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Effect of anisotropy on the self-organized critical state
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We have performed computer simulations in order to investigate the effect of anisotropy in a
continuous-energy model recently proposed by Y. C. Zhang [Phys. Rev. Lett. 63, 470 (1989)]. We
have found that the most anisotropy-sensitive characteristic function is the peaked energy distribu-
tion, and the other quantities (critical exponents, etc.) are affected by the anisotropy in the extreme
cases only. We present some quantitative connections between the anisotropy parameter and the
characteristic quantities up to five dimensions.

I. INTRODUCTION

Recently Bak, Tang, and Wiesenfeld' (BTW) have
introduced the idea of self-organized criticality to explain
the behavior of some far-from-equilibrium dynamical sys-
tems. These extended dissipative dynamical systems
evolve into structures with long-range fractal spatial
correlations ' andlor long-range temporal correlations
with a "1/f"' power spectrum. They have suggested that
this behavior may be caused by the self-organization of
the systems into a critical state. Systems which exhibit
spatial or temporal power-law correlations naturally
evolve into this critical state. Tang and Bak have point-
ed out the analogy with traditional critical phenomena by
defining several critical exponents and deriving scaling
relations between them. Hwa and Kardar have per-
formed a dynamic renormalization-group calculation to
determine various critical exponents in d 4 dimensions.
They have found slightly different noise exponent values
for the energy dissipation function defined by BTW in
Ref. 1, and they have pointed out an important principle,
namely, that the dynamics should satisfy a conversation
law to ensure the self-similarity of the steady-state
configurations. Dhar and Ramaswarny have defined a
variant of the BTW model and determined the critical ex-
ponents exactly in arbitrary dimension. They have found
that their model in two dimensions is equivalent to a spe-
cial case of directed percolation solved earlier.

Several real systems have been suggested as possible
candidates for this behavior, for example, the light from
quasars, the sand flow in an hourglass, the properties of
earthquakes, ' the flows of rivers such as the Nile, motion
of dislocations in a resistor, raindrops running down a
windowpane, or even interactive economical systems. '
Jaeger, Liu, and Nagel" have performed direct experi-
ments to describe the nature of sand flow along the free
surface of sandpiles, and Janosi and Horvath' have made
measurements and simulations to gather quantitative in-
formation about the dynamics of water droplets on a win-
dowpane. Although they have not found unambiguous
evidence of the above-mentioned behavior, it seems that
the idea may have widespread applications in the ex-
planation of the ubiquitous power-law correlations in na-
ture.

Zhang' has analyzed the scaling theory of self-
organized critical phenomena on a continuous-energy
model and estimated various exponents. He found that
the energy is concentrated around a few discrete values.
In dynamical equilibrium states there is a well-defined
critical stored energy and it is distributed isotropically
and homogeneously in space, even when energy input is
not. We have intended to investigate the effect of anisot-
ropy on the overall behavior, therefore we have per-
formed detailed computer simulations. Section II will be
concerned with the model and the definitions, and the re-
sults of the simulations will be presented in Sec. III. In
Sec. IV we give a short summary of our observations.

II. MODEL

For the sake of clarity we describe briefly the Zhang
model' and our modifications. Let us take a d-
dimensional hypercubic lattice, where energy E can be
stored on each site. At time t, an c. input energy is added
to a randomly selected r site. E and c. have non-negative
continuous values and the distribution of c is arbitrarily
chosen. There is a limit E,„onthe allowed energy at
any site. If at a given time the energy exceeds the limit
value, an activation event occurs:

E(r, t+1)

E(n;, t+1)

min

E(r, t) E;„—
:E(n;,t)+

2d

where r denotes the place of the excited node, n; denotes
the ith nearest-neighboring site vector ( 1 ~ i ~ 2d).
Without loss of generality, we take E;„=0and E,„=1
throughout the main part of our investigations. The en-
ergy of the active site in the original model is evenly di-
vided for the neighbors, so we call this case isotropic
penetration. The transferred energy acts an input energy
for the neighboring sites, so further activation events may
occur. A single input energy may trigger off activation
on a set of connected sites known as an activation cluster
or avalanche. ' The boundaries are opened, which
means that the excess energy can flow out freely from the
system. We adopt an adiabatic energy input condition:
the system has to be allowed to relax before input energy
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is again charged. After a long time the average stored en-

ergy reaches a plateau E, (critical energy) and the system
is then said to be in a dynamical equilibrium state.

