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Maximum entropy production far from equilibrium: The example of strong shock waves

E. Rebhan
Institut fur Theoretische Physik, Uniuersitat Diisseldorf, Federal Republic of Germany

(Received 6 July 1989; revised manuscript received 12 March 1990)

The neglect of either mass, momentum, or energy conservation leaves one degree of freedom in

the determination of the steady state behind stationary shock waves, the entropy production rate in

the shock front becoming a function of this. In all three cases this function has an absolute max-
imum that is approached by the entropy production rate of real shock waves for a Mach number M
close to 6 in the first case and asymptotically approached for M ~~ in the last two cases. These re-

sults are shown to hold true also when the shock waves are treated relativistically. The example of
shock waves demonstrates that some systems far from equilibrium may be characterized by max-

imum entropy production similarly as certain systems close to equilibrium are characterized by
minimum entropy production.

I. INTRODUCTION

The characterization of physical states by extremum
properties is not only very useful physically and
mathematically, but also especially appealing from the
psychological point of view of understanding. Many
physical laws can be formulated as extremum principles,
and the characterization of thermodynamic equilibrium
in closed systems by maximum entropy is one of the most
fundamental and fruitful laws of physics. Under certain
circumstances, open steady-state systems close to equilib-
rium can be characterized by extremum principles like
minimum entropy production, minimum excess-entropy
production, or otherwise (see, e.g. , Refs. 1 —4).

Stable steady states far from equilibrium are certainly
distinguished from their time-dependent neighboring
states, but no unique characterization is at hand. It was
already noted in other investigations that the entropy
production far from equilibrium may be far from
minimum. ' In this paper, the entropy production rate
in shock waves is investigated under this point of view,
and it is shown that in a sense to be specified later it
comes close to maximum if the shock waves represent
states far from equilibrium. It should be pointed out that
this maximum property of the entropy production rate is
meant in a sense similar to the well-known minimum en-

tropy production rate in certain systems close to equilib-
rium. It should not be confused with a local maximum
entropy production principle formulated for systems
close to equilibrium.

Heat conduction in a rod is perhaps the most simple
example demonstrating why certain systems can be
characterized by minimum entropy production close to
equilibrium. For the steady-state solution T = T0
+ ( T

&

—To )(x —xo ) /L of the heat conduction equation
t), T =(tt/cpo)d„„T [where T(x) is the rod temperature at
position x; L =x, —x0, which represents the length of
the rod; K is the heat conductivity; c is the specific heat;

po is the density; A is the cross section of the rod], the en-

tropy production rate

x, ((j T)
P =vA x

p T2

becomes

nW (Ti —To)'

L T0T)

while its minimum is given by

cA T
minP = ln

0

whence

(2)

P,
minP

(T, /To —1)(1—To/Ti )

(lnT, /To)
(4)

II. FORMULATION OF THE SHOCK-WAVE
PROBLEM

In the rest system of a stationary shock-wave mass,
momentum and energy must be conserved, yielding the
Rankine-Hugoniot equations

For large deviations from thermal equilibrium T:—T0
(large values of T, /To), P, becomes appreciably larger
than minP, and we even have phoo for T&/To~ oo.

Only for T, /To —1=a«1 we get p= 1+a /12, i.e., P
and minP coincide up to second order in e, which is the
reason why close to equilibrium heat conduction can be
characterized by minimum entropy production.

Obviously, (1) poses no upper limit on the entropy pro-
duction, and from (2) one can conclude that this remains
true even if one would impose monotonicity of the tem-
perature profile as a side condition. This shows that the
characterization of systems very far from equilibrium by
maximum entropy production, which will be demonstrat-
ed for strong shock waves in this paper, is not a general
property but, like minimum entropy production, is
reserved to special systems.

