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Stochastic differential equations describing the Markovian evolution of state vectors in the quan-
tum Hilbert space are studied as possible expressions of a universal dynamical principle. The gen-
eral features of the considered class of equations as well as their dynamical consequences are investi-

gated in detail. The stochastic evolution is proved to induce continuous dynamical reduction of the
state vector onto mutually orthogonal subspaces. A specific choice, expressed in terms of creation
and annihilation operators, of the operators defining the Markov process is then proved to be ap-
propriate to describe continuous spontaneous localization of systems of identical particles. The dy-
namics obtained in such a way leaves practically unaffected the standard quantum evolution of mi-

croscopic systems and induces a very rapid suppression of coherence among macroscopically distin-
guishable states. The classical behavior of macroscopic objects as well as the reduction of the wave

packet in a quantum measurement process can be consistently derived from the postulated universal
dynamical principle.

I. INTRODUCTION

A. General considerations

The quantum description of physical phenomena meets
some conceptual difficulties that motivate the uneasiness
that many people feel with this theoretical scheme. The
root of these difficulties can be traced back to the fact
that the theory incorporates, at its axiomatic level, two
different principles of evolution. The first principle, ex-
pressed by the Schrodinger equation, has to be applied in
ordinary situations in which a truly quantum system
evolves undisturbed. Such an evolution is deterministic
and linear. The second principle has to be applied when
a measurement takes place. The theory introduces a
specific assumption to describe this situation, i.e., the
postulate of wave-packet reduction (WPR), according to
which the wave function undergoes a sudden stochastic
change. As all of us have learned from the classic
treatise' of Dirac, "a measurement always causes the sys-
tem to jump into an eigenstate of the dynamical variable
that is being measured. " Note that, at the level of the
normalized wave function, WPR is a nonlinear process.

The fundamental difficulty of the theory can then be
simply summarized. If one takes into account that, after
all, a measuring apparatus is a physical system made up
of quantum constituents, one is led to pretend that the
measuring process should be describable as the evolution
of the closed physical system S+3, S and 3 denoting

the measured system and the apparatus, respectively.
The problem is that, in such a way, one gets, as the result
of the measuring process, a superposition of macroscopi-
cally distinguishable states that appears to contradict
both WPR, which provides a statistical mixture, and
common sense. Removing such contradictions is the task
of the theory of quantum measurement, but, in our
opinion, as well as in other people's opinions, a solu-
tion of the problem not implying some kind of break-
down of quantum mechanics in certain conditions does
not seem to be possible.

The above features render the theory not fully internal-
ly consistent and partially ambiguous. On the one hand,
it requires acceptance of the idea that there are systems
that are not truly quantum mechanical, leading therefore
to a dualistic attitude in the description of physical phe-
nomena; on the other hand, due to the impossibility of a
neat definition of the borderline between the two classes
of physical systems, it compels the physicist to disregard
from time to time the exact equations of the theory and
to supplement them with vague verbal assertions.

At a more philosophical level one can remark that the
adoption of two different principles of evolution reflects
the embarassing position of the orthodox quantum inter-
pretation with respect to the problem of the subject-
object distinction. The theory accepts in its postulates
that some distinction must be made, but it cannot
prescribe where or when to put it.

An important step towards greater physical exactness
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and logical consistency would be made if one could devise
a manner to account for the stochastic jumps mentioned
by Dirac in terms of precise dynamical processes
governed by definite mathematical equations. Needless
to say, since these jumps violate both the deterministic
and the linear nature of the Schrodinger equation, such a
program requires one to accept a modification of it. Vari-
ous attempts of introducing nonlinear and stochastic ele-
ments in the dynamical equations have been made. The
crucial difficulty one has to face when trying to follow
this line derives from the miraculous accuracy of the pre-
dictions of the theory for all microscopic systems. How
can one devise modifications of the standard theory such
that they have a negligible impact for small systems and
at the same time are able to yield a fast dynamical
suppression of the unwanted superpositions of macros-
copically distinguishable states? Nevertheless, dynamical
reduction models whereby a superposition of states con-
tinuously evolves into one of its terms have been con-
sidered by various authors. ' These works have con-
centrated on achieving such an evolution, but they have
left unsolved two basic problems.

(i) The preferred basis p-roblem Whic.h are the states to
which the dynamical reduction process leads?

(ii) The system depen-dence problem Ho. w can the
coherence suppressing process become more and more
effective when going from microscopic to macroscopic
systems?

A new approach to the problem of modifying the stan-
dard quantum dynamics has recently been pro-
posed' ' ' We shall refer to it as quantum mechanics
with spontaneous localization (QMSL). The model is
based on the assumption that each constituent of any sys-
tem suffers, at randomly distributed times with an ap-
propriate mean frequency, a sudden collapse consisting in
a localization of the wave function within an appropriate
range. An important difference between dynamical
reduction models and QMSL is that in QMSL finite
changes of the state vector occur instantaneously
—quantum jumps really take place, even though they are
spontaneous and their occurrence does not require the in-
tervention of any observer or the interaction with a rnac-
roscopic apparatus. However, the model gives a precise
answer to the questions raised under (i) and (ii) above-
the preferred basis is that of localized states for the con-
stituents and the correct system dependence follows
rigorously.

8. Features of QMSL

QMSL assumes that each particle of a system of n dis-
tinguishable particles labeled by index i experiences, with
mean frequency A, ', a sudden spontaneous localization de-
scribed by'

In Eq. (1.1}, where state vectors refer to the n-particle
system, L'„ is a norm reducing, positive, self-adjoint,
linear operator representing the localization of particle i
around point x. It contains a parameter, having dirnen-
sions of length, that measures the size of the localization

volume. In Refs. 13 and 14, L„' was chosen to be a
Gaussian function, centered in x, of the position operator
of particle i; the length parameter was denoted by 1/&u.
Since the process (1.1) does not conserve the norm, we
rewrite it in the nonlinear norm-conserving form

(1.2)

and contextually assume that the probability density for
the occurrence of x is

(1.3}

Assumption (1.3) requires that

Jd'x(L'„) =1 . (1.4)

The process we have described is a Markov process in
Hilbert space. Due to the occurrence of sudden finite
changes of the state vector, we call it a hitting process. It
is to be noted that assumption (1.3), which makes the oc-
currence of the collapses more likely where the wave
function is larger, is strictly analogous to the postulate
about the probabilities of the outcomes of a measurement
in standard quantum mechanics. As already stated, how-
ever, the QMSL collapses occur universally and spon-
taneously and do not require any actual measurement to
be performed.

