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A methodology for generating sample functions for colored noise which has some relative ad-
vantages over existing ones is outlined. This involves simulating a stochastic process in terms of
harmonic functions, the amplitude of which is related to the power spectral density of the noise.
The computational advantages of the fast Fourier transform are utilized and the numerical in-

tegration of the noise equation is avoided. In light of this methodology, existing algorithms for
colored-noise simulation are critiqued and compared with the present one. Numerical results for
a particular case study, namely that of an overdamped particle in a bistable potential, are present-
ed and the results are compared with existing theories.

Numerical simulation in colored noise studies' is often
used as a yardstick for theoretical approaches. For this
purpose presently, some digital simulation techniques
are used that are largely similar in that Gaussian white
noise is generated first from uniform random variates us-
ing the well-known Box-Mueller algorithm. s

In the present work, a simulation technique highly suit-
ed for colored noise is presented which is different from
existing ones in terms of its analytical formulation. The
innovative attribute of the method is that it generates
Gaussian colored noise directly from uniform random
variates by expressing the sample functions in terms of
harmonic functions and using the powerful fast Fourier
transform (FFT) method to facilitate calculations. Al-
though the concept of expanding a stochastic process in
terms of harmonic function had been used as early as
1910 by Einstein and followed through by others, only
in recent years has the method been developed to take the
advantages of modern computational advancements. In
this paper the methodology is applied to simulate the
mean first passage time (MFPT) TF of an overdamped
particle in a bistable potential. ' ' Although some
simulation studies exist (for review see Ref. 10) for this
problem, the calculations presented here have two merits:
details and sufficient control on accuracy and repeatabili-
ty. However, the goal of the paper is not to produce an
encompassing study of the chosen problem but in essence
to introduce an effective simulation technique for colored
noise (see conclusion).

The dynamic equation (in terms of dimensionless vari-
ables) is

x(t) -U'(x)+f(t) -x+x +f(t),

where U(x) x"/2 —x /2, with an unstable position at
x 0 and two stable ones at x —1, I; where f(t) is
zero-centered, stationary Gaussian noise with

(f(t)f(t')) (D/r)exp( —(t t')/r), —

D is the noise intensity, and r the correlation time. This
noise can be generated from a Gaussian white noise
g(t) [(g(t)g(t')) 2Db(t —t')], through the equation

rf(t) -—f(t)+&(t) (2)

with probability distribution of f(0) being a Gaussian of
half-width (D/r) '

To date, largely three different methods have been used,
and all involve solving coupled equations [Eqs. (1) and
(2)]. In the algorithm due to Sancho et al. and Fox et
al. 3 (Al and A2, respectively) Eq. (1) is approximated as

x(t+h) x(t)+ [x(t) —x'(t)+f(t)]h,
where h is the discretized time step. In the algorithm of
Mannella and Palleschi~ (A3) higher-order terms of h are
taken into consideration. In Al, Eq. (2) is approximated
as

f(t+h) f(t)+[((t)—f(t)]h/r,
whereas in A2 and A3 it is considered as

f(t+h) f(t)exp( —h/r)+b(t),
where b(t) is a Gaussian number of zero mean and vari-
ance, [D[1 —exp( —h/r)]/r].

The putative advantage of A2 and A3 lies in the fact
that it uses the exact solution of Eq. (2). From a simula-
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tion point of view this means that the deterministic parts
of A2 and A3 are more accurate than Al. However, all
algorithms follow the same procedure (Box-Mueller algo-
rithm) to generate the randomness and thus share the
common properties of the method. It is not the authors'
intent to present a detailed critique on this issue but a few
critical points are delineated, necessitated for later com-
parison with the present algorithm.

