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Boltzmann equation and the conservation of particle number
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The violation of particle-number conservation by some spherical solutions of the Boltzmann
equation is known to exist. The reason stems from the fact that the Boltzmann equation itself in-

cludes a contradiction: The velocity of a particle is independent of the position of the particle, but
the acceleration, namely the time derivative of velocity, is related to the position. Considering the
velocity as a function of position and time, we introduce a new equation. Under the same initial
condition as for the Boltzmann equation, a strict solution of the new equation does not violate the
particle-number conservation law.

I. INTRODUCTION C, =(2~mnoG/3)' (4)

As is well known, the Boltzmann equation

a f (v, r,—t)+v f +a f =I,(v, r, t)
() (3

at Br 9v

is one of the fundamental equations in statistical mechan-
ics;' in particular, it plays a very important role in
nonequilibrium state statistics, and in gas dynamics. "
The distributed function f (v, r, t) in (1) is the number of
particles in unit volume of velocity space near v and unit
volume of position space near r at time t, and a is the ac-
celeration of particle. Some authors write this term as
K/m, the force exerted on the unit mass of the particle.
In many books the Boltzmann equation (1) is derived
from the conservation of the particle number in phase
space. There the corresponding term is the velocity in
velocity space; therefore, the use of a in (1) is more direct
and definite. I,(v, r, t) in (1) is the collision term

I, (v, r, t) = f fd v) df1'o u [f(v'}f(v', )

f (v )f (v, ) ](,—,),
where the variables r and t of distributed functions in the
square brackets are all the same, and the velocities are
such that, after the collision of two particles with veloci-
ties v and v„ their velocities become v' and v', , respec-
tively. u=v —v, , u'=v' —v'„and dQ' is the solid angle
of u', cr is the cross section of the collision.

where m is the mass of particle, n, o the initial density of
particle number at the point r=O, and 6 is the gravita-
tion constant.

Now let us discuss the requirement of particle-number
conservation. The total particle number of the system is

N= d Udr vrt (5)

From (3) we have

N= g (C, t)'N, ,
&=0

where

N, = f f d v d r f;(v, r) .

The conservation of particle number requires

that is,

N, =O (i =1,2, . . . ) .

III. SOME SPHERICAL SOLUTIONS OF (I)
DO NOT OBEY THE CONSERVATION

OF PARTICLE NUMBER

II. EXPANSION OF TIME SERIES
AND THE REQUIREMENT

OF PARTICLE-NUMBER CONSERVATION

Because (1) is a nonlinear differential-integral equation,
in general, it is dificult to find a solution of (1). Let us
only discuss an isolated particle system and find the solu-
tion with following form:

Substituting (3) into (2), we obtain

I,(v, r, t)= g (C, t)'I„(v, r),
i=0

where

II„=f f d'v(dQ'o. u g [f,(v')f;, (v', )

g=0

(1O)

f(v, r, t)= g (C, t)'f, (v, r),
i=0

where C, is a constant,

(3)
—f)(v)f;, (vi)](„)

For simplicity, we assume o to be a constant in following
calculation.
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a(r, t)= g (C, t)'a, (r),
i=0

where

a, (r)=mG f fd v d r'f;(v, r')(r' —r)/~r' —
r~

(13)

(14)

If we only discuss the isolated system in which there is
gravitation interaction among particles, we have

a=mG f f d v d r'f (v, r', t)(r' —r)/~r' —r~' . (12)

Applying (3), we obtain

N2 =4m.noR -'/3 . (17)

This result does not satisfy the condition (9) required by
conservation of particle number.

Although the solution discussed here is approximate to
the second order, the result of the violation of particle-
number conservation by this solution is exact. That is to
say, this solution does not obey the conservation of parti-
cle number, even though other N, (i =3,4, . . . ) are equal
to zero. This point must be emphasized.

(ii) Some continuous initial conditions In.stead of (16)
we can take

Substituting (3), (10), and (13) into (1), we can get a re-
currence formula of f;(v, r),

(i+1)Cf, +,(v, r)+v f, + g a f, , =I„.
Br '

. ' BvJ=

(15)

Now let us find spherical solutions of (1) with the form
(3) under some initial conditions.