We draw attention to the following features of QMSL:
The stochastic modification of the standard dynamics in-
troduced by QMSL induces, according to the collapses
that have occurred, the decomposition of a statistical en-
semble described by a state vector into subensembles each
described by a state vector. So, any member of the en-
semble is associated at all times with a definite state vec-
tor. The possibility of associating with each individual
closed system (in particular, with the system S + A con-
sidered by measurement theory) a definite wave function
at any time opens the way to the interpretation of the
wave function itself as a real property of the system, lay-
ing the foundations of an objective description of physical
phenomena

The collapses correspond to approximate localizations
of the constituents. This corresponds to a definite choice
of the preferred basis. It is remarkable that this choice
by itself solves the problem of system dependence. In
fact, each localization of a single constituent, when ap-
plied to a system for which the center-of-mass position is
a collective variable (i.e., the wave function of the system
is the product of a center-of-mass wave function times an
internal wave function), is sufficient to localize the whole
system. It follows that the frequency of the process for
the whole system is the sum of the frequencies for the sin-
gle constituents. This fact allows one to choose the pa-
rameters in such a way that the process is completely
ineffective for microscopic systems; nevertheless, it is
sufficient to quickly suppress coherence between distant
states of macroscopic systems. It has also been shown'
that different choices for collapse mechanisms (in particu-
lar, the assumption that they involve, besides position,
also the momentum variable) do not share the cumulative
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properties of frequencies.
The QMSL model, as presented above, is consistent

only in the case of systems of distinguishable particles.
In fact, the QMSL collapses (1.1) or (1.2) do not preserve
the symmetry properties of the state vector. A natural
generalization of QMSL to the case of identical particles
can be obtained' by using the whole set of positions of
all particles to distinguish among different configurations
of the system. Such a version of QMSL, however, does
not appear to have nice features when translated into the
language of second quantization. Another kind of QMSL
model uses the set of densities around all points of space
to discriminate among different configurations. These
models will be described in Sec. IV C below, but the ap-
proach of Sec. III, also based on densities, will turn out to
be much preferable.

d~P) =[ iH dt +—dh —
—,'(dh) ]~/), (1.5)

where dh is a random, self-adjoint, linear operator. It is
built up with the operators representing the density of
particles around all points of space and contains in its
definition (which will be given in Sec. III below) a length
parameter I /&a and a strength parameter y. The pro-
cess defined by Eq. (1.5) does not conserve the norm.
This fact needs an interpretation, which leads to the in-
troduction of another process,

d~P) =[ iH dt +d—h~ ,'(dht, ) ]~/—)—, (1.6)

which is norm conserving and nonlinear, due to the
dependence of dh

&
on

~ P ) . Equation (1.6) embodies an
assumption concerning the probabilities to be assigned to
the state vectors ~P) that is the counterpart of the as-
sumption (1.3) for a hitting process. The procedure lead-
ing from the process (1.5) to (1.6) will be explained in de-
tail in Sec. II.

Stochastic equations having a formal structure of the
type (1.6) have been considered in previous works, but
there the random terms appearing at the right-hand side
(rhs) had a specific form devised to describe a specific
measurement that was supposed to be performed. The
considered equations, therefore, did not have the univer-
sal character of the processes envisaged in Refs. 13—15,
17—19, and here. Other recent investigations deal
with dynamical reduction models similar to the one con-
sidered in Ref. 19 and here. In Ref. 21 an equation very
close to Eq. (1.6) is introduced (without deriving it from a
linear process), but it is not specialized to the use of den-
sities around space points to discriminate among different
configurations. The idea of using densities is considered
in Ref. 22, where, however, the dynamical equation has a
more complicated structure than here.

C. CSL and other recent developments

It has been proved recently' that it is possible to dev-
ise a dynamical reduction model that exhibits all the ap-
pealing features of QMSL. It will be referred to as the
continuous spontaneous localization (CSL) model. In
CSL one assumes a stochastic evolution equation of the
Ito form

D. Aims and contents of the present paper

II. MARKOV PROCESSES IN HILBERT SPACE

A. Raw and physical processes

In the Hilbert space, we consider the Markov process
~ $8(t) ) satisfying the Ito stochastic differential equation

d~g) =(C dt + A.dB) ~P), (2.1)

where C is an operator, A—:[ A, } is a set of opertors, and
B—:[B,} is a real Wiener process such that

dB, =0,
dB, d8, =6,,y dt,

(2.2)

This paper deals first with a new presentation and dis-
cussion of the class of Markov processes in Hilbert space
to which the CSL theory belongs. Then, the general for-
malism is specialized to CSL in the framework of second
quantization and the physical consequences of the theory
are thoroughly investigated. Finally, the relationship be-
tween the classes of stochastic processes used by QMSL
and CSL is discussed.

In Sec. II A, linear Markov processes in Hilbert space
are introduced and the basic physical assumption con-
cerning probabilities is stated and embodied into the evo-
lution equation. Section IIB is devoted to the general
proof that the considered Markov processes lead to
dynamical reduction of the state vector on the common
eigenspaces of the operators that define the process. In
Sec. II C, the equation for the statistical operator is de-
rived.

Section III A defines the CSL theory in second-
quantized form. Section III B investigates the physical
consequences of CSL. First, it is shown that, under ap-
propriate assumptions, the center-of-mass and the inter-
nal motions of a system decouple, the stochastic terms in
the dynamical equation do not affect the internal struc-
ture and the center-of-mass wave function obeys a sto-
chastic differential equation of the CSL type. Secondly,
the rates of reduction on the approximate position eigen-
states of a macroscopic object are evaluated and it is
shown that it is possible to choose the two parameters
defining the stochastic process in such a way that reduc-
tion is both effective for macroscopic objects and com-
pletely negligible for microscopic particles. Finally, con-
sidering together the localization process and the
Schrodinger evolution, it is shown that the stochasticity
introduced in the behavior of macroscopic bodies is also
negligible.

