient is suSciently large that its
effect on the distribution approaches that of the electric-
fieid term, the second term in the lhs of Eq. (9a) ap-
proaches 0(1). In this regime, the solution obtained in
Sec. IIIA, namely, Eq. (14), is no longer applicable.
[Note that Eq. (14) represents a distribution that is ob-
tained by perturbing about a uniform state, i.e., lowest-
order term is space independent. ] This occurs, for exam-
ple, in the wings of a Gaussian density profile in space.
Moving away from the center of the distribution (where

g& =0), a point is reached at which the g~ term becomes
of O(1). Further out, the g2 term also becomes of O(1),
and so on. Since this does not occur over the whole spa-
tial domain being considered, it is desirable to obtain
solutions that are valid over larger spatial ranges than the
DGE, without the need of complicating the description
by involving higher-order moments of the distribution
(such as Sz or S3 ). Moreover, these solutions can be used
to determine the range of validity of the DGE (Sec.
III E). A solution valid in the range where the g, term
can also be of O(1) is presented in this subsection. In
Sec. III D, the regime where in addition the g2 term is of
0 (1) is considered.

Further define the "g, regime" by assuming that
B,g, B& fM is of O(5) for i =1, . . . , ~; thus, the third

term in the lhs of Eq. (9a} is of O(5). Proceeding as in
Sec. III A [representing f~ by Eq. (10)], the following
equations are obtained for the f, 's:

with
T

P2l UZ

I'(Qo)=exp '
gI I Qoexp

2qEo

In the next order

Plv 2

2,E," (17c)

mv,8, fo= — '
fo+exp

2qEo

Pl VZ

gI 8, Qo . (18b)
2qEo

Using this in Eq. (18a), the formal solution for f, can be
obtained; namely,

f ~
=Q, (v, gI )~,gIexp

where

mv,2

q p

(19a)

qEo mv,
Qi I'(Q&)=

2 @ Qo U ~ Qo2qE
(19b)

Higher-order contributions to fM (in 5) are similarly ob-
tained. Combining Eqs. (7), (10), (17a), and (19a),

2

fM"(v, n)=n exp — '
g, (Qo+B,g, Q&+ . ) .

2qEo

This is a "gradient expansion" in g&, where the lowest
solution depends on g&. This is the equivalent of Eq. (14}
in this regime. The spatial domain over which Eq. (20) is
valid is greater than that of Eq. (14) since no restrictions
have been imposed on the magnitude of g, (see Sec.
III E). Explicit evaluation of the distribution requires the
solution of Eqs. (17b), (19b), etc. for the Q, 's. An exam-
ple is given in Sec. IV. Note that the Q s are space
dependent, since the rhs of Eqs. (17b), (19b), etc. , depend
on g].

When Eq. (20) is used in Eq. (4a) to compute the
current density, and if the current density is separated ac-
cording to Eq. (4b), the expressions for W and Do, are
found to be space-time dependent (see Sec. IV). It may
not be practical in some applications to use Eq. (20) to
compute these parameters. An approximate expression

qEo
8„f, +U,g',f, I(f, )=——v, B,foB,gI for 5'

Pl 2 Z g

(18a)

with ff,d v =0. From Eq. (17a),
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D. Largeg& andg2

In this regime, g, and g2 (or equivalently, g, and B,g i )

are assumed to be of O(1); whereas, all other g s are of
O(5). Before scaling Eq. (9a), it is desirable to carry out
a change of variables that identifies part of the B,g i term
in Eq. (9a) with changes in the distribution that are
equivalent to those caused by the field term. Let

0
C=Uz

vs
(21a)

for fM in this regime can be obtained by letting
I'(Qp)-I(Qo) in Eq. (17b). Then, Qp(v, g, )=Qp(v).
Using this approximation in each order, the Q; s become
space independent. The resulting distribution can then
be used to evaluate the current density. If in the resulting
expression for J it is, in addition, assumed that the g, s
are small, expressions for W and Do can be obtained that
are space-time independent. These results can then be
compared with those obtained from the DGE (which ex-
pands the distribution before the evaluation of the in-
tegrals). By expanding after integration, it is possible to
explicitly determine the expansion parameter in terms of
macroscopic variables, which variables are not available
for comparison at the kinetic level. This is illustrated in
Sec. IV.

