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Rigorous upper bound for turbulent electromotive force in reversed-field pinches
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An upper bound is determined for the turbulently generated axial electromotive force in

reversed-field pinches, constrained solely by energy conservation in the approximation of in-

compressible magnetohydrodynamics. The field reversal is predicted and comparisons are made
with the minimum-energy state with the invariant magnetic helicity.

We compute a rigorous upper bound for the electromo-
tive force (emf) due to steady-state turbulence in cylindri-
cal pinch plasmas driven by an external electric field.
The reversed-field pinch (RFP) is a device that magneti-
cally confines plasma. ' In RFP experiments it is ob-
served that toroidal-field reversal occurs and the
reversed-field state is sustained, accompanied by fluctua-
tions. ' Self-reversal can be understood in general terms
as a consequence of the tendency of the plasma to relax
to a minimum-energy state while conserving total mag-
netic helicity, as proposed by Taylor. The detailed
dynamical mechanisms behind the relaxation have not
yet been fully explained.

Following the success of Taylor's variational method,
other authors have attempted to exploit variational prin-
ciples based on one or another physical hypotheses; '

however, none of those principles, including Taylor s, is
rigorous. Furthermore, because of nonlinearity one
needs many approximations in order to proceed analyti-
cally; some are difficult or impossible to justify. Many
numerical simulations have been done. ' However, these
require very long runs in order to achieve steady state.
Thus it is desirable to develop a model that requires less
effort and time to solve, but still exhibits fundamental
features such as field reversal; ideally, these would be pre-
dicted rigorously.

Rigorous analytic prediction of transport rates or mean
profiles is probably too much to hope for. However,
rigorous and suggestive bounds on certain transport
fluxes can be obtained. We employ a rigorous, nonlinear
variational principles formulated originally by Howard
(the so-called "optimum" theory ). The principle states
"maximize a preferred fiux under (some) constraints ob-
tained from the dynamical equations. " If the constraints
are chosen judiciously, the bound can reasonably approx-
imate the true flux. Furthermore, if there is a strong ten-
dency in the real world toward a state of maximal flux,
then the optimum theory offers model equations that in-
clude important features of the real physical system. It is
difficult to quantify this tendency a priori. However, the
utility of the optimum theory has been proven in both
self-consistent fluid turbulence ' and various models of
passive advection. "'

We consider a steady-state RFP parametrized by
specific total axial current. For this case, the natural
quantity to maximize is the spatially averaged turbulent
axial emf e, which is positive-definite and can be inter-
preted as a generalized dynamo effect. ' We use the so-
called "basic" constraint" obtained from the global ener-

gy balance, which balances linear dissipation with the
production of fluctuations due to the nonlinear interac-
tion of the fluctuations with the mean fields. The role of,
and difficulty with, additional helicity constraint, which
plays an important role in RFP, are discussed in Ref. 14.

We use the resistive, viscous magnetohydrodynamic
(MHD) equations in cylindrical geometry (r, 9,z) We a.s-

sume for simplicity that the plasma is incompressible
(V u=0, u being the fluid velocity), the electrical resis-
tivity g is a constant, and the viscosity v is isotropic and
constant. This is the simplest possible model that can
still exhibit field reversal. As units of time, space, and
magnetic field we use the resistive-diffusion time

r, =—4ma /c ri, the radius a, and the toroidal field Bo.
Two natural dimensionless numbers are the Hartmann
number H =(a Bo/c pogv)'~ and the "magnetic
Prandtl" number P =(4n /c )(v/ri). (The Lundqvist
number 2 can be expressed as X=QP H. ) Let E, be
the total electric field, the sum of the external field

E,„,=zEO and the internal field E of the plasma. Then
the MHD equations are Ohm's law E, +u X B=j, or

t)B
C}t

=VX(uXB—j),
the equation of motion

P l P +.~2 gB+g2
di

where 1/dt—:t)/t)t +u.V, and Ampere's law (7XB=j.
At the wall it is assumed that n-B=nX j=O and u=O,
where n is normal to the wall. Thus we assume a fairly
ideal situation for supplying the magnetic flux such that
Eo is uniform and finite inside the wall but vanishes at
the wall. '

With our assumption V u=0, the role of the pressure p
is to maintain the incompressibility. It can be expressed
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A Iu, i):—e(d')+AE8x+ (A,„(x)(V.G) &

+&A. (x)(V.S)& .

Here e=Q, (Q—= (SXG&), CE is the energy constraint,
and the A, 's are Lagrange multipliers.