The class of hitting processes (the discontinuous sto-
chastic processes used in QMSL) is reconsidered in Sec.
IVA. An appropriate infinite frequency limit, under
which a hitting process reduces to a continuous process
of the type introduced in Sec. IIA, is discussed in Sec.
IVB. Finally, two examples of hitting processes going
into the CSL process defined in Sec. III A in the infinite
frequency limit are presented in Sec. IVC. Some con-
cluding remarks are contained in Sec. V.
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y being a real constant; the dot product has the obvious
meaning

has by definition

e(B(r to))=l]ga(r ro)[['p(B«ro)) (2.7)
A.dB= g A;dB, . (2.3)

The index i can be continuous, in which case the sum be-
comes an integral and the Kronecker 6 becomes a Dirac
5. Given an initial state ~l((0)&, Eq. (2.1} generates at
time t an ensemble of state vectors ~l(a(t) &, where B
denotes a particular realization B(t) of the Wiener pro-
cess. To simplify notation, the dependence of ~g& on t
and B will be often dropped, as in Eq. (2.1). The process
(2.1) and the ensemble generated by it will be called the
raw process and ensemble. In the raw ensemble, each
state vector ~ga(t) & has the same probability as the par-
ticular realization B(t) that originates it through Eq.
(2.1).

The raw process (2.1) does not conserve the norm, in

general. In fact, using Ito calculus, one finds

~ ~~~q~
'=

& glee&+ «yl q&+ & ~q ~q&

=&@((A+A')(q& ZB+&q. )(C+C')(q&at

+ & g A'. Alp&} «, (2.4)

where we have used the notation d~g&=~dg&. If the
state vectors ~ga(t) & were of norm 1, their probabilities,
given by the raw ensemble, could naturally be interpreted
as the physical probabilities. The vectors ~ga(t) & being
not of norm 1, let us consider the ensemble of the normal-
ized vectors

It is easily shown that, because of linearity of Eq. (2.1) to-
gether with the Markov nature of the Wiener process B,
the procedure leading from the raw to the physical en-
semble can be performed just at the considered final time
or, in addition, any number of times between the initial
and the final times. It follows that Eq. (2.7) can be substi-
tuted by its specialization to the infinitesimal time inter-
val (to, to+dt), i.e.,

q(dB)=(1+d~~g~~ )p(dB) . (2.8)

d/[P//
=

& P/( A+ A )/g&. dB . (2.11)

The possibility of considering the physical ensemble de-

pends on fulfillment of the condition that the total proba-
bility associated with the distribution q is 1. This
amounts to requiring that, for any ~g &, the average rela-
tive to the distribution p of the weighting factor ~~l(~( is 1,
i.e., d(~l(() =d(~l(

(
=0. From Eq. (2.4), one finds

C+C = —yA . A.
When this condition is taken into account, denoting by

iH the —anti-Hermitian part of C, Eq. (2.1) becomes

d~g& =( iH dt+—A dB —,'y A A—dt)~g& . (2.10)

This equation is of the form (1.5) for self-adjoint A.
Equation (2.4) simplifies to

Isa(t} &
= isa(r) & ~llama(t)ll

Then Eq. (2.8) becomes
(2.5)

having the same probabilities as the corresponding vec-
tors l(a(t) & [i.e., as the realizations B(t) of the Wiener
process] and the ensemble of the normalized vectors

q(dB)=(1+2R dB)p(dB),

where

R=-,'& ql( A+ A~}lq&

(2.12)

(2.13)

1((a«) &
= Il(a(r) & /II &a(r) II (2.6}

whose probabilities are those of the vectors ~Pa(t) & times
their squared norms ~~l(a(t)~~ . We use different symbols
for the vector functions ~ya(t) & and ~(( (ta) &, in spite of
the fact that the right-hand sides of Eqs. (2.5) and (2.6)
coincide, because their probabilities are different, so that
as random vector functions they are different. In fact, as
we shall see and as is obvious, they obey different stochas-
tic differential equations. We choose as the physical
probabilities those of the vectors (2.6) rather than those
of the vectors (2.5). The ensemble of the vectors ~Pa(t}&
and the stochastic process in the Hilbert space that gen-
erates it will be called the physical ensemble and process.
As mentioned in the Introduction, the prescription lead-
ing to the physical ensemble is the counterpart of the as-
sumption (1.3) of QMSL and of the postulate of standard
quantum mechanics on the probabilities of the outcomes
of a measurement.

Let us now investigate the relation between the raw
and the physical processes. Indicating by p(B( t, to ) ) the
probability of the realization B(t, t )ofothe Wiener pro-
cess or equivalently of the state vector ~Pa(t) & and by
q(B(t, to) } the probability of the state vector ~$a(t) &, one

and the probability distribution q is normalized. Indicat-
ing by dB the random variable whose distribution is q,
one has

dB =2R, y dt,

dB,'dB'=6, y dt,
so that

(2.14)

dB'=dB+2Ry dt (2.15)

and B' is a diffusion process having the same diffusion as
B and drift 2Ry. The meaning of the process B' and of
its differential dB' follows from that of the probability
distribution q that defines them. The set of all realiza-
tions B (t) coincides with that of all realizations B(t) (in
fact, both sets coincide with the set of all functions satis-
fying a given initial condition), but their probabilities, ac-
cording to the definition (2.7) of q, are those of the physi-
cal ensemble instead of those of the raw ensemble. The
stochastic differential equation for the physical process
can now easily be written. We first write the equation for
the process generating the normalized vectors ~y&. From
Eqs. (2.10) and (2.11},by direct evaluation, one gets
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dig) =[( —iH —
—,'y A A —

y A.R+ ,'y—R R)dt A=pa P (2.21)

+( A —R).dB]ly),
R=-,'(yl( A+ A')ly& .