One primary concern of any simulation method of a
colored stochastic process is "how Gaussian is the end
product?'* Although the Box-Mueller algorithm is exact
from a mathematical point of view the distribution of
sample values may be "seriously different" when used
with a linear congruential random number generator
(used by the above algorithms). Surprising "short tails"
even with generated 10 standard normal deviates are
obtained —values within three standard derivatives were
difficult to obtain for the case study. Special tech-
niques may have to be followed in order to generate the
needed tail of the distribution. Even then "the effect is
worrying, since the experimenter will often not know the
value of the [random] multiplier. "

The other difficulty surrounds the time step of integra-
tion. Since Eqs. (1) and (2) are solved as coupled equa-
tions, "forcing" Eq. (1) to be integrated over the time step
of Eq. (2) which may in many cases produce totally incon-
sistent results. [In one version of A3 this is circumvented
by integrating Eq. (1) by a predictor-corrector method. ]

The other aspect has to do with ergodicity. This is not a
necessary property of the noise but facilitates calculations
as convergence values with respect to the number of reali-
zation is obtained faster. The generated samples of Al,
A2, and A3 are not ergodic and in literature this
shortcoming has been pointed out. '5 The absence of ergo-
dicity results in each sample case with vastly different
"energy flow, " and hence numerous realizations have to
be generated to obtain meaningful results. Averages tak-
en over an arbitrary number such as 1000 or 5000 realiza-
tions do not signify any steady value. The MFPT should
be obtained as the average converges and with the ergodic
assumption the MFPT values are obtained faster.

For the present method a stochastic process f(t) is
simulated by the following series, ' as N ~

paramount importance to note that Eq. (3) directly con-
verts uniform random deviates to a stationary, Gaussian
colored noise compared to the linear transformations and
a numerical integration for existing algorithms

In order to take advantages of the FFT techniques
Eq. (3) is rewritten in the following form for a sample
function f '

1I

M —[

f(i)(pPt ) ~Re g b einP2m/M . p 0 1
n 0

(4)

where b %2[2S (nato)hto] '/ e ", n 0, 1, . . . ,M —1,
and pt' is the i th realization of a sequence of random
variable 4„. For simulation, three parameters of Eq. (4),
namely N, M, and ro„, are pivotal. Amongst other things,
N controls the Gaussian character of the simulated pro-
cess, M controls the digitized time step of the stochastic
process; by varying M noise at desired timewidth can be
generated.

Corresponding to the exponential correlation function
the PSD, S(to) (D/tran )/[ro + (1/ )r]. For MFPT cal-
culation, Eq. (1), along with noise characteristics given by
S(ro), represents the physics of the phenomenon for the
present method; the proposed method is effectively one-
dimensional and not two like existing ones. (For higher-
order noise, like the harmonic noise, the method thus
has a great advantage as the system is still one-
dimensional. ) This means that for the deterministic sys-
tem equation [Eq. (1) with F 0] the question' ' of
the "separatrix" does not arise. The MFPT from x —1

(starting point in all present studies) to say x 0 or 1 (or
any x location) for any arbitrary value of the colored
noise. This in itself reflects the physics of the
phenomenon; the question of separatrix arises due to the
introduction of an artifice [enlarged space of Eq. (2)] for
theoretical analyses. In the analysis by Doering, Hagan,
and Levermore, ' the location of the end point is taken to
be x 0 (f arbitrary) for which the simulation value
(TP)„owill be used for comparison. On the other hand,
it has been pointed out' ' that for small r, (TP)„-o of
the other theories should be interpreted as 2 (TP)„-~.

For a given r, the ratio of area for say ror(=p) 10 to

N

f, (t) v 2 g [2Sf(co.)ato] '"cos(tot+@„), (3)
80.0

where io„nd, io, n 1,2, 3, . . . ,N, and dco ro„/N; ro„
represents an upper cutoff frequency for the power spec-
tral density (PSD) curve beyond which its value may be
taken to be zero. The 4 s in Eq. (3) are independent
random-phase angles uniformly distributed over the inter-
val [0,2tr]. Equation (3) provides a digitized simulated
stochastic process f, (t) which is asymptotically Gaussian
as N ~ due to the central limit theorem. The authors'
experience and approximate analysis have sho~n that a
reasonable (and computationable) value of N can produce
substantial portion of the tail of the Gaussian process as
shown in what follows. Furthermore, it can be shown that
each sample run is ergodic in the mean as well as in the
correlation and that the simulated stochastic process re-
peats itself with a simulated period T, 2tr/Aco. It is of
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the total area under the PSD curve is 93.'7% (for p 40,
20, 7, 5, and 1, the values are 98.4, 96.8, 90.96, 87.4, and
50, respectively). If p is taken to be I (tu r) or less re-
sults are inconsistent, as of course, only 50% (or less) of
the area under the PSD curve is taken into account. Also
high p values ( & 40) include the asymptotically decreas-
ing portion of the PSD curve without much "power" con-
tribution. In the present tests p was varied from 7 to 20.