dependent due to the dependence of q on velocity. The
origin and effect of this velocity dependence can be as-
sessed from Eq. (21b). Let U, =a/v, (where v, is the ve-
locity increment due to the external field in the time v, ')
and y= Uii/c, , =g inv, .For v, =v (where v is the
average momentum exchange collision frequency), U, is
the drift velocity, and y is the ratio of the diffusion veloc-
ity to the characteristic energy. The equivalent field can
then be written as

Eeq = ~ l+ UzUa'V
g2

(23)

For given g„g2, and applied field, the effect of the second
term inside the parentheses in Eq. (23) is to produce an
acceleration that increases with U, . This results in an in-
crease or decrease in the tail of the distribution, depend-
ing on the sign of the density gradient. Thus, diffusion
currents not only change the local density at r, but also
the velocity spectrum of those particles since the particle
Aux depends on the value of U, . This is illustrated in Sec.
IV. The numerical evaluation of the current density in
this case requires the solution of Eqs. (4a) and (22a). For
computational expediency, the mobility, diffusion
coefficient, and Eq. (3a) can be calculated from Eq. (22a)
and tabulated as a function of Ep and ri. Equation (2a)
for the density can then be solved for the desired condi-
tions using the tabulated results.

Q
W =

]
S

(21b) E. Range of the validity of the DGE

(a +r/)Bgfp= v fp+I(fp) (22a)

where a =qE p /m, and v, is a scaling frequency (to be
chosen later) The .motivation for this transformation lies
with the fact that it is desired to assess the effect of the
B,g, B fM term in Eq. (9a) on f~. When compared to

the field term [first term in Eq. (9a)], it may be interpreted
as a force driving the distribution away from equilibrium.
Qualitatively, since the electric force tends to displace the
distribution in the field direction, the density gradient
force is to similarly displace the distribution in the direc-
tion of the gradient.

Using the chain rule to obtain the transformation of
the derivatives, the lowest-order equation [with fl
represented by Eq. (9)] is found to be

mU,
1 (24)

(physically, when the potential energy in a distance corre-
sponding to the scale length of the density gradient is
greater than the kinetic energy associated with the z com-
ponent of electron velocity over the range for which the
distribution is non-negligible), the exponentials in Eqs.
(20) and the equations for the W s [Eq. (17b), (19b), etc.,]
can be expanded in a power series in (mv, /2qEp)g, .
That is, letting

From the results obtained in Secs. III A and III C, the
range of validity of the DGE can (quantitatively) be as-
certained. At the macrokinetic level (where the only
macroscopic variables are the g s), for

where

0 3a
ri(vi, /co)= —v, 3 B,gi+ 4 g,

V~ a

v, (v„g,~)=p, g,

(22b)

(22c)

mU, AU,
exp — g, — 1 — g&+

2qEo 2qEO

Qo=Qoo —Qoigi+

(25a)

(25b)

with (vi, v„n) related to (vi, g, co) through Eqs. (21). To
obtain Eq. (22a), it has been assumed that B,g;, i &1,
and B+p are of O(5). Equation (22a) has the form of a
steady-state, homogeneous BE with an equivalent field
E,z=m( ay+)/ qAt this level of approximation, the
MKD is the distribution that exist at r, t if local equilibri-
um with the equivalent field is assumed. Unlike the
steady-state BE, the equivalent field in Eq. (22) is velocity

Qi =Qio+Q»&i+ (25c)

where the equations for the Q;. follow froin Eqs. (17b),
(19b), etc. Recalling that B,g, =g, +, —g;g, , and using
Eqs. (25) in Eq. (20), the resulting distribution (assuming
the coefficients of the nonlinear terms to be approximate-
ly zero, see Sec. lV), is the density gradient expansion,
Eq. (14). Thus, Eq. (24) must be satisfied in the range of
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mU
fM = Wp( v, I g, ) )exp — '

g,2qE

in Eq. (9a). The equation for Qp is found to be

(26a)

