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Simulation study of reaction fronts
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Using random walkers on a square lattice we have simulated a diffusion-reaction process
A +B~C; initially, the reactants are segregated on either side of a straight boundary. Quantities
studied include the position and width of the reaction front and the position-dependent reaction
rates and densities of the reactants. Our results agree with the scaling theory of Galfi and Racz for
the long-time behavior of the system indicating that the scaling assumption is valid and that the
neglect in the scaling theory of concentration fluctuations and of the discrete (particle) nature of the
reactants is not important. Furthermore, although the scaling theory is not explicitly constructed
for the case of unequal diffusion coefficients of the two initial species, our results indicate that it is

correct in this regime as well.

I. INTRODUCTION

Pattern formation in the wake of a reaction front is a
phenomenon common to physical, chemical, and biologi-
cal systems. ' The study of the reaction front naturally
serves as a first step in understanding these pattern-
formation phenomena. We report simulations of a lattice
model for a diffusion-reaction process A +B~C with
reactants A and 8 initially segregated on either side of a
planar (linear) boundary defined as x =0. A scaling
theory for this system has been given by Gilfi and Racz.
In their theory, the process is described by
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where pr(x, t), @=A,B, are the concentrations of the
reactants; D~ are their diffusion constants; and k controls
the rate of reactions. With initial conditions

p (rxt)-t ~ Gr

The values of a and P can be inferred from the follow-
ing simple argument: In the diffusion-reaction process,
there is a concentration-depletion zone of width
8'd ~ t' around the reaction center. Consequently, the
fluxes of particles are given by
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and the average values of p „and pz in the reaction front
are p~ -pz-mt ' . Hence, since the reaction is fed by
particles that flow into the reaction region,

mR -t
and consequently
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On the other hand, the rate at which C is formed is

p„(x,O) =p „(0) and ptt(x, O) =0 for x )0,
p„(x,O)=0 and pz(x, O)=pit(0) for x (0,

Galfi and Racz argue that for D „=Dz, the reaction rate
R, which depends on x and t,

R-t ~-p p -tv It-t
thus,

2a —1=—P .

(10)

R (x,t):kp „(x,t)p~(x, t—)

has, at large t, the scaling form
T

fX X
R (x, t) tt'F-

(4)

with P=—', . Further, the width tv of the reaction front
scales as t with a= —,', and the position xf of the front,
taken as zero at t =0, scales as t' if p„(0)&pz(0); if
p„(0)=pa(0), xf=0. Similarly, the concentrations at
large t have the scaling forms

By combining Eqs. (9) and (11) one obtains a= —,
' and

=23'
In this paper we present representative results from

simulations of a lattice model designed to study the
diffusion-reaction phenomenon described above. Our
aims in doing this work were to test whether the system
exhibits scaling behavior and, if so, to test the scaling
theory, to assess the importance of fluctuations and of
the discrete nature of the reactants (which are not includ-
ed in the scaling theory), and to look at cases outside of
the conditions imposed in constructing the theory (for ex-
ample, D„WDtt). We know of no comparable simula-
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tions for this process and geometry, although Chopard
and Droz are investigating the applicability of a cellular
automata model. Our results agree with the scaling
theory, including the case of D„WDs.

In the remainder of the paper, we give in Sec. II a
description of the model and simulations; Sec. III con-
tains the results and a summary.
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II. MODEL AND NUMERICAL TECHNIQUES

We use an N„XN square lattice; the reactants A and
8 are initially distributed randomly on the left and right
halves (in the x direction) of the lattice with concentra-
tions p„(0) and ptt(0). A site is indexed by subscripts
(i,j), 1 ~i ~N„, 1 ~j ~N . A step in the simulations is
as follows: First, randomly choose a site (i,j ) occupied
by A or B. Next, if (i,j) is occupied by A (B) and at least
one of the neighboring sites is occupied by B ( A), then
both A (B) and one of its randomly chosen neighbors of
type B ( A ) are removed, and a C is introduced on either
of the two original particles' sites with equal probability;
or, if (i,j ) is occupied by A (B) and no neighboring site is
occupied by B ( A), then move this particle to an empty
randomly chosen neighboring site with probability P„
(Ptt). Periodic boundary conditions are applied in the y
direction; particles are not allowed to diffuse out of the
system in the x direction. A given site can be occupied
by one particle of type A or type 8 and by an arbitrary
number of particles of type C. Time is measured in units
of steps per lattice site (SPS). We have done runs of up to
10 SPS. Notice that D ~P~.

Quantities computed include, first, the concentration
profiles pr(x, t),

p (x, t)=N ' g n; r . (12)
J

The sum is over all sites in a column at given i, and n,» is
the occupation number of particles of type y at site (i,j )

of the lattice. The index i is replaced by x for the corn-
puted quantities; x =i Next, t. he reaction rate R (x, t) is
defined as the number of reactions taking place within
the xth column during time step t; a reaction is con-
sidered to take place within a given column if the product
C winds up in that column. From R (x, t), the displace-
ment of the reaction front 5xf(t) and the width w (t) are
given by

g [x —xf(0)]R (x, t)
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FIG. 1. We plot ln(5xf) vs ln(t/100) for P„=P&=1 and

p&(0) =0.6, pz(0) =0.3 (solid curve) and for P„=0.7, P& =1.0,
p„(0)=0.7, and p&(0) =0.3 (dashed curve). Each set of data is
the average of 67 separate computer runs using N„=100,
N~ =200. A line of slope —,

' is shown for comparison.

is typically N„=200 and N =100. Comparison with
runs done on systems of size 100X 100, and with N„= 100
and N =200 showed no evidence of size effects.