We intend to examine the effect of anisotropy on the
behavior. It is clear that the anisotropy itself would be
very complicated, depending on the place and time,
therefore we deal with the relatively simple case, the so-
called symmetrical, one-parameter anisotropy. The sym-
metry of the anisotropy means that the amount of trans-
ported energy is not dependent on the sign of the
direction of propagation, i.e., the n+ = (n„.. . , n;
+1, . . . , nd) and the n =(n„.. . , n; —1, . . . , nd)
neighbors get the same part of the energy. We would like
to characterize the anisotropy with only one parameter.
The simplest case is when we divide the d-dimensional
lattice into a (d —a) —and an a-dimensional sublattice
where a is a positive integer constant and 1 ~ a ~ d —1.
Then the source energy is divided differently for the two
sublattices, but inside the sublattices the energy propaga-
tion is isotropic. So we can modify the second Zhang
rule as follows:

E, (i, t+1) E(r, t) E(r, t)
(3a)

Eq, (j,t+1) =Ed, (j, t)
T

E(r, t) E(r, t) a
2d 2d (d —a )

(3b)

where the subscript denotes the transferred energy for
one neighboring site in the appropriate sublattice. Here
0 & ~ & 1 is the continuous anisotropy parameter, ~=0 be-
longs to the isotropic lattice, and ~=1 characterizes the
fully anisotropical situation. In the latter case the origi-
nal d-dimensional lattice is decoupled to a —or (d —a)-
dimensional isolated sublattices depending on the sign of
the "anisotropy energies. " In two dimensions we have
only one possibility: we can divide the lattice into two
one-dimensional sublattices. In three dimensions we have
two different cases; the coordinate reduction may result
in one-dimensional or two-dimensional decoupled sublat-
tices. Generally, the number of different classes is d —1

under the above-mentioned conditions.
We have numerically measured the critical energy

E,(~,d). We adopted a slightly different method for the
measurement, namely, we have computed the average
stored energy in the dynamical equilibrium state, but in
the suberitical regime, i.e., when there is no activation
cluster in the system. This resulted in E, s a little bit
smaller than the values given by Zhang, ' but so we could
avoid the problem of the energy charge: in the supercriti-
cal regime the instantaneous average energy evidently de-
pends on the value of c.. When this added energy is too
high, the transient relaxation process may last a long
time resulting in, e.g. , E, )E,„average values. For the
same reason the single site energy dis-tribution P(E) is
measured in the subcritical range also.

We have checked one of the main critical exponents,
namely, the ~ cluster size distribution exponent obeys the

relation D(s)-s ', where s is the number of activated
sites in one avalanche. From the scaling theory' and
other considerations ' follows

(4)

It is important to note that in the above-mentioned
theories there exists an upper critical dimension d, =4
proved in a paper by Obukhov. ' In d 4 dimensions the
scaling breaks down.

III. SIMULATION RESULTS

We performed simulations in isotropic and anisotropic
systems. The lattices consisted of 8000—10000 sites in
1 —5 dimensions; the typical number of the Monte Carlo
steps was 200000. The parameters were the following:
E;„=O,E,„=1,0&v, &1 (in the main part of the work
we used uniform s distribution).

At the first step we evaluated the isotrop&c single-site
energy distribution P(E) in 0= 1 —5 dimensions; the re-
sults are shown in Figs. 1(a)—(e). In the d &4 cases the
distributions have clearly a peaked shape; there are
2d —1 peaks for the hypercubic lattice with the isotropic
nearest-neighbor interaction. The "backgrounds" (i.e.,
the occupation probabilities between two peaks) are
larger in higher dimensions, and the peaks are wider in
the higher energy regimes. We believe that this results in
the decay of the peaked distribution in d 5 dimensions.
Figure 2 shows the peak positions against the lattice di-
mension. The positions of the middle peaks play a cen-
tral role (as we see later), and these energy values are very
close to the critical stored energy E, . The fitting of the
dimension dependence is the following:

E ddt g(d) =(—+ 6d )E &
E (d)

The positions of the other peaks correspond to the multi-
ples of some quasiunit or energy quantum Eo:

E,(d)
ED(d) =

We plotted the calculated peak position in Fig. 2 as well;
the agreement with the measured data is clear in d 4 di-
mensions.

The reason of the peaked energy distribution lies in
some very robust self-averaging process. The places of
the energy peaks depend on the E,„andE;„borders
only, and are absolutely independent of the range or dis-
tribution of the loaded excess energy c. For instance,
when the input energy is charged in equal parts co E,„,
the only change in the single-site stored energy distribu-
tion are some added 6 peaks at the co, 2co, 3co, . . . E,

„

places.
When we "switch on" the anisotropy in the system, the

most significant change occurs in the energy distribution.
The peaks suffer splitting [Figs. 3(a)—3(d), and 4(a) and
4(b)], and the measure of splitting depends on the value of
the anisotropy parameter ~. Figure 3(a) shows that a
very low anisotropy in the energy propagation results in
the change of the single-site energy distribution. The
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FIG. 2. Peak positions vs the lattice dimension. The calcu-
lated values are given by (5) and (6) (see text).
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FIG. 4. {a)and (b): Single-site energy distribution at different
anisotropy parameters in a three-dimensional lattice.
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low-energy peaks split up earlier. When the anisotropy
increases, the splitted subpeaks depart from the original
position nearly symmetrically until they meet the neigh-
boring subpeak and merge with it, or reach the border of
the energy range and disappear from the distribution. It
is important to note that the rniddle peak never splits up,
but the position of this peak can slightly change accord-
ing to the actual value of the average stored energy. The
position of the largest peaks against the value of the an-
isotropy parameter i~ [defined in (3)] is plotted in Fig. 5
(two-dimensional case); the solid line shows the value of
the average stored energy E, . In three dimension there
are two different cases. We show in Fig. 6 the a =1 ver-
sion, where the "easy directions" of the energy propaga-
tion are two-dimensional sublattices. We can conclude
from these figures that the peak positions depend almost
linearly on the anisotropy parameter. Figure 7 shows the
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FIG. 3. (a) —{d): Single-site energy distribution at different
anisotropy parameters in a two-dimensional lattice.