'2 3
m Vz

~.,Qo
—

E 2
~,giQo

qE0

validity of the DGE. In practical applications, since
most particles fall in the energy range below the mean en-
ergy, an approximate condition is obtained by substitut-
ing s for —,mu, in Eq. (24). Since s is approximately

qDo/p (where p is the mobility), in the DGE regime,
~g) ~

& W/Dp.
In addition to Eq. (24), the results obtained also require

that B,g, B f;, i =1, . . . , oo are of 0(5). It is possible to
I

quantify this condition by proceeding from a formal solu-
tion of the complete equation, Eq. (9a), obtained by suc-
cessive use of variation of parameters.

Let

g ~& qFo

I

mU
(29)

IV. APPLICATION TO QUASI-LORENTZ GAS MODEL

Alternatively, the g, 's define the velocity range (in the z
direction) for which the DGE constitutes a good approxi-
mation to the distribution function.

If g, , i = 1, . . . , N (or equivalent, 8,'g, ,
i =1, . . . , X —1) do not satisfy Eq. (29) over a significant
region of the u, range (with all others doing so), the ex-
ponentials not corresponding to these g s can be expand-
ed in a power series, resulting in a distribution that be-
longs to the family whose lowest-order term is space
dependent. The lowest-order member of the family (i.e.,
where g, is significant) is given by Eq. (20). The next or-
der member of the family, valid in the regime where both
g, and B,g, do not satisfy Eq. (29) over a large region of
u, space, can be obtained from Eq. (22a).

Again, let

+ v QB g Bg Qp=I (fp)
qE, ',.

(26b)

Qp =Soexp
m z

E 4X2 zg1 (27a)

a„s,+U 0

3 5

3 g)Sp4x2 '

in Eq. (26b) (the period in the expression 4 X 2 implies the
product of the two numbers); the equation for So is found
to be

B,f'+ d, f', + —B„(u af', )=I(f'),
3U

(30a)

In this section, the theory developed in the preceding
section is used to obtain the electron distribution of the
hydrodynamic state in the presence of density gradients
for a quasi-Lorentz model. This model is a Lorentz gas
model (m /M « 1, where M is the mass of an
atom/molecule that constitutes the background gas)
modified to account for energy losses to the background
gas. To obtain an analytic solution, the two-term spheri-
cal harmonic approximation for f will be used (i.e.,f =fp+f', cos8). In this case, Eq. (1) becomes [assum-
ing one-dimensional variation in space]

where

+ v QB g BsQo=I (Qp)
mE0

(27b)

where

m &m
(30b)

I"( Qo ) =exp

2 4
m Uz

a,g, I'(Q, ).
qE0 4X 2

I(fp) = B„[a(u)fp+P(v)c},fp j,1

V

(30c)

Continuing in this fashion, and combining Eqs. (26a),
(27a), etc. , the distribution can be formally written as

2
Vz

fM =Zp(v, I g, I )exp
qEo 2

2 4

4X2 zgi+
qEo

m

qEo

6
z

6x4x2

Xd,g)+. . .

where Ro obeys an equation of the form similar to Eqs.
(26b) and (27b). Following the procedure that led to the
DGE from Eq. (28), this expansion can also be obtained
from Eq. (28) by restricting the g s to the range,

v =No(v)u,

with

a(u)= u v, P(v)= u v
m 3 kT 2

o'(v) is the collision cross section for momentum transfer;
X and T are the density and temperature, respectively, of
the background gas. In Eq. (30b), it has been assumed
that the relative rate of change of f ~

is small compared
with the collision frequency. This is consistent with the
conditions defining the hydrodynamic regime.