781 1990 The American Physical Society



782 E. REBHAN 42

P1v1 =P2v2

5 1+Plv 1 5'2+P2v 2 ~

y P1
P1"1P1 1

y 5'2 V2
=P22 r —1p, 2

(5)

(6)

In real shock waves where (13) holds, the normalized en-
tropy production rate (19) becomes

)
p 1 —y+2yM 2+(y —1)M

(1+y)M (1+y)M
(20)

x =p&/p2 V =p2/p„z =v2/u, ,

and employing the Mach number

M = u i /( yp i /p i )
'

we can rewrite (5)—(7) as

(8)

(9)

(see, e.g. , Ref. 7). Here, indices 1 and 2 denote the steady
states in front of and behind the shock wave respectively;
p is the density; v is the flow velocity; p is the pressure;
and y=c /c„, which represents the ratio of specific
heats. De6ning

For large Mach numbers, we get

P„"~st „=lnM (21)

We shall now omit one of the three conservation laws
(5}—(7) or (10)—(12), respectively, first mass, then momen-
tum, and last energy conservation, and denote the corre-
sponding entropy production rate by P*,P, and P,', re-
spectively. The remaining two conservation laws leave
one of the three variables x,y, z, say z, undetermined, and
we will therefore have

x =z

2
y =1+yM 1 ——

X

y =—1+ M — M2—1 y —1 y
—1 z

z 2 2 x

Equations (10)—(12) are solved by

x=z=, y=1+ (M —1) .
2+(y —1)M 2y

(1+y)M 1+y

(10)

(12)

(13)

P" =P'(M, z),
etc. It turns out that P'(M, z), P,'(M, z), and P,"(M,z) all
have an absolute maximum with respect to z for all given
values of M. These maximum values will be denoted by

P;(M) = max P,'(M, z),

etc. , and compared with the entropy production rate (20)
in a real shock wave.

III. SHOCK WAVES WITHOUT MASS
CONSERVATION

The entropy production rate in the shock wave can easily
be calculated from the entropy density per mass

y
s=e, ln ~P +s,

P 1P1
(14)

S1=M1s1=p1v1s1Fht . (15)

(s~ is the entropy density in state p&,p&) and the shock-
wave data. During the time interval ht, on side 1 where
the flow enters the shock wave the mass M, =p, v, FAt (F
being the cross section of the shock wave) is lost carrying
the entropy

The entropy constant s1 enters the entropy production
rate (19) only when mass is not conserved, zWx. It ap-
pears reasonable in this case to take into account only
those entropy changes which are in agreement with the
change of state across the shock front. This means that
we shall drop the s, term also when mass is not con-
served. However, we shall still keep the s1 term for a
while in order to show that its presence does not affect
the limiting case M~ ~.

Omitting now the equation of mass conservation (10)
with the help of (11) and (12) x and y can be expressed in
terms of z,

On side 2 where the flow comes out of the shock front,
the mass M2 =p2v2Fht appears carrying the entropy X = (y+1)M z

y = (y —1)M2(b /z —c),
2(1+yM ) z —a ' (22)

S2 —M2s2 —
p&v 2s2FA (16)

where
From (15) and (16) we get the entropy production rate

S2 —S1
P = =F(pzv2sz —p, uisi } .

ht (17)

p Q P
euFplv1

From (8), (14), (17},and (18) one readily obtains

(18)

In the following, we shall consider the normalized entro-
py production rate

2+(y —1)Ma=
2(1+yM )

y[2+(y —l)M ]
(y —1)M

1+yMe=
(y+1)M

(23)

Note that for positive values of p and p, or x and y, re-
spectively, we must have

Z S1 ZP*= ——1 —+—1n(xry) .
X C X

(19)
a ~z ~b/c .

With (22), (19) becomes

(24)
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2(1+yM ) z —a 1

1 f( )
(y+ 1)M z c„c.

(25)

+1Mf (z) =(y —1)M
2(1+yM )

'y
z 6

c
Z 0 Z

(26)

where For a given M, P ' has extrema at BP ' /Bz =0 or

S)—+ lnf (z) (2a —z)+[—2ycz +(3yac+2yb b)z—+ab(1 —3y)]/(b —cz)=0 .
C

(27)

If y =—,', using (23) one finds after some calculation that
z =2@ is a zero of this equation which can be rewritten

2

lnM
y2 ]

(29)

(2)+1 f ()+2ycz+yac 2yb+—b

CU b —cz
=0

(28)

in this case. For M —+~, lnf(z) —+ lnM and the term
with lnf (z) becomes the dominant one in (27), showing
that z =2a is the location of an extremum also for arbi-
trary y then. This extremum turns out to be the absolute
maximum of P'. Inserting z =2a and (23) in (25), to the
leading order we get