(2.16)

It is easily checked that Eq. (2.16) conserves the norm
and that this feature does not depend on B having drift
zero. The physical process is obtained by replacing to
each realization B(t) of the random function B(t) an
equal realization having the appropriate different proba-
bility, i.e., and equal realization B'(t) of the random func-
tion B'(t). This amounts to replacing dB by dB' in Eq.
(2.16) so that we get

(ylP. lg & =z. ,

having the property

gz =1.

(2.22)

(2.23)

In terms of such variables, one finds

where the orthogonal projections P sum up to the iden-

tity and it is understood that a Wa, (i.e., a;Wa„ for at
least one value of i) for 0%x W. e consider the real non-
negative variables

dig) =[(—~H —
—,'y A A —y A R+-', yR R)dt

+( A —R) dB']lP),
R=-,'(((I( A+ A')lg)

(2.17)

R=ga z

( A —R)lg) = g gz, (a —a, )P lP),

(2.24}

(2.25)

It is convenient to rewrite Eq. (2.17) in terms of the origi-
nal Wiener process B. One gets

dip) =[[ iH —
—,'y—( A —R) A+ —,'y( A —R) R]dr

+(A —R) dBjlg),
R=, &yl(A+ At)ly& .

(2.18)

We note that the equations for the norm-conserving pro-
cesses (2.16) and (2.17) or (2.18), contrary to Eqs. (2.1) or
(2.10), are nonliner.

The case in which A is a set of self-adjoint operators is
of particular interest. In this case Eq. (2.18}becomes

dig) = [[ iH —
—,'y( A—R) ]dt+( A —R—) dBjlg),

(A —R) ly)= y yz, (a —a, ) P l((}) . (2.26)

+ gz, (a —a, ) dB P lP) .
T

(2.27)

Use of this equation in the relation

d & PIP. IW&
=

& PIP.(dP. IP &)+(d & PIP. )P. IP &

+(d &((IP.)(dP. ly&) (2.28)

It follows that the stochastic differential equation (2.20)
can be written

dP lP) = —
—,'y gz, (a —a, } dt

R=(y Al(() . (2.19) gives for the variables z the set of stochastic differential

equations

This equation is of the form (1.6}; it has been considered
independently by Gisin. dz =2z gz, (a —a, ) dB . (2.29)

B. Reduction of the state vector

We shall now show that, in the case in which A is a set
of commuting self-adjoint operators, the non-Schrodinger
terms in Eq. (2.19) induce for large times the reduction of
the state vector on the common eigenspaces of the opera-
tors A. The inputs and the outcomes of the present sec-
tion are essentially the same as those of the proofs of
reduction given by one of the authors in a series of pa-
pers. ' ' The proof given here is somewhat more direct
in that it works on the squared amplitudes without rnak-
ing use of the Fokker-Planck equation for their probabili-
ty density.

Since we are interested here in discussing the physical
effects of the new terms, we disregard for the moment the
Schrodinger part of the dynamical equation. Then Eq.
(2.19}becomes simply

z g z,(a —a, )=0, (2.30)

so that the values of [z j eventually accumulate towards
such solutions. A formal proof of the fact that [z j
asymptotically reduces to one of the solutions of Eq.
(2.30) is easily obtained. From Eq. (2.29) one finds

dz =2z dz + 2z gz, (a —a, ) y dt (2.31)

and in turn

dz =dz = 2z gz, (a —a, ) y dt . (2.32)

Qualitatively, Eq. (2.29) shows that the diffusion of [z
vanishes when [z j approaches the solutions of the set of
equations

dig) =[—
—,'y( A R) dt+( A —R—) dB]lg),

R=&~lAl~&.

Let us write

(2.20)

It follows that

—z «0.d ~
dt

This result, together with the boundedness property

(2.33)
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z ~1,
entails that, for t~ oo,

—z ~0.d ~
dt

Using again Eq. (2.32), we get

z g z,(a —a,)~0 .

(2.34)

(2.35)

(2.36)

blad form for the generator of a quantum dynamical
semigroup. It is remarkable that the general Lindblad
generator can be obtained from a stochastic process in
Hilbert space. As we shall see in Sec. IV A hitting pro-
cesses give rise to particular forms of the generator. The
derivation of Eq. (2.43) we have presented provides a
description of the ensemble to which p(t) corresponds
such that each member of it has a definite state vector at
any time.

z—.=z.(0) .

On the other hand,

(2.37)

It is shown in Appendix A that the only solutions of the
set of equations (2.30) are of the form
z, =0, . . . , z =1, . . . , corresponding to ~4 & lying in
one of the common eigenspaces of the operators A.
Since Eqs. (2.27) do not change the Hilbert space ray to
which each component P ~P & belongs, we conclude that

asymptotically reduces to one of its initial com-
ponents P

~ $(0) & times a real normalizing factor.
The probabilities of the various possible issues are also

easily calculated. In fact, since dz =dz =0, one has

III. CONTINUOUS LOCALIZATION
OF A SYSTEM OF IDENTICAL PARTICLES

A. Definition of the process

We now apply the general formalism introduced in Sec.
II to the continuous spontaneous localization of a system
of identical particles. Let us consider the creation and
annihilation operators a (x,s), a(x, s) of a particle at
point x with spin component s satisfying canonical com-
mutation or anticommutation relations. We define a lo-
cally averaged density operator,

N(x)= g f d yg(y x)a—(y, s)a(y, )s, (3.1)

z —+Prob[z (~)=1]
so that one finds

Prob[z (~)=1]=z (0),

(2.38)

(2.39)

where g (x) is a spherically symmetric, positive real func-
tion peaked around x=0, normalized in such a way that

xg x=1, (3.2)

1.e.,

P«b[ I P( ~ ) &
~ P. I P(0) & ]= ( P(0) IP. I P(0) & . (2.40)

so that

xN x=N, (3.3)

As one can see, this result is a direct consequence ' ' of
the martingale property dz =0.