Using the spherical harmonic approximation and Eq.
(30b) in Eq. (4a), the current density for the quasi-Lorentz
gas model is

J,= —f B,fpv dv —f aB„fpv dv .
~m 3 ~m

(31a)
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In the notation of Eq. (4b), Eq. (31a) becomes

J,= Wn —DoB, n +D&B,n +Jz (3 lb)

this section. From the discussion in Sec. II, in the hydro-
dynamic regime, the MKD for a quasi-Lorentz gas model
is defined as

where the term in Jz, Eq. (4b), containing the second
derivative of n has been explicitly identified. The factor
multiplying this derivative is the kurtosis coeScient, D, .
Explicit expressions for 8, D0, and D& are given later in

f0(u, z) =fM(u, n (z, t)) =nfM(u, n) . (32)

Using Eqs. (5), (30), and (32), the equivalent of Eq. (9a)
for this case is found to be

1 v a U a
&„fM+2 g fM +

3v ~m

d„(u'a /v )

g, — g, f —,a. 2' ' ya f ag,
3U 3& 3v

d„(u a/v ) U+, g dsfMd, g; 3—gB f ' '
[g, +g', I+nB',g,

—nB,g, B,lng&

+ QB f (B,g;) +N(f )= B,(af +PB„f ),1

I
U

(33)

where N(fM ) is obtained from Eq. (8b) and d„S(v)=dS(v)ldv. Equation (33) is the complete working equation from
which various approximations to fM can be obtained, which differ in their range of validity. Some of these solutions are
discussed in the subsequent subsections.

An alternate procedure for obtaining an equation for fM(v, n) [Eq. (33)] is to expand fM(v, n) in spherical harmonics
[instead off (v, r, t], and proceed from Eq. (9a) [instead of Eq. (1)]. This has not been done in order to start the example
from the usual equations for f0 and f;, Eqs. (30).

A. Density gradient expansion: small spatial derivatives

As mentioned in Sec. III, this range has been discussed extensively in the literature. '" ' It is instructive to obtain
the density gradient expansion as a solution to Eq. (33) in the range 8, -58,', where 5 is a small parameter (see Sec.
II A). Again, it is not necessary to specify what 5 is at this time; it is strictly used to assist in the ordering of the various
terms. Ambiguous ordering of terms has led to a significant amount of misunderstanding in the literature regarding the
range of validity of the various solutions obtained and the interpretation of the Wand Dv, that appear in Eq. (31b). '

Thus proceeding as in Sec. III A, Eq. (33) is rewritten in this range as follows:

a kT m 2va, 1 U+ I ~ »fM v gI5+ 2 g~5 — g25 fMdu

g B,lnfMB,'g, '5+ , d, (u a/vm)
J g &,f dv 8,'g 5+O(52) .

I

(34)

lnfM = g 5'S; =So+5S, +5~S2+ (35a)

Expanding lnfM in a power series in 5 (essentially a
Rytov expansion of the solution~z),

0V 6/v= 1
0

whereas all other contributions vanish. Using Eqs. (35) in
Eq. (34), and equating coefficients of each power of 5 to
zero,

fM=fo[1+5Si+5 (S2+S, /2)+ )

and

fM'=fo '[ 5Si —5'(Sz —Si/—2) ]

where

(35b)

(35c)
a kT

3~m

m
VmQ 8Q

0
1.
S0= vmv for 6'3v M

with solution

(36a)

Sofo=e '.
The distribution function is normalized such that

Since So is not a function of g, B,SO=8,f0=0. In the
l l

next order

r

a kT 2ua, 1, d„(u a/v )

3 ~ m I gl +
2 I fo du g& for 5'

m vm u fp 0 3
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with solution

S, = —f' a kT 2wa d„(u a/v )

2
PdQ dw g

w fo
(36b)