This shows that for large M, the dominant contribution
to P ' does not depend on the entropy constant s, .
From now on, we shall set s& =0 and additionally assume

3
in order to take advantage of the simpler extremum

condition (28).
Figure 1 shows P'(M, z) as function of z for several

values of M. For M ~ 6.95. . . , P' has an absolute max-

imum, a relative maximum, and a relative minimum. In-
serting z =2a and (23) into (25} and (26), one obtains the
extremum value

25 9 1 —1/5M
m 16 5 3+M2

lnM2+ ln2+ ln 1+ —4 ln 5+16 10 3 3

3 3 M M

P * for M&6.25. . .

P * for M &6.25. . . . (30}

It is found to be a relative minimum up to
M =6.25. . . , where it coincides with the smaller one of
the two relative maxima coming from the right. Above
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FIG. 1. Entropy production rate in shock waves without
mass conservation. P*(M,z) is shown as function of the nor-
malized quantity z =(z —a)/(b/c —a) for several values of M.
The position of the absolute maximum is indicated by dots, that
of the smaller relative maximum by dots and dashes, and that of
the relative minimum by dashes. (y = 3.)

M=6.25. . . , z =2a becomes the position of a relative
maximum while the relative minimum wanders to the
left. Above M =6.87. . . , it becomes the absolute max-
imum, and at M=6.95. . . , the relative minimum and
maximum to the left of z =2a merge and disappear, leav-
ing the absolute maximum at z =2a as the only ex-
tremum. P * (M), the absolute maximum of P'(M, z), is
shown in Fig. 3.

The surprising result of this section is that for
M =5.73. . . real shock waves actually assume the maxi-
mal value of the entropy production rate which can be at-
tained under the neglect of mass conservation (see Fig. 4
which shows P,'/P ' as a function of M), i.e., for
M =5.73. . . the equation of mass conservation can be
replaced by the requirement of maximum entropy pro-
duction. If at all, one would have expected a result like
this for very large Mach numbers. However, for M~ 0o

and reasonable values of y, according to (21) and (29) the
entropy production rate lies we11 below maximum. Only
for y~ao do the M~ao asymptotic values of P„* and
P ' approach each other. A possible interpretation of
this result is that, with respect to the entropy production
associated with mass creation, real shock waves are
furthest away from equilibrium or "strongest" at
M =5.73. . . . At all other Mach numbers one could
come further away from equilibrium by creating addi-
tional mass in the shock wave.
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IV. SHOCK WAVES WITHOUT MOMENTUM
CONSERVATION

Omitting the equation of momentum conservation (11)
from (10) and (12) we obtain

1 —1 —1x=z, y= —1+ X M2 7 M z,
z 2 2

(31)

and (19) yields

P;*(M,z}=ln z ' 1+ y M — M z
2 2

(32)

Figure 2 shows a typical pattern of P;* as function of z for
fixed M. P,* has an absolute maximum at

1/2
2+(y —1)M

(33)
(y+ 1)M

its value being given by

10 'l5 20 25 30 35 40

FIG. 3. P„,P *,P, , and P,* as functions of M.

p, 1 Mp+ y+1 2+(y —1)MP,*= lnM + ln
(y+1)M

P,'(M) is shown in Fig. 3. Asymptotically, we have

M =1+@

(34)
vation since

P,*/P,*~1 for M~~ .

V. SHOCK WAVES WITHOUT ENERGY
CONSERVATION

(36)

(35)

respectively. For small M —1 =e, from (21) and (35) we

get

P'/P = e,4,

3(y+1)
showing that P„' is far away from P,*, although P„* and

P,* tend both towards zero as M~1. Strong shock
waves can, however, be characterized by a maximum of
the entropy production rate without momentum conser-
vation since
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FIG. 2. Entropy production rate in shock waves without
momentum conservation and without energy conservation.
P,*(M,z) and P,*(M,z) are shown as functions of z for M =4.

If energy conservation (12) is omitted, (10}, (11), and
(19) yield

x =z, y =1+yM (1—z) (37)

and

P,'(M, z) = lnIzr[l+yM (1—z)]l .