We have shown in this section that the non-
Schrodinger terms in Eq. (2.19) produce in the long-time
limit the reduction of the state vector on the common
eigenspaces of the operators A. The time rate of such a
process and its competition with Schrodinger evolution
are most easily studied in the framework of the statistical
operator.

N being the total number operator. The operators N(x)
are self-adjoint and commute with each other. In the fol-
lowing we choose

g(x)=(a/2m) ~ exp( —
—,'ax ), (3.4)

where a is a parameter such that a represents essen-
tially the volume over which the average is taken in the
definition of N(x) The impro. per vectors

C. Statistical operator ~ q, s &
=JVa (q, ,s, ). . .a (q„,s„)~0 & (3.5)

The statistical operator corresponding to the physical
ensemble and its evolution equation are easily obtained
from the definition

are the normalized common eigenvectors of the operators
N(x) belonging to the eigenvalues

(2.41)
n(x) = g g (q; —x) . (3.6)

and Eq. (2.10), or from

) =ly&(yl (2.42)

and Eq. (2.18). Using once more the Ito calculus in
evaluating dp, one gets

i [H,p]+y Ap. A——
—,'y [ A . A,p), (2.43)

where the symbols [, ] and [, ] denote the commutator
and the anticommutator, respectively. This is the Lind- where

—
—,'y f d xN (x)dt (3.7)

We identify now, with reference to Sec. II A, the index
i which labels the operators A, with the space point x
and the operators A; with the density operators N(x).
Then Eq. (2.10) becomes

d~g& = iH dt +f d x N(x—)dB(x)
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dB(x)=0,

dB(x)dB (y ) =y 5 (x y—)dt .
(3.8)

n

Q= —„&q; (3.14)

——'y xN x p (3.9}

In the representation of vectors (3.5), Eq. (3.9) becomes

—&q', s'~p~q", s"
&
= i &q'—,s'~[H, p]~q",s"

&

+y g [G(q,'—q,")—
—,'G(q,' —

q,')

—
—,
' G(q,

"—
q,") ]

X &q', s~p~q", s& .

where

G(y' —y")= Jd xg(y' —x)g(y" —x)

=(a/4n. ) exp[ —
—,'a(y' —y" ) ] .

For a single particle, Eq. (3.10) reduces to

(3.10)

(3.11)

d,
&q'Ip~q" &

= —i &q'l[H, p] q" &

+y(a/4m)

X [exp[ —
—,'a(q' —q" } ]—1] & q'[p/q" & . (3.12)

We note that, taking

A. =y(a/4n ) (3.13)

this equation coincides with the equation for a single par-
ticle considered in Ref. 14.

This is, in a different notation, the process already con-
sidered in Ref. 19 for identical particles. The generaliza-
tion to several kinds of particles is immediate. The pro-
cess (3.7) can also be preented in terms of nonsingular,
correlated random variables, as shown in Appendix B.

The equation for the statistical operator (2.43) reads in
the present case

dp
dt
P = i —[H,p) +y Id x N (x)pN(x)

and write

q;=Q+q, . (3.15)

The coordinates q; with respect to the c.m. sum up to
zero, so that they are functions of 3N —3 independent
internal variables, which we indicate by r. The internal
variables r, together with the c.m. coordinate Q, are func-
tions of the coordinates q, . The internal variables, as
defined here, describe also rotations of the n-particle sys-
tem. We arbitrarily assume tha the orientation of the
system is sharply defined in the wave function similarly to
the truly internal structure. Instead, one should consider
three orientation variables, to be treated along the same
lines as the c.m. coordinate, and 3N —6 truly internal
variables, to be assumed sharply localized in the wave
function. The problem would then be considerably more
complicated without gaining very much as regards physi-
cal insight. So, we consider the wave function

X exp I
—

—,
' a[Q+ q, ( r) —x] I b (r, s) . (3.17)

According to our assumption, the factor in front of the
function 6 varies much more slowly than 6 itself, so that
we can take r =ro in the factor. In other words, we treat
the factor as if h(r, s) were of the form 5 (r ro)g(s). —
Then

g(q, s) =+(Q)y(r, s),
(3.16)

y(r, s) =
&

b, (r, s),S

where the symbol ( „)means symmetrization or antisym-
metrization with respect to interchanges of the argu-
ments (q;,s;). The wave functions 4 and y are under-
stood to be separately normalized. The function b, (r, s) is
assumed to be sharply (with respect to a '~

) peaked
around the value ro of r.

The action of the operator N(x) on the wave function
(3.16) is easily worked out. One finds

N(x)4(Q)y(r, s)

=q'(Q)

X g (a/2n)'.

B. Physical consequences N( )%x(Q)y(r, s) =F(Q—x)ql(Q)g(r, s), (3.18)

1. Separation of the center of mass motio-n-

We discuss the physical implications of the modified
dynamical equation (3.7) under the assumption that the
order of magnitude of the length parameter a ' is such
that it can reasonably be admitted that the internal wave
function of a macroscopic body is sharply localized with
respect to a

Let Q be the center-of-mass (c.m. ) coordinate of the
system of identical particles that constitutes the con-
sidered macroscopic body,

(3.19)

According to Eq. (3.18), the operator N(x) acts only
on the factor 4 of g. As a consequence, in the assump-
tion that

H =Hq+H„, (3.20)

where

F(Q —x)= g (a/2vr) expI ,'a[Q+q, (ro)———x] I .
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if %' and g satisfy the equations

d%= —iH&dt + d x F —x dB x

—
—,'y f1 xF (Q —x)dt (3.21)

terested here in the details of the function I for
Q' —Q"~0. The sharp scanning approximation consists
in replacing the normalized Gaussian function appearing
in Eq. (3.26) by the corresponding 5 function. Then one
has

dy= —iH„dt g, (3.22) F(Q —x)=D(x —Q), (3.27)

respectively, the wave function (3.16) satisfies Eq. (3.7). It
is seen that, under our assumptions, the c.m. and the
internal motions decouple as in the absence of the sto-
chastic terms in Eq. (3.7). Furthermore, the stochastic
terms do not affect the internal structure, while the c.m.
wave function obeys a stochastic differential equation,
again of the type (2.10), whose consequences will be dis-
cussed below.