III. RESULTS

We present first our results with equal diffusion
coefficients. Figures 1 and 2 show, respectively,
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(b)

5xf(t) =
gR (x, t}

(13)

g [x xf(t}] R (x,t)—
w (t)= g R (x, t)

(14)
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where xf(t)=xi(0)+5xf(t) Changes in R .(x, t), 5xf(t),
and w(t) are sufficiently slow that what we report are
really averages over 100 time steps centered at t. Fluc-
tuations in R, 5xf, and w are reduced further by making
N„computer runs, N„~ 70, for a given set of parameters
and different initial configurations. The lattice size used

ln(t/100)
FIG. 2. For (a) P„=Pz =1,p & (0)=0.6, and pz(0) =0.3; (b)

P„=0.7, Pq =1.0, p„(0)=0.7, and pg(0) =0.3; and (c)
P„=0.5, P&=1.0, p&(0)=0.8, and pz(0)=&0. 32, ln(w) is
plotted against ln(t/100). For clarity, curves (a) and (b) are
shifted vertically by ln(4) and ln(2), respectively.
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In[~5xf(t)~] (solid curve) and ln[4w(t)] versus ln(t/100)
[curve (a)] for p„(0}=0.6 and ps(0}=0.3. For the form-
er, the data fit a line of slope 0.508+0.006, consistent
with the predicted value of —,'. For the latter the data at
longer times fit a line with a slope 0. 173+0.016, close to
the predicted value of —,'. For the same parameters, Fig. 3
shows plots of the scaled reaction rate 100t R (x, t) and
the scaled densities t' pr(x, t) as functions of the scaled
position [x —xf(t)]t ' at t =800, 3000, and 5000 SPS.
The curves for t R (x, t) very nearly superpose as do
those for the densities in the active reaction area, aside
from fluctuations, consistent with the scaling relations.

For P„APtt, or D„ADtt, also, our simulations sup-
port the scaling predictions as can be seen from Figs. 1

(dashed line) and 2 [curve (b)] that present results for
P„=0.7, P&=1.0, p„(0}=0.7, and ptl(0)=0. 3. These
curves fit lines of slopes 0.504+0.007 and 0. 178+0.020,
respectively. Figure 4 shows the reaction rates and densi-
ties for this case at times of 1000, 3000, and 5000 SPS;
one sees that the curves at different times superpose nice-
ly.

We find that the general condition for the center of the
reaction zone not to move, i.e., 5xf (t) =0, is
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FIG. 4. The same as Fig. 3 except that P„=0.7, P&=1.0,
p&(0)=0.7, and p&(0)=0.3. Also, the curves are for times
1000 ( ~ —~ — ), 3000 (

———), and 5000 ( ) SPS.
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The center always moves to the side with the smaller
value of P' pr(0). As examples, we show in Fig. 5 5xf
versus t for three cases with r~z & 1, r„~= 1, and r~~ & 1,
respectively. For the case P„=O.5, P~ = 1.0,
p„(0)=0.8, and ptt(0)=&0. 32, which corresponds to
r„It =1, curve (c) of Fig. 2 presents ln[w(t)] versus
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ln( t /100). A least-squares fit yields a slope of
0. 178+0.027, consistent with w —t '

We have done other runs, albeit with poorer statistics,
using different initial concentrations and diffusion con-
stants. In every case, for DrWO, the results are con-
sistent with those reported above. As one of the D~ ap-
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FIG. 3. For P„=P~=1, p~(0) =0.6, and pz(0) =0.3,
100t 'g (x, t) and t ' 'p (x, t) are shown as functions of
[x —xf(t)]t '~ for the three times 800 ( ~ —— ), 3000
( ———), and 5000 ( ) SPS.

FIG. 5. The displacement 6xf(t) is plotted against t for three
cases: r„s &1 [P„=0.7, Ps=1.0, p„(0)=0.7, ps(0)=0. 3];
r„s =1 [P4 =0.5, Ps=1.0, p„(0)=0.8, ps(0}=&0.32]; and
r„tt (1 [P„=0.7, Ps=1.0, p„(0)=0.3, ptt(0)=0. 5]. For the
case with r» =1, the reaction front is not displaced, but its
width broadens as t' which is demonstrated by curve (c) of
Fig. 2.
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proaches zero, we find that w(t) quickly saturates at a
small value with significant fluctuations. It is then true
that 5xf(t) —t ~, which is expected because in this liinit

Eq. (11) should be replaced by

1—
2

(16)

Combining Eqs. (16) and (11) one obtains a =0 and P= —,'.
To summarize, we have simulated, in two dimensions,

a model of a diffusion-limited irreversible reaction
A +8~C with A and 8 initially separated by a planar
interface. The results of the simulations, which were
done with both equal and unequal initial densities and
diffusion constants, expressed through the probabilities
P„and P~, support the scaling theory of Galfi and Racz,
the latter being made for the particular case D„=Dz and

with neglect of fluctuations in the reactants' concentra-
tions and of the discrete character of the reactants.
Hence we may conclude that fluctuations and the discrete
nature of the system are not important and, for that
matter, that the very assumption of scaling behavior is
valid. We expect that these conclusions will carry over to
the more physical case of three dimensions where fluctua-
tions should be even less important.
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