(i) Uniform initial condition If the .initial condition is

fo =M*(U)noexp( —k, r),
where k, is a constant.

As for case (i), we obtain

N2=4trnok, (k~/C„) +7.5%0,

where

C„=(2am noG/3kT)'

(18)

(19)

(20)

f0=f (v, r, t =0)=M*(U)N(r, t =0)

(16)

where M (U) is the Maxwell velocity distribution, and no
and R are some constants. Applying the recurrence for-
mula (15) twice, we can obtain fz(v, r), and using (7), we
obtain

where k is the Boltzmann constant and T is the initial ab-
solute temperature. In other words, under the continu-
ous initial condition (18) in all the space, the solution of
the Boltzmann equation (1) still violates the conservation
of particle number.

We can also discuss a more physical initial condition,
assuming that the initial temperature is dependent on the
radius r, i.e.,

fo=[m/2kTexp( —
kyar)]

~ exp[ —mu2/2kTexp( —kyar)]noexp( —k&r) . (21)

This time T is the initial absolute temperature at the
center of the system and k2 is a constant.

As in (19), we can obtain

N2=4nnok, C„(k,+kz) +3nok~ k2+36nok, WO .

(22)

IV. THE CONTRADICTION
OF THE BOLTZMANN EQUATION

It is well known that the Boltzmann equation (1) can
be derived from the conservation of particle number in
the phase space. That is to say, the velocity v of a parti-
cle is considered as an independent variable, irrelevant of
the position r of the particle. But, in general, the force
exerted on a particle should be dependent on the position
of the particle. In fact, we can think of an isolated spher-
ical particle group, where the force exerted on a particle
at the center of the group equals zero and the force exert-
ed on a particle at the rim of the group equals the vector
sum ( —GMmr/r ) of the forces exerted on the particle
by all the particles in the group. That is to say, the ae-

celeration of the particle, namely, the time derivative of
velocity, is dependent on the position of the particle.
Therefore, the Boltzmann equation (1) itself includes a
contradiction. And it is this contradiction that causes
the problem of the violation of the conservation of parti-
cle number by solutions of the Boltzmann equation.

The Boltzmann equation can also be derived from the
Liouville equation. In that case the velocity of a particle
is still considered as an independent variable, irrelevant
of the position of the particle. Therefore, the contradic-
tion still exists.

D f (v, r, t)=0 .
Dt

In fact, from (5) and (23) we have

dN 3 3 D
dt

=f fd Ud r f(v, r, t)=0.
Dt

(23)

(24)

V. A NEW EQUATION

It is not difticult to see that the conservation of particle
number can be guaranteed by a totally differential equa-
tion,
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This time we consider the velocity of a particle as a
function of the position of the particle and time, i.e., we
consider the relations of variables as

f (v, r, t)=f (v(r(t), t), r(t), t) .

Then from (23) and (25) we can get

(25)

f (v—r t)+v. + v. +df Bv Bv

Br Bt

Qf =0 . (26)
Bv

Now let us solve this equation under the initial condi-
tion (16). This time, there is a new difficulty in the calcu-
lation of Bv/Br. For that, we can consider the velocity v

as a sum of the random velocity and another part. Obvi-
ously, the random velocity, i.e., the thermomotive part of
the velocity, is independent of the position r absolutely.
Only the average velocity v that remains after removing
the random factor is dependent on the position r. This
part of the velocity is a result of the gravitation interac-
tion among particles. Then (26) becomes

g a2&, (2$ 2—j—1)!!= g ( —I)'2~/(f j—)j!!
i=0 j=0

=—lim g ( —x)jg!/(g —j)!j!
g! x-! =O

=—lim g C~( —x)~
g. x~1 '=0J=

=—lim(1 —x)~=—5@ .
g! x-! gl

(35)

So we get

QO

rt(r, t)=N(r, t =0) g (C„C,rt) ~ 5&—0
(=0

=N(r, t =0) . (36)