so that it results

1(Q' —Q")=y f d x[D (x)—D(x)D(x+Q' —Q")],

(3.28)

where suitable changes of the integration variable have
also been made. The physical meaning of I is easily un-
derstood by making reference to a homogeneous macro-
scopic body of density Do. Then

2. Reduction rates I =yDon, „, , (3.29)

The operators F(Q —x) appearing in Eq. (3.21), which
correspond to the operators A; of Eq. (2.10), are real
functions of the c.m. position operator Q. They are a set
of commuting self-adjoint operators, so that, as we know
from the results of Sec. II B, the non-Schrodinger terms
in Eq. (3.21) induce the reduction of the state vector on
the eigenvectors of the position Q. Of course, such a pro-
cess requires an infinitely long time, while, in finite times,
only the reduction on approximate eigenstates of Q takes
place. We discuss here the time rate of the localization
process by studying the time dependence of the off-
diagonal elements of the statistical matrix &Q'IplQ" &.

Again, we disregard the effect of the Schrodinger term,
this approximation being justified by the fact that, for the
values of

I
Q' —Q"

I in which we are interested, the reduc-
tion process will turn out to be very fast.

Equation (2.43) becomes in the present case

~,
&Q'IplQ" &= —1(Q' Q")&Q'IplQ" &,

where

1(Q',Q")=y fd' [-,'F'(Q' —)+,F'(Q"—
)

—F(Q' —x)F(Q"—x)] .

Equation (3.23) gives

&Q'Ip(t)IQ" & =exp( —I t)& Q'lp(0)IQ" & .

(3.23)

(3.24)

(3.25)

It is easily found that I is an even function of Q' —Q".
Since it is assumed that very many constituents of the
considered body are contained in a volume a, we can
use the macroscopic density approximation, consisting in
replacing the sum by an integral in Eq. (3.19). Then one
writes

F (Q—x) = f d y D (P)(a/2m )

n,„, being the number of particles of the body in the c.m.
position Q' that do not lie in the volume occupied by the
body in the c.m. position Q". The ratio between the mac-
roscopic frequency (3.29) and the microscopic frequency
(3.13) is n,„,DO(4n /a)

The results (3.25) and (3.29) have to be compared with
the result

&Q'Ip(t)IQ" & =e p( —& „„t)&Q'Ip(0)IQ" &,

~macro

(3.30)

(3.31)

a '"=10 ' cm (3.32)

and look for a value of y such that the macroscopic fre-
quency I is again of the order of 10 s ' for n,„,=10' .
Since Do = 10 cm, we get

y=10 crn s (3.33)

corresponding, according to Eq. (3.13), to A, =10 ' s
This value is such that nothing changes in the dynamics
of a microscopic particle even in the case in which it has
an extended wave function.

valid for IQ' —Q"
I
»a '~, obtained in Ref. 14 for the

case of distinguishable particles. We note that in the
present case an additional factor Do(4m/a)3~ appears in
the macro-to-micro ratio, but such a factor is multiplied
by the number of uncovered particles n,„, rather than by
the total number n. Clearly, this is a consequence of in-
distinguishability of particles and of the choice of density
as the dynamical variable governing the process. In Ref.
14, the length parameter a ' was chosen to be of the
order of 10 ' cm and the microscopic frequency A, was
suggested to be of the order of 10 ' s ' with the aim of
obtaining A, „„=10s ' for a typical macroscopic num-
ber n =10 . We repeat here the same choice,

Xexp[ —
—,'a(Q+y —x) ], (3.26) 3. Position and momentum spreads

where D (P') is the number of particles per unit volume in
the neighborhood of the point y =Q+ P.

A further approximation, which we call the sharp
scanning approximation, can be used, since we are not in-

According to Eq. (3.28) or to the original expression
(3.24), the diagonal elements &QlplQ& of the statistical
operator in the position representation are not affected by
the reduction process, as a consequence of the process be-
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—
—,
' [F'(Q—x»pI ] (3.34)

where we retain now the Schrodinger term. We consider
the case of a free macroscopic body, so that, in our nota-
tion, H =P /2(Maori), M being the total mass. For a
dynamical variable S, we define the mean value

(S)=tr(Sp) . (3.35)

The time derivative of (S), according to Eq. (3.34), is
given by

—(S ) = i tr(—[S,H]p)
d
dt

+y f d xtr[[F(Q —x)SF(Q —x)

—
l [S F'(Q —x)I] I (3.36)

From Eq. (3.36), through tedious but elementary calcula-
tions, one gets

ing a localization. Of course, this does not mean that the
time evolution of (QlplQ) is the same as given by the
pure Schrodinger dynamics, because this dynamics is
different, for mixtures of localized states, from that for
nonlocalized states. So, some changes are expected in the
time dependence of both position and momentum
spreads, as a consequence of the presence of the localiza-
tion process. An explicit evaluation of these effects is
necessary in order to check that no unacceptable behav-
ior arises.

The equation for the statistical operator, in operator
form, is written

d—
p = i [H,—p]dt

+y f d x[F(Q—x)pF(Q —x)

corresponding PS system for the nonzero r.h.s. in Eq.
(3.38c). One easily finds

$2
(Q,') =(Q,'),+& 5, (3.41a)

fi
(Q;P, +P;Q; ) = (Q, P, +P, Q, )0+y5, t2, (3.41b)

g2
(P,') =(P,').+) 5, (3.41c)

5, =(a/~)' DDS, , (3.42)

where S;=L,L2L3/L, is the transverse section of the
macroscopic parallelepiped.

If the choice (3.32) and (3.33) is used for a and y to-
gether with DO=10 cm, one gets from Eq. (3.42) for
the momentum diffusion coefFicient,

—'y5 fi —10 (gems ') s 'S cm (3.43)

The new feature of Eqs. (3.41) with respect to the stan-
dard case is the momentum diffusion coefficient —,'y5, . ii'i2

appearing in the third equation. The extra terms in the
two first equations simply reflect the consequences of
momentum diffusion on the other dynamical variables
through the standard evolution. The same set of equa-
tions was obtained in Ref. 14 in the case of distinguish-
able particles, the factor y5; being replaced there by n A,a.