As noted before, in principle, "high" value of N is
necessary for generating the tail of the Gaussian distribu-
tion. Thus, the following question is of importance: How
fast is f, (t) converging to Gaussian character as a func-
tion of N? Values of N were used such that in every run
the MFPT was much smaller than the simulated time
period T, . For this, the values of N used were much
larger typically (12000-26000) than those usually used
in this type of simulation study. In general this improves
the Gaussian character of the sample functions; even with
N values of about 1000 the tail portion up to five standard
deviations are obtained with practically less than 5% er-
ror 26

Before comparing the numerical results with existing
theories, some general characteristics of the simulation

FIG. 4. (TF)„-0 for small r for D-O. I. 8: Doering,
Hagan, and Levermore (Ref. 17); 8: Klosek-Dygas, Matkow-
sky, and Schuss (Ref. 15); C: Masoliver, West, and Linderberg
(Ref. 12); D: Luciani and Verga (Ref. 18); E: Fox (Ref. 16);
&: Ref. 4; &: present method.

study are presented next. Figure I shows (TF)„-cversus
the number of realizations. The desired MFPT values
(= 32 and 35) are obtained with few sample averages and
with more averaging a "steady state" is obtained. For all
MFPT values presented, the averages were not arbitrarily
taken over any number of realizations (say 500 or 1000)
but the process was carried through until such "steady
state" was obtained. As mentioned earlier, due to the r-
godicity of the sample runs, steadiness was obtained qut e
fast.

Figure 2 shows the advantage of the parameter M. By
varying M, a sample run of the noise was discretized with
different time steps but with practically no change in the
value of MFPT. The values of this figure are to be com-
pared with those obtained through existing methods where
large fluctuations are known to occur (see Fig. 1 in Ref.
10 and Figs. 1 and 2 in Ref. 4).

Figure 3 compares the simulation results of —,
' (TF)„-~

with the theories of Fox, '6 Doering et al. ,
' Masoliver,

West, and Linderberg, ' and that of Luciani and Verga. '
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(Tr)» i for large i for D 0.1. A: Tsironis and
Grigolini (Ref. 14); B: de la Rubia et al. (Ref. 21); C: approxi-
mate Eq. (13) in de la Rubia et al. (Ref. 21); x. present
method.
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Good matching between the theories and experiment for
values of r to 0.8 and in particular for the theory of Ref.
12 for up to 1.4. (References 10 and 19 hold that the
theories should be good for values a little beyond r 1.)
Figure 4 shows the values of (TF)„-n for very small r. In
this case, the values obtained by Doering et al. (with its
Ji correction) have a very good match with experimental
results (to about r=0.15). It is to be noted that the
present simulation results as given by Figs. 4 and 5 are at
variance with those of Ref. 4.

Figure 5 represents the TF values for large r, i.e., for
2-8 KrUc)//D 5-20, where Un is the height of the

potential barrier]. For such r values the physical process
is quite complicated' ' and the authors intend to address
the additional features in much more detail in another pa-
per.

In conclusion, the paper presented a method to generate
colored, Gaussian stochastic processes with certain
characteristics that offer some advantages over existing
methods. It was applied to simulate the MFPT for a par-
ticle in an overdamped bistable potential. The simulation
method, in essence, can be applied with relative ease for
higher-order systems driven b~ exponential colored noise
(e.g., including inertial effect in the studied case) or for
higher-order noise (e.g. , harmonic noise") for which not
much work has been done to date. Two important prob-
lems of the higher-order system are that of stability of un-
derdamped particle in a potential well and electrohy-
dronamic instabilities. 3c Simulation studies carried out to
date have problems. " Using the present technique the
authors have carried out preliminary work on these partic-
ular topics with promising success.
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