From this equation, 8 . S, =0, i&1, 8,S, =S, /g'„and in next order,

a kT+ v BS2=-
3v M

+ v BS /2
3v M

2va S, 1 „„d(us/v )S
~

+
2

+ fodu gz for 5
gi W fp 3 gi

with solution

Sz= —S, /2 —f 4' '(w)dw g2

where

(36c)

a "'(w) = a kT
' —

],

2wa Si 1 ~ u d„(u a/v ) S4 3

~
+

2
+ fodu

3vm gi w fp 0 3vm 3 gi

Using Eq. (36) and (35b) in Eq. (32) (and returning to the
unprimed variables, ), the hydrodynamic MKD in this

range is obtained; namely,

s'
fM =nfp 1 — g, — f 4' '(w)dw g2+0(5~)

g&

W= — f aB„f,u du,
vm

(38a)

4m UDo= f fou du
vm

—f a(B„f S, +f B,S, )u du, (38b}
vm

4 2

f foS, u du+ f "
a B„fof 'e' '(u)du

vm

+fo@"'(u) v'dv

(38c)

(37)
This result [obtained from Eq. (35b)] is valid in the re-

gime where each exponential factor (5'S, ) in the expan-
sion given in Eq. (35a) is less than one. This requirement
imposes on the magnitude of the g s conditions that are
equivalent to those given by Eqs. (21) and (26). As men-

tioned in the discussion following Eq. (21), an approxi-
mate condition may be substituted for Eqs. (21) and (26);
namely, g; ((qE/s)' The fi. rst term in Eq. (36c) cancels
out the contribution to the 0 (5 ) term in the expansion
of fM [Eq. (35b)] coming from the square of the 0(5)
term. The resulting solution, given by Eq. (37}, is linear
in the g s and is the density gradient expansion for fM'
(see Sec. III A). Equation (37) is accurate to 0 (5 ).

From Eq. (31b), the coefficients of the n, B,n, and B,n
terms in Eq. (37) can be identified as the drift velocity W,
diffusion coefficients Dp, and kurtosis coefficient D„re-
spectively. They are explicitly given by

f' =nf 1 —S + f ip' '(u)du g +0(5 )
0

where

(39)

q'"(u)= a2 kT
3v M™ f fpdw

u fo 0 vm

and Si given by Eq. (36b). Among the higher-order

terms, there are some that are nonlinear in the g s. To
0(5 ) Eq. (39) is linear in the g, 's and differs from Eq.
(37), to this order, by the term proportional to g2. Using

Eq. (39) in Eq. (31b), expressions for the transport param-
eters [to 0 (5 )] can also be obtained:

pr U
DGE—

Ud

D DDGE
p 0

4n f u f S'
3 vm gi

—f a B„fpf qi' '(u)du

+f 4' (u) u du

where ud and Do are given by Eqs. (38a) and (38b),
respectively. Equation (39) and the expressions for W

I

These results can readily be obtained by a priori assum-

ing an expansion for f in the form of Eq. (37). The
derivation given above indicates that such expansion is

valid in the range where d,'n /n is of 0(5'), i.e., there is a
definite ordering in the expansion (see discussion in Sec.
III C). In the range where this ordering is no longer val-

id, it is necessary to obtain other solutions to Eq. (33) for
1
M'
Consider next the regime where g& and g2 are compa-

rable to each order and are both of 0(5). Following the
same procedure as used to obtain Eq. (37) from Eq. (34),
the MKD is found to be in this regime,
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and Do have been obtained by Penetrante and Bardsley
using a different procedure. '

It is important to note that the expressions for the
current density [Eq. (31)] obtained using Eqs. (39) and
(37) are not equal. To O(5 ), Eq. (39) leads to a term pro-
portional to r), n, whereas Eq. (37) does not. In order to
obtain terms proportional to B,n using Eq. (37), it is

necessary to go to 0 (5'); in which case, additional terms
also proportional to d, n than those found in Eq. (39)
come into play. Moreover, going to O(5 ) with Eq. (39)
brings in terms that are nonlinear in the g s. Such terms
are not found in Eq. (37). As far as the transport parame-
ters, Eqs. (39) and (37) yield the same drift velocity and
diffusion coefficient, but different kurtosis, and higher-
order coefficients.