To evaluate the quantities 5;, the sharp scanning ap-
proximation is no longer sufticient, because here the
derivative of the function F is required. We then use the
macroscopic density approximation (3.26). For
definiteness and simplicity, we make reference to a homo-
geneous macroscopic parallelepiped of density Do having
edges of lengths L; parallel to the coordinate axes. Then,
as shown in Appendix C, one has with high accuracy

and

—(Q, &=d =1
dt ' I
—&P, &=0,d
dt

—„,(Q,'&=&QP, +P Q, ),d

where
'2

BF(y)
6, = dy

—(Q, P, +PQ; ) =2 (P, ),
dt

d—(P') =') 5 e',i

(3.37a)

(3.37b)

(3.38a)

(3.38b)

(3.38c)

(3.39)

For an ordinary macroscopic body, this value appears too
small to give detectable effects. For a very small macro-
scopic particle, due to the 1/M factor in the extra term
of Eq. (3.41a), a non-negligible stochasticity could appear.
For L = 10 cm [this is the smallest order of magnitude
for which the approximations leading to Eq. (3.42)
remain valid], a time of the order of 10 s is required to
make the extra term of the order of 10 ' cm . We do
not know whether this kind of effect could be used to pro-
vide a significant experimental bound on the product
yv'a contained in the momentum diffusion coefficient.
We note, however, that the value (3.42) could overesti-
mate 6;, because of the assumption of a rectangular
profile for density.

IV. CONNECTION BETWEEN CONTINUOUS
AND HITTING PROCESSES

System (3.37) is the same as in the case of the pure
Schrodinger {PS)evolution, so that

&Q, &=(Q, &,, &P, &=&P, &. , (3.40)

where the su%x 0 indicates the PS solution satisfying the
same initial conditions. System (3.38) differs from the

A. Hitting processes

(4.1)

We come now back to the type of stochastic process in
Hilbert space that was the basis of QMSL. Let us consid-
er the collapse process

lq,'& =(P'/~) exp[ —
—,'P'( A' —b) ]lP),
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where A'=
[ A, i = 1, . . . , K j are commuting self-

adjoint operators and b= [b, ; i = I, . . . , K j are real ran-
dom variables. Index I identifies the process (4.1) within
a family of similar processes. The process (4.1) does not
conserve the norm, so that we consider the process

l@b &
=

I @b & /Ilqbll,

~

yl ) (Pl/ )K/4exp[ Pl( Al b)2] ~y )
(4.2}

and assume that the probability density for the oc-
currence of b is

i Pl 0 i lPI (4.7)

the hitting process (4.2},(4.3} goes into the continuous
process (2.19), with A having the structure

B. Infinite frequency limit

It is natural to ask whether there is a relation between
the hitting process described in the foregoing section and
the continuous process considered in Sec. IIA. The
answer is affirmative. It is possible to show that if one
takes the infinite frequency limit

&,(b}=Ilfbll' . (4.3) A =
{A, '; I = 1,2, . . . ; i = I, . . . , I{.' j, (4.8)

The total probability is 1 since

(Pl/~)K/2 f dKb exp( Plb2) = 1 (4.4)

The process (4.2), in conjunction with the assumption
(4.3), can be called the physical collapse process. We
next assume that the Ith physical collapse process takes
place at random times according to a Poisson process
with mean frequency p', being understood that in the in-
terval between two collapses the system evolves accord-
ing to the Schrodinger equation. The stochastic process
in Hilbert space constructed in such a way enjoys the
Markov property but, contrary to the process considered
in Sec. II A, is such that the state vector associated to a
member of the statistical ensemble does not evolve con-
tinuously in time. We call it a hitting process.

Due to the random distribution in time of collapses,
the evolution of the statistical ensemble is at any rate
smooth, in the sense that the weight of any state vector is
a differentiable function of time. In particular, a
differential equation for the statistical operator can easily
be written' ' and turns out to be

dp
dt

i [H,p]+ g—p'[T'(p) p], — (4.5)

where

T'(p)=(P'/n)f d be'xp[ —
—,'P'( A' —b) ]p

Xexp[ —
—,'P'( A' —b) ] . (4 6)

f d b{LI,) L' =1

The generator appearing in Eq. (4.5) is a particular Lind-
blad generator. We note that the second of Eqs. (4.2)
could be written more generally in the form
~it)b) =Lb ~P ), but, in order that the process have a physi-
cal interpretation as a hitting process, the operators J b
must satisfy the sum rule

(4.9)

so that, in the limit (4.7),

dp i [H—,p]+y g [A pA,
'—

—,'[(A,.'),pj] .
l,i

(4.10)

This equation coincides with Eq. (2.43) with A = A, A
having the structure (4.8}.

C. systems of identical particles.

We consider here two different instances of hitting pro-
cesses inducing the localization of a system of identical
particles, which go into the continuous process con-
sidered in Sec. III in the infinite frequency limit.

In the first instance, a collapse process is considered
at each space point x,

~g,")=[P(x)/n]' exp[ —
—,'P(x)[N(x) —z] j ~P),

(4.11)

where N(x) is the density operator defined by Eq. (3.1)
and z is a real random variable. We then assume that the
probability density for the occurrence of z given x is

z (4.12)

and that the process at x occurs with frequency density
p,(x). The infinite frequency limit is defined by

p(x}~ao, P(x}~0, —,'p(x)P(x)=y . (4.13)

In the second instance, we consider the collapse pro-
cess

and similarly for B.
Here we confine ourselves to notice that the statistical

operator equation (4.5) goes, in the infinite frequency lim-
it, into Eq. (2.43) with A = A, A having the structure
(4.8}. In fact, as it is shown in Appendix D,

T'(p) =p+ ,'P' g [ A—pA —
—,
'