A typical pattern of P,* is shown in Fig. 2, the absolute
maximum of P,* with a value of

P,'(M)= lnM +(y+1) ln
1+yM

(y+1)M
being obtained at

(39)

1+yM
max (y+1)M

P, (M) is shown in Fig. 3. The asymptotic values of P,*
for small and large M are

(40)

P„*/P,*~1 forM~ ~ . (42)

e, P,*ll „=lnM, (41)M =1+@ 2 y+1
respectively. Again, P„* is far away from P,' for small
M —1=a since

P„ /P = E
4 —1

3 @+1
according to (21) and (41). And again, strong shock
waves can be characterized by a rnaximurn of the entropy
production rate without energy conservation:
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VI. RELATIVISTIC TREATMENT Pl /PZ~ y P2/P 1 ~

(43)
According to (9), M ~ ao requires v, ~ OD. This indi-

cates the necessity for a relativistic treatment which is
carried out in this section. Relativistic shock waves in an
ideal gas have first been treated by Taub. (Note that
Taub uses normalized flow velocities, but the velocity of
light is not normalized. ) For the reader's convenience, the
basic facts about relativistic shock waves needed in this
paper are briefly summarized in the Appendix.

Defining

vp

(1 2/ 2)1/2

vl

( 1 U /C 2)1/2

and introducing a Mach number

M = v 1 /[a 1 (1—v 1/c2)'/2], (44)

which becomes infinite for infinitely strong shock waves
(v 1 ~c), the relativistic Rankine-Hugoniot relations
(A13)—(A15) can be rewritten as

X =Z

1+51+ylM (1+51—z /x)

1+5I+r I5&M z

1+(Ma, /c )
4

1+(Ma, z/c)
(y, —1)c

+
( I+5, )a,

1+(Ma 1 /c)

1+(Ma lz/c)

(45)

(46)

(47)

where

and

with

yl Pl y2 Pl

yl —1 p,c'' '
y2

—1 p, c' '

4+ ([K,(g)/K2(g) 1]—
3+g[(K, ( g)/K2 (g) —1]

(48)

(49)

r c 1—
a &xy

Q 1

(y, —1)c
(50)

according to (A8), (A12), and (43).
It is not interesting to consider the neglect of particle

conservation (45) relativistically since in this case max-
imum entropy producton is already obtained for
M=5.73. . ., well in the classical regime. We shall,
therefore, make use of (45) to eliminate x. In order to ob-
tain some simplification, we shall furthermore assume
that the gas in front of the shock wave is classical, i.e.,
yl= —'„al =(ylP1/p, )' «c, and 5, =(a 1/c) /(yl —1)
« 1. With this assumption, (46) and (47) can be approxi-
mated by

I

The entropy flux density is given by

j, =snv/(1 —v /c )'/ (54)

Fs&n&v&

Z Z I/Z(1—U2/c )

(55)

From (54) with (A13) we obtain the normalized entropy
production rate

2(1—
U I /c ) S2 —Si

p Q

3kn
&
v&F At

2
(s2 —sl ), (56)

the normalization being chosen such that we obtain just
(19) with z =x in the classical limit. With (A19) and (43),
and our assumption of a classical state 1 and the corre-
sponding asymptotic expansion

K2(p, c2/p, ) =K,(y,c'/a', ) =
1/2

1TQ I

2r )c

~1 1

7

Therefore, during the time interval ht and in the rest sys-
tem of the shock front, the entropy loss in front and the
entropy gain behind are

Fs, n&v,Si= At,
(1 2/ 2)1/2

y= 3+5M (1—z)
3+55 M

5(y2 —1) 1+(Ma, /c)

1+(Ma, z /c)
2 5(c/a) y2

3 3yz r2 1

——+ lnyz
5

2

from (56) we obtain after some calculation

2C

3Q

1+(Ma, /c)

1+(Ma, z/c)
5 2

+ lnE
3Q IyZ

37M I——ln
2 10c

(57)

while in (49) we can set

5C

3Q IyZ

(52)

(53)