FIG. 5. Peak positions vs the anisotropy parameter in a two-
dimensional lattice. The solid line is the average stored energy
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FIG. 6. Peak positions vs the anisotropy parameter in a
three-dimensional lattice. Here a =1 [see (3)], i.e., the fully an-
isotropic case (a=1) corresponds to totally decoupled two-
dimensional sublattices.

height of the peaks against the positions for the two-
dimensional case. (The figure consist of the ~~0.72
points only, for clarity. ) On the basis of the height data
we can differentiate, e.g., the two-dimensional anisotropic
distribution (~=0.3) from the three-dimensional isotro-
pic case which have five peaks on the same places but
with different height distribution.

We checked the above-mentioned critical exponent and
the values for the isotropical cases are the following:

0 for 1D
1.2 for 2D
1.55 for 3D
1.9 for 4D .

These values approximately obey the scaling rule
T

5 1
1 ——

2 d
(7)

which differs from Eq. (4) given by Zhang in Ref. 13. We
note that the "cluster-size" here means the total number
of elementary excitations or sliding events' or Hip num-
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FIG. 7. Peak height vs the peak position in a two-
dimensional lattice at different anisotropy parameters. (The
three-dimensional case is very similar, but it consists of five

peaks in the isotropic starting position. )

FIG. 8. Critical exponents of the two-dimensional cluster
size distributions at different anisotropy parameters. (The
dashed lines only guide the eyes. )

ber defined by Kadanoff et al. ' This is the most physi-
cally significant quantity in terms of energy dissipation;
however, it may differ from the actual size of an
avalanche (which we might call an "area" in the case of
two dimensions), obviously. Grassberger and Manna per-
formed large-scale simulations' for the original discrete
BTW sandpile model and they obtained (in agreement
with our observation) that the inultiple activation event
during one avalanche may play an important role in the
energy propagation process, at least in the low-
dirnensional cases. From the other point of view,
Zhang's considerations based on the condition of com-
pactness, i.e., the area of the clusters obeys the s —r rela-
tion, where r is some linear size and d is the spatial di-
mension. It seems that in the higher dimensions the clus-
ters have fractal shapes rather than compact (e.g. , Ref. 16
gives df =2.85 fractal dimension for the three-
dimensional clusters). The deviation of our cluster size
exponents from the literature might be based on the
differences of the models, ' on the role of the multiple ex-
citations and/or the fractal shape of the clusters, ' or
even on the differences of the cluster size definitions.

The exponents are not sensitive to the anisotropy. As
an example we plotted in Fig. 8 the measured ~ cluster
size exponents against the anisotropy parameter in the
two-dimensional case. At very small ~ values (small an-
isotropy) there is no sign of any change in the cluster size
distribution, while the single-site energy distribution is
remarkably varied, the peaks are split up.

IV. SUMMARY

We performed computer simulations to investigate the
self-organized critical state in a continuous-energy model.
We introduced a type of anisotropy in the energy propa-
gation process. From the experiments we conclude the
following.

(i) The single-site energy distribution has a peaked
shape. The positions of the peaks depend on the allowed
energy range (E,„E;„)and the —lattice dimensionality
only, but are absolutely independent of the characteristics
of the energy discharge.

(ii) The critical stored energy obeys the scaling relation
(5), and the positions of the peaks correspond to the inul-
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tiples of the dimension-dependent quasiunits given by (6).
(iii) In the cases of anisotropic energy propagation

defined by (3), the peaks suffer splitting, and the measure
of the splitting depends almost linearly on the anisotropy
parameter ~.

(iv) The critical exponents of the cluster size distribu-
tion are affected by the anisotropy on the extreme cases
only (Fig. 8.). This means that a very weak coupling be-
tween the individual subsystems (large anisotropy) forms
an effective higher-dimensional correlation.

(v) All of our investigations seem to support the earlier
theoretical result, that in this type of dynamical model
there exists an upper critical dimension d, =4, and above
this dimension the scaling breaks down.

We believe that the robust self-averaging process re-

suiting in the peaked single-site energy distribution is a
very important fingerprint of the self-organized critical
state. The lack of unambiguous experimental evidence
renders primordial the investigation of relatively simple
models, and the theoretical understanding of the quan-
tized energy distribution may help to the deeper insight
of the behavior of the complex dynamical systems.
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