[ ( A ),p j ]+0 [(P') ],

This fact entails the simple structure number times p of
the last term in Eq. (4.5). Therefore, contrary to the case
of continuous processes considered in Sec. II, the most
general Lindblad generator cannot be obtained from a
hitting process.

lk(. ) &
= lf(.) &/II@(.)ll

~f(„))= W' exp —
—,'P f d x[N(x) —n(x)] ~P),

(4.14)

where n(x) is a real random function. The collapse is as-
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sumed to occur with mean frequency p and the function-
al probability density for the occurrence of n(x) is as-
sumed to be

(4.15)

with respect to a suitably defined functional measure such
that

W d nexp — d xn I =1. (4.16}

The infinite frequency limit is defined by

p —+ ao, P~Q, —,'pP=y . (4.17)

In the limits (4.13) or (4.17), both hitting processes just
considered become the continuous physical process

shown in Sec. IV, there are hitting processes having a
physical content as close as one wants to a given continu-
ous process of the type considered here. The challenging
problem remains open of getting a satisfactory relativistic
generalization of the present formalism.
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APPENDIX A

iH —,'y f—d—x[N(x)—R(x)] dt

+ f d x[N(x) —R(x)]18(x) iP),

We are interested in solving the set of equations

z g z, (a —a, ) =0 (Al)

(4.18) for real, non-negative values of the unknown variables z,
under the condition

which corresponds to the raw process (3.7). The statisti-
cal operator obeys Eq. (3.9).

gz =1. (A2)

V. CONCLUSIONS

We have presented a mathematically precise and logi-
cally consistent modification of nonrelativistic quantum
mechanics aiming at solving the problems raised by quan-
tum measurement. The modification consists in superim-
posing upon the ordinary Schrodinger evolution a Mar-
kov process in Hilbert space giving rise to a continuous
spontaneous localization of the wave function. The
necessary requirements that are to be satisfied by any
modified version of quantum mechanics are met by the
theory. In fact, as shown in Sec. III, the proposed
modification does not affect in any appreciable way the
predictions of standard quantum mechanics for micro-
scopic objects. On the other hand, when macroscopic
systems are involved, the modification of the dynamical
equation has, as its practically unique effect, that of in-
ducing a very fast suppression of coherence among ma-
croscopically distinguishable states.

The theory discussed here allows one to describe natu-
rally quantum measurement processes by dynamical
equations valid for all physical systems. It is worthwhile
repeating, that, in this theoretical scheme, any member of
the statistical ensemble has at all times a definite wave
function. As a consequence, the wave function itself can
be interpreted as a real property of a single closed physi-
cal system.

The continuous localization process considered in the
present work constitutes progress with respect to the lo-
calization by a hitting process, both because it avoids the
consideration of sudden collapses of the wave function
and because it allows one to express synthetically the law
of evolution in the form of a stochastic differential equa-
tion for the wave function. We note however that, as

g z,(a, —a, ) =0, g z, (a2 —a, ) =0 . (A3)

By subtraction one gets

gz, (a, —a2)=0 . (A4)

Owing to the condition (A2}, Eq. (A4) gives a& =a2, con-
trary to the hypothesis.

APPENDIX B

The process (3.7) can also be presented in terms of non-
singular, correlated, random variables dw(y). In fact, the
second term at the r.h.s. of Eq. (3.7) can be written

dh = g fd y a (y, s)a(y, s)dw(y), (Bl}

where

dw(y)= f d xg(y —x)dp(x) .

The variables dw (y) have the properties

dw (y) =0,
dw(y)dw(y')=y f d xg(y x)g(y' x)dt- —

=y G (y y')dt, —

(B2)

(B3)

Note that Eqs. (Al) are not independent, each being a
consequence of the remaining ones.

It is immediately verified that, for any o, the set of
values z&=0, . . . , z =1, . . . is an acceptable solution.
It is also easily shown that such solutions are the only
ones, provided a,Pa, for trAr In fac. t, suppose that,
say, z~%0 and z2%0. The two first equations of the set
(Al) can then be written
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where the function G is given by Eq. (3.11). The last term
at the r.h.s. of Eq. (3.7) is —

—,
' times

APPENDIX D

The operation T'(p) defined by Eq. (4.6) can be written

(dh) =y g f d yd y'a (y, s)a(y, s)a (y', s')
S, S

Xa(y', s')G(y y'—)dt . (B4)

T(p)=exp( —
—,'PA )

X (P/tr) f d b exp( —Pb )exp(P A.b)p

APPENDIX C

We evaluate here the factor (3.39} for the case of a
homogeneous macroscopic parallelepiped. In the con-
sidered case, the function I' in the macroscopic density
approximation (3.26) is given by

F(y)=Do(a/2n) ~ f d /exp[ —
—,'a(9'+y) ]

3

,'Do f—f Ierf[(a/2)' (y;+L;)]

(D2)

into Eq. (Dl) and taking into account that

(P/tr) f d bexp( Pb )b—; =0,

(P/tr) f d bexp( Pb )b—;b/= 5,"1

(P/tr) f d bexp( Pb )b,—b, .b,

(D3a)

(D3b)

X exp( —Pb )exp( —
—,'PA ), (Dl)

having suppressed the index I. Inserting the expansion

exp(PA 1)=1+P( A b)+ —,'P ( A b) +

—erf[(a/2)'~ y, ] I .

Using this expression in Eq. (3.39), one finds

5i = —,'Dii(1/ma)' [1—exp( ~aL
i )]-

XE[(a/2)' Lz]E[(a/2)'~ L&],

where

E(x)=f dz[erf(z+x) —erf(z)]

(C 1)

(C2)

(C3)

one finds

T(p) =exp( —
—,'PA )

0 (odd n),
O((P) "

) (even n),

Xexp( —
—,'PA ) .

X p+ —,'Pg ( A,pA;+ —,'I A;,p] )+O(P )

(D3c)

(D4)
Since

x =(a/2)'r2L; »1,
we can take E (x) =4x, so that

)il2D~2

Finally, using the expansion

exp( —
—,'PA )=1—

—,'Pg ~; +O(P }

(C4) and restoring the index 1, one gets Eq. (4.9).
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