By means of (29) we can write the sum about j in (34) as

f (vr t)—+v + v +a =0,a af av af
Br Bv

(27) Considering only the gravitation among particles, we
have

where we have used Bv/Bt =a.
Using the method used in Ref. 8, we can obtain a strict

solution of (27) without any approximation. For simplici-
ty, here we only gave the result

a= rGr —4m r' dr'mrt(r', t)
0

rGr 4a—f r' dr'mN(r', t =0)
0

QO I /2f (v, r, t) =fo g (C„C,rt)' g a,"(C,u cosa)' (28)
i=0 j=0 —2C, r (r (R)

where the coeScients a, are

a;~ =( —1)'+~2' JI(i —2j)!j!, (29)

0 (r&R). (37)

a in (28) is the angle between v and r, and the constant
C„ is

Noticing that v is the average velocity of a single parti-
cle, and applying (31) and (32) again, we can obtain

C, =(m IkT)'" . (30) v=no ' f d u f (v, r, t)v

Now let us check this solution. Applying two integral
formulas

QO

2 +1=C, ' g (C„C,rt) ~+' g a2&+»(2g —2j —1)!!r/r
/=0 j=0

fM'(u)(C, v cosa) "d u =(2n —1)!!,

fM "(v)(C„v cosa) " 'd v =0,
(31)

As in (35), we can have

(r (R) . (38)

where the double factorial (2n —1)!!is defined by

(2n —1)!!=(2n—1)(2n —3) . 5X3X1,

( —1)!!=1 m!!=0 if m (—1 .

g a&&+, , (2g —2j —1)!!= —
5&o2 &+'/g! .

j=0

(33) Then, we get

(39)

We can obtain

g(r, t)= f d'u f (v, r, t)

v=C, ' g (C,C, rt) ~+'( —1)5@2 ~+'r/rg!
g'=0

2C, rt (r(R—) . (40)
=N(r, t =0) g (C„C,rt)'&

(=0

X g a2& (2(—2j —1)!!. (34)
Applying (28), we can obtain df /dt, BfIBr, and df Idv

directly. Substituting them and (37) and (40) into (27)
and making some appropriate readjustment, we can have
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a af aV

a~
+"

ar Br Bv

oo i/2=fo g (C„C rt)'C, t g (C, u„)' J[(i+1)a;+~ +, +2a,. +, —2(i —2j)a; ]
i =0 j=o

oo i /2

+fo g (C„C,rt)'C„r g (C„u„)' J+'[(i+1)a;+»+2a; —2(i 2j—+2) ai, ] .
i=0 j=0

(41)

Now let us calculate the value of the expressions in the two square brackets. Using the representative (29) of a;, we get

[(i+1)a,+~ &+, +2a; +, —2(i —2j)a; ]

=(i + 1)( —1)'+12' ~/(i 2j ——1)!(j + 1)!+2(—1)'+~+'2' 1 '/(i 2j ——2)!(j+ 1)!

—2(i —2j)( —1)' t2' ~/(i —2j)!j!
=( —1)'+~2' ~(i +1 i+—2j+1—2j —2)/(i —2j —1)!(j+1)!=0 .

Similarly,

[(i+1)a;+~1+2a, —2(i —2j+2)a;, ]=0 . (43)

Now we are sure that (28) is a strict solution of Eq.
(27). And from (36) we see that the solution (28) certainly
obeys the conservation of particle number.

VI. CONCLUSION AND DISCUSSION

To summarize, we get the following results.
(i) The expansion of time series is a feasible method to

solve differential equation with several variables.
(ii) The spherical solutions of the Boltzmann equation

do not obey the particle-number conservation law.
(iii) The Boltzmann equation itself includes a contrad-

iction. When the gravitation interaction among particles
cannot be neglected, the contradiction appears.

(iv) The solution (28) of the new equation (27) obeys the
particle-number conservation law.

Now let us discuss the convergence of the expansion (3)
under the initial conditions (16), (18), and (21). Because
the exponential functions exp( —u ) and exp( —r) have
good convergence, f;(v, r) in (3) are finite in the whole ve-

locity space and some large position space. Equation (3)
shows that the convergent region of the solution with
time series is C, t(1. Equation (4) indicates that C, is a
very small constant. For example, if mno=1 kg/m,
which is the density of atmosphere near the surface of the
earth, the order of C, is 10 s ' and if mno = 10
kg/m, the density of gas in the space among stars, the
order of C, is 10 ' s '. Therefore, it is meaningful to
discuss the problem of particle-number conservation in
the time interval t & C,
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