In real shock waves, (51) and (52) must be solved simul-
taneously yielding y =y (M) and z =z (M). Inserting the
results in (57) one obtains the entropy production rate
P„(M) for real shock waves. If momentum conservation
(51) is neglected, the resolution of (52) with respect to y
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(M, z}, and inserting thts in, 557, one obtains

,P'(M ). Q it 1o o 1,
M, I contrast to the classi-~~'= max I',* M, z . n con

P'(M) can be deter-
The were calculated numerically

[Forthe ei 1 1 1-km/sec are shown in Fig. . or e
1' htl rewritten in ordertion, some equations m

'
ns must e sig y

r e numbers. Also, in-to avoid di8'erences of extremely large num ers. s, '-
I

tained for classical shock wav p,
(49)

ves im ly T2~~ an
accor ing 0d t the asymptotic evaluation of

b istent with the results ob-This will turn out to be consis en
tained for y and z.

s. With =4, theLet us rs confi t onsider real shock waves. i y2 —3,
comparison of (51) and (52) yields the equation

3/M +5(1—z)
3/M +552z

5

8z

2 1/21/M +(a&/c)

1/M +(a,z/c)2
2c

301

' 1/21/M + ( a ) /c )

1/M +(a,z/c)
(58)

which is solved by

2c

&Sa,
(59)

totic expansion (61), we obtam

=2 +CP'(M w)= —21thlf + ln
/ )2]3/2i [1+ wa& c

y=5M /9. (60)

of1/M . The corresponding value o yup to terms of order
is

(66)

For a given M the maximum of P, (M, ww is obtained
when

With (59), (60), and the asymptotic expansion

K (u)= for u~0,=2
2 2

from (57) we obtain

P„'(M)~4, lnM for M~oo .

(61)

(62)

or

aP,'
Bw

c
Wm~x

3(a, /c )w

1+(wa, /c)
(67)

(68)

and

5Mc

12a,z[1+(Mza, /c) ]
2 1/2 (63}

o —,g-1/M, and with (61) from (49) we[Note that yz-M, ~—,an
et ~—' as assumed. ]

r the ne lect of momentum conserva-
tion. From (52) and (57), with y&= 3

an M ~~ we
tain

This vaue wah' 1 was confirmed numerica y. q
'

all . E uation (66)
shows that, just like P„'(M),

P '(M)~ —' lnM for M~~ .l 3 (69)

Let us finally consider the neglect of energy conserva-
tion. From (51}an, and (57) and using again the transforma-
tion (65), we get

4a
&
[1+(Mza&/c) ]'

P;*(M,z) =—
2

Mz+ ln
[1+(Mza t /c ) ]2 1/2

4[1+(Mza, /c) ]'
M

(64)
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t terms. Now, transformingwhere C represents constant terms.

from z to the variable

(65)

s —1/M against terms —1 on—1 on the as-neglecting terms
m at some finite wtion that I', reaches its maximum asumption t a

lt (68}],and using the asymp-[which is verified by the resu t, an
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I
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FIG. 4. P,*/P, P, /;, an,*/P,*- d P*/P * as functions of M.
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1.0—

0.9—

0.8—

0.6—

relativistic perhaps not too surprising if one keeps in mind that a
shock wave without mass conservation must be supple-
mented by a mass production device with its own entropy
production rate.

It may be conjectured that the characterization of
states far from equilibrium by a maximum of the entropy
production rate can be extended also to other classes of
systems. The existence of a maximum could be an indica-
tion for this possibility. Maximizing the entropy produc-
tion rate might even be used as a heuristic approach for
the determination of steady states far from equilibrium.

0.5
10o 10' 10' 10~ 10' 1 Q' 1Q'

I I

10' 10'
M

FIG. 5. P„*/P,* and P„*/P,* as functions of M; the classical
results are dotted, the relativistic results (a&=0, 3 km/sec,
c =300000 km/sec) are drawn out.