The fundamental nonlinearity in the theory is the self-
consistent adjustment of the mean profiles to the fluctua-
tions. To obtain CE it is useful to express the means in
terms of the fluctuations. %'e begin by averaging Ohm's
law. Barring the z component of the result leads to
Eo =8+F, so one may interpret the nonlinear effects as
providing a generalized nonlinear resistivity. By using
the mean Ohm's law and Ampere's law, (B& can be
found. The (u& can be obtained from Eq. (2). Details
can be found in Ref. 14.

We can now construct C z by forming the evolution
equation for the energy of the fluctuations. We add the
scalar products of Eqs. (1) and (2) with B and G, respec-
tively. The result contains third-order moments; howev-
er, these can be eliminated completely and rigorously by
applying the barring operation and employing the bound-
ary conditions. This annihilation is the essence of the
method; it replaces the uncertainty conventionally intro-
duced by statistical closure. In steady state, we find

O=C' =—ref —[(&y'&+H '(a'&)+(be'+Q~)

+H'~M'~], (3)

where 8—:VXG, he(r): e(r) F, and— —

M=rX[&SX(rXS}&—X '&GX(rXG)&] .

The first parenthesized term in Eq. (3) represents dissipa-
tion; the other terms are related to production. Clearly F
is positive. One can show that Eq. (3) is nothing but
Poynting's theorem: the volume-averaged dissipation of
the total energy (mean plus fluctuation) balances the in-
ward Poynting flux.

By introducing the quantity g=—1+A,E one can write
the resulting Euler-Lagrange equations in the form

0=VX j—SXL+Q~+VA, g

O=H V Xa)+B™XL+Q~+ Vk„',

where

(4a)

(4b)

as an instantaneous functional of u and B by solving the
Poisson equation obtained by taking the divergence of
Eq. (2):

V p = P—'V.(u.Vu)+H V (j XB) .

However, we will not need to solve this equation in the
present work.

We denote the average over the directions 8 and z (as-
sumed to be homogeneous) by angular brackets and fluc-
tuations by tildes: f(r, 8,z)=f(r, 8,z) (f—&(r). A bar
denotes the radial average f=2fsdr rf. Steady states
are parametrized by cP = (j, &, a measure of the total axial
current. Then the goal is to maximize the functional

L= 8—Qe+ z( ,' g—8 6e),
Qa=H P (MXB),
0„=—P 'P.(uxM),

P =z z —(x x+y y), and A,
' a: A, . The nonlinearities associ-

ated with ( B& are assembled inside L; those due to ( u &

are represented by the 0's. To determine A,E we take sca-
lar products of Eqs. (4a) and (4b) with u and B, respec-
tively, bar the resulting relations, and use the constraints
to find

(=2—((j &+H (co2&)/(F/) .

The multipliers A,a and A,„can be eliminated by applying
the operators r.(V X }"(n = 1,2} to Eqs. (4). To satisfy the
solenoidal constraints, we express the fields in terms of
potentials; for example,

B=—VX(rgb)+VXVX(rya) .

After Fourier transformation in 8 and z and extremely
tedious algebra, ' we arrive at a 12th-order nonlinear sys-
tem of ordinary difFerential equations. Since the equa-
tions have a 1/r singularity at r=0, we must require that
the variables be regular there. We determine appropriate
regularity conditions by performing an eigenvector
analysis near r =0, following Lentini and Keller. '

We solve this system numerically. First, we compute
the largest possible current d', that does not drive tur-
bulence [i.e., F(8, )=0]. This (linear) eigenvalue calcula-
tion serves two purposes. First, it is identical to the ener-

gy stability problem. ' Second, in solving the nonlinear
problem we employ Pereyra's algorithm since iteration
is involved it is important to have a good initial guess in
order to guarantee convergence.

It is found that the critical maximizing modes are
m =+1 and n =+2 when the aspect ratio A is unity.
(To date, we have considered only A =1, as an interesting
and exemplary case. ) The critical current is 8, =40H
Since H may be very large, 8, is far below the actual
value observed in the RFP experiments, as one would ex-
pect. The dominance of m=1 modes is in agreement
with the RFP research, both numerical simulations and
experiments. Also, it fits well with the speculation of
Caramana' that ~n~-2A.