B. Large density gradients

a~ kT 2gia m
u + v„, B fo+u' + v fo

3v M "' ' 3v M

d, (u a/v ) fo. (40)

fo(u, g, ) = Co(1 —Qo)exp —f bu du (41a)

A solution to this equation for a given velocity depen-
dence of v may be very difficult. It is however possible
to solve this equation numerically and used to tabulate J
as a function of a and gi for use with Eq. (2a). An ap-
proximate analytic solution can be obtained by treating
the rhs of Eq. (40) as a perturbation, in which case, the
solution becomes

When the density gradient is sufficiently large that
terms proportional to g, approach O(1), while terms
proportional to g;, i %1, are of O(5), the equation for fo
is found from Eq. (34) to be

where

2g, (a /3v )+ (m /M)vb=
(a /3v )+(kT/M)v

(41b)

Qo= —g, f exp f bu du
f d„(u /av )exp —f biudtu du

0 0

3u [(a /3v )+(kT/M)v ]
(41c)

with the normalization condition 4mfo" fOu d. u = l.
Higher-order terms can similarly be included. The re-

sulting expression for the distribution constitutes an ex-
pansion about a nonuniform state, that given by Eq. (41).

These results may be modified to account, in lowest or-
der, for the effects of terms proportional to g2 and B,g, .
Following the procedure presented in Sec. II, with an al-
ternate velocity transformation to Eq. (27a); namely,

g=u —(a /v, )g,

W=a/v +O(B,g&)

Do =Duo/(1+dg, ),
where

—', (a/v ) +(2kT/m)
Doo =

(m /M)v

and

(43a)

(43b)

(43c)

C. Explicit evaluation of distribution function

and transport parameters: constant collision frequency vo.

In this case (and neglecting the contribution from

Qo ) v = vo and Eq. (4 la) becomes

fo(u, gi)=Coe

where

Co=(b/m) i

(42a)

(42b)

with b given by Eq. (41b). From Eqs. (42), (31), and (4b),
the drift velocity and diffusion coefficient are found to be

the lowest-order solution fo is found to be given by Eq.
(41a} with a replaced by (a+ri), where g is defined by
Eq. (28b) with u, replaced by u. Letting fl=nfo(u, gi)
and in Eq. (4b), the current density and the transport pa-
rameters can be determined. This is explicitly carried out
in the next section for the case of a constant collision fre-
quency.

d =a/(3v m/M) . (43d)

Note that, in lowest order, the drift velocity is not
affected by the density gradient. The effect of the gra-
dient is to enhance (decrease) the value of the diffusion
coefficient in regions with negative (positive) density gra-
dient. Moreover, the diffusion process is found to be non-
linear in g, . The parameter d has the units of distance,
and, from Eq. (43d), it corresponds to the distance
covered in an energy exchange time (mv/M) by a parti-
cle traveling at the drift velocity (a /v). For g, « d
Eq. (43b) can be expanded to yield Do-—Doo(1 —

dgi ),
which when used in the continuity equation [Eq. (2a)] re-
sults in a linear equation that contains terms proportional
to the third space derivative. For g, d ~ 1, the full expres-
sion needs to be retained. This expression for Do renders
the continuity equation [Eq. (2a)] nonlinear. Equation
(2a} may be written in this case as

d, n + 8'B,n —B,(DOB, n) =0,
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specific form for these expressions has been obtained for
the case of a quasi-Lorentz gas model (Sec. IV). It has
been shown that, in lowest order, the effect of the non-
linearity is to enhance (decrease) the diffusion in regions
with negative (positive) slopes. These effects are more
likely to be experimentally observed for conditions that
result in large values of the nonlinearity parameter d [Eq.
(43d)], [it is evident from Eq. (44) that the magnitude of
the nonlinear effect depends on both the magnitude of the
density gradient and d]. The values for the nonlinearity
parameter and the profile chosen in this paper are such

that Eq. (25) is weakly nonlinear. To extend the results
to higher values for d and/or the density gradients,
higher-order terms [such as Q in Eq. (4la)] need to be in-
cluded in Eqs. (43).
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