4

P,'(M, u) =—21rdlf + ln +C, (70)
3 (1+—', 5,w')'

with maximum again at (68); and according to (66) we
have

APPENDIX

Using summation convention, the relativistic equations
for the How of an ideal gas are

a (nU') =0
X

(A 1)

(A2}

with

for particle number conservation (n is the particle num-
ber density per volume in the rest system, U is the veloc-
ity four vector) and

P;(M)~~41n M for M —woo . (71) T I'= nm+ ne +p
U UP p~P

c2
(A3)

It follows from (62), (69), and (71} that our classical re-
sults (36) and (42) also hold relativistically. The numeri-
cal calculations presented in Fig. 5 show that the conver-
gence (69) and (71) is relativistically even better than clas-
sically.

for momentum and energy conservation (m is the particle
rest mass, e is the internal thermal energy per particle, p
is the gas pressure in the rest system, g ~ is the metric
tensor). For an ideal gas, the following equations of state
are valid

VII. SUMMARY p =nkT, (A4)

It was found classically and relativistically that in the
limit M ~ 00, strong shock waves can be characterized by
a maximum of the entropy production rate without
momentum or energy conservation, just as certain states
close to equilibrium are characterized by minimum entro-

py production. On the other hand, in weak shock waves
the entropy production rate is far from maximum. Fig-
ures 4 and 5, which show P„'/P ', P„ /P;, and P„*/P;
as functions of M, summarize these findings.

However, for the example of heat conduction in a rod,
it was shown that no general principle of this kind is val-

id, and that a maximum of the entropy production rate
must not even exist. But even if a maximum exists, one
must be careful about the question of what should be con-
sidered as being far from equilibrium. Intuitively, one
would say that strong shock waves are further away from
equilibrium than weak ones. However, the case of omit-
ting mass conservation shows that shock waves with
Mach numbers around 6 are further away from equilibri-
um than very strong shock waves at least in the sense
that they approach the maximum of the entropy produc-
tion rate without mass conservation there. This is

K, (mc /kT)
e =mc

2
—1 +3kT,

K2(mc /kT)
(A5)

E& and K2 being modified Bessel functions, T is the gas
temperature, k is the Boltzmann constant, c is the veloci-
ty of light. Setting

ne=
y —1

and introducing the rest mass density

(A6)

p=nm (A7)

(which does not include the mass contribution ne/c of
the internal energy), (A4) and (A5) imply

4+(pc /p)[K, (pc /p)/K2(pc /p) 1]—
y= . (A8)

3+(pc /p)[(K, (pc /p)/K2(pc /p) 1]—
In the classical limit T~O one gets y = —', , and in the ex-
treme relativistic limit T~~ one obtains y =—', .

In a one-dimensional time-dependent Aow, Eqs.
(Al) —(A3), (A6), and (A7) yield
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1
~

cp +~ pU
~

(1 2/cz)1/2 ~ (1 vz/cz)1/2
(A9) p&

p, + u, /(1 —v&/c )+p,
y 1 2

p + y p cu

y —1 c' 1 —U2/c2
y p

pz+ z uz/(1 —vz/c )+pz,
y —1 c2 (A14)

2

+t)„p+ +p =0, (A10)lc 1 —v/c

pl 2 2p, +
z v, /(1 —u, /c )

y —1 2

P
p C

c '
y 1 c 1 —v/c

p cu

y 1 c 1 —vz/c
=0 (A 1 1)

pz+ vz/(1 —vz/c ) (A15)
1 c 2

are obtained from (A9)—(Al 1) with t), =—0 and integration
over x.

If s denotes the entropy per particle in the rest system
of the gas, the Gibbs-Duhem relation is'

yp~p
I+y /(y —1)p /pc'

1/2

(A12)

The relativistic Rankine-Hugoniot equations for shock
waves

for particle, momentum, and energy conservation, respec-
tively. Linearizing (A9)—(Al 1) around a uniform state
and neglecting the p,p dependence of y (in view of its ex-
treme weakness) yields the sound velocity

s =—[(e+mc ) y+kT—],1

T

the chemical potential p being given by'

Ij, =kT ln
(2M)
4m-m 4c

exp

pKz (pc /p )

(A16)

(A17)

(ih'=h /2n, h is the Planck constant). The combination of
(A4), (A6), (A7), and (A16) and (A17) yields

2

s =k p + —lna+ lnpp + lnKz(pc /p)
p y —1

p, v, /(1 —v f/c )' =pzvz/(1 —vz/c )' (A13) (A18)
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