Now, we consider the bounding curve Ae;H, P } for
nonzero F when A=1. For a preliminary analysis that
substantially simplifies the numerical work we shall
neglect the effects of (u & because the essential nonlinear-
ity for the study of field reversal is believed to be the
u XS term in Ohm's law. Then 0 is the only parameter
in the problem. (P appears only in the terms associated
with (u &. ) The inclusion of the mean flow should modi-
fy the answer by a relative contribution of at most 0 (1 }.
We intend to include these terms in the future; though
complicated, they pose no problem of principle.

We retain only the mode (m, n}=(l,—2}. The (1,2}
mode is ignored because modes with m /n (0 (for which
the mode-rational surface falls inside the plasma) are be-
lieved to be more important. We believe that this single-
mode calculation is correct for 8 sufficiently close to 8, .
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FIG. 1. Bounding curve up to H8=2 X 10 .

For sufficiently large cP, presumably bifurcations occur'
such that the maximizing solutions consist of multiple
modes. This scenario has been verified in a variety of
fluid applications. It is extremely difBcult to compute
the onset and properties of the bifurcated states, and we
have not attempted to do so.

The single-mode bounding curve up to H8=2X10 is
shown in Fig. 1. For cP close to 8„F~ 8 4, , w—hich can
be proven analytically by perturbation analysis. For
Hd)&5X10, K=0.4H 'cf". For higher H8, the for-
mation of boundary layers makes the numerical computa-
tions rather difficult; however, there is no reason to be-
lieve that the form of the single-mode bounding curve
should change dramatically for larger H. For H=400,
the I'-0 curve is shown in Fig. 2, where
F= (,8, )(r =a)/(8, ) and 8—:(8&)(r =a)/(8, ). Un-
like the prediction from Taylor's hypothesis, the curve is
almost linear near the reversal F=O and the reversal
takes place at so=3.0, which is somewhat higher than
the usual experimental and simulation value approxi-
mately equal to 1.5. However, there is a tendency for eo
to become smaller as H increases. (For H=100, 8o=3.7;
for H=250, SO=3.2.) If we extrapolate these three data
points, then so=1.3 for H =10 . Of course, this value
must not be taken too seriously. However, it is quite
plausible that the optimum theory can predict field rever-
sal fairly close to the experimental observations. Space
constraints preclude including a graph of the bounding
mean magnetic fields. However, they display no unusual
features, except that for currents near field reversal (8, )
has a shallow maximum near r/a =0.4 which may not be
physical.

For H=400 the relative fiuctuation level 8/~8~ is
about 10%%uh, which agrees with the high-beta toroidal ex-
periment (HBTXI), ' where H can be estimated to be of
this order if we assume v= v; ~;, where v; and ~; are the
ion thermal velocity and the ion collision time, respec-
tively. The magnetic-field fluctuations are larger than the
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FIG. 2. F-8 curve for H =400.

velocity fluctuations; the energy of the former is about
ten times higher than that of the latter. The fluctuation
level decreases as H increases. Boundary layers with
width O(H '~2) are observed. [This can be explained by
balancing the linear terms with the nonlinear terms in
Eq. (3) and introducing the thickness 5x of a boundary
layer; for field reversal ~B~ =H '~, ~6~ =H', and
5x=H '~. ] Between r=0.3 and 0.7 the current and
the magnetic field are aligned. They are not aligned in
the core and near the boundary. On the axis

(j, )(0)=Eo—e(0) &0, thus (j) and (B) are an-

tialigned. The maximal-emf state is neither force free nor
a Taylor state.

Although various facets of this work deserve to be
refined, we conclude that the utility of the optimum
theory has been demonstrated for this self-consistent
problem of physical interest, inasmuch as it predicts field
reversal close to (and of the same order as) the observed
values and makes a specific prediction for the turbulent
emf. Future efforts are desirable in the following areas:
(i) including more modes, pursuing the bounding curve to
higher H, and including the mean velocity; (ii) consider-
ing the role of the helicity constraint; (iii) using a nonuni-
form driving electric field in order to model the experi-
ments more closely; and (iv) including two-point con-
straints"' in order to include the dynamical effects of
finite correlation time and length.

After the present work was completed, Bhattacharjee
and Hameiri brought to our attention Ref. 18 in which a
variational principle described as "minimum entropy
production" is proposed that is formally very similar to
the principle considered in the present work. Those au-
thors concluded that the resulting optimum state is, in
fact, a locally attracting relaxed state, a result stronger
than we have been able to deduce from our strict applica-
tion of the theory of bounds. At present, the implications
and the rigor of Ref. 18 are not fully understood. How-
ever, the results are intriguing, and further research is
desirable.
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