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Ising model in a time-dependent magnetic field
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We report the results of Monte Carlo simulations on a two-dimensional Ising model in a
sinusoidally oscillating external magnetic field. We find evidence for a dynamical phase transition,
supporting the results of recent mean-field and large-N analyses of this model. We also analyze the
hysteresis loops as a function of the amplitude and frequency of the applied field, fitting our data to
a proposed areal scaling law.

I. INTRODUCTION

The subject of nonequilibrium effects associated with
first-order phase transitions has received considerable at-
tention in recent years, with most of that attention focus-
ing on the quench of a spin system from a disordered to
an ordered phase. ' Yet relatively little attention has been
paid to nonequilibrium effects associated with the period-
ic driving of a spin system between two equivalent or-
dered phases. There have been two recent theoretical
studies of this problem, a mean-field analysis by Tome
and de Oliveira, and a large N (N represents the number
of spin components) and Monte Carlo analysis by Rao,
Krishnamurthy, and Pandit. Both of these studies have
suggested the existence of a dynamical phase transition
for this inodel in the Ho —T phase diagram (see Fig. I),
where Ho is the amplitude of the external field with
sinusoidal time dependence, H(t) =Hosincot. The phase-

transition line separates a phase that is disordered in a
time-averaged sense [i.e., the time-dependent magnetiza-
tion M(t) can be nonzero, but (M(t)) =0 where ( )
denotes a time average], from an ordered phase where
(M(t))%0. The mean-field analysis of Ref. 2 located a
dynamical tricritical point on this phase-transition line
separating continuous from first-order transitions. In
Ref. 3 an X= 00 solution was analyzed numerically, and
a dynamical phase transition was found, however, the or-
der of this transition and the complete phase diagram
were not studied. Reference 3 also studied the shape of
the hysteresis loops in great detail finding evidence for a
scaling law for the area of the hysteresis loop (see Sec. II
below).

In this paper we report on Monte Carlo simulations on
a two-dimensional Ising model in a sinusoidally oscillat-
ing magnetic field. The only other simulations done to
date on this model are contained in Ref. 3 and were on
relatively small systems (50X50) and a detailed study of
the phase diagram was not possible due to the authors'
limited computational facilities. We report on simula-
tions done on systems 140X 140 lattice sites. We find evi-
dence for a dynamical phase transition of the sort de-
scribed above, though we are unable to say with any
confidence whether a tricritical point exists or not. We
also consider the hysteretic areal scaling law first pro-
posed in Ref. 3. This law appears to fit our data though
with exponents different than those found in Ref. 3.

II. THE MODEL AND NUMERICAL RESULTS

A. The model

We consider a two-dimensional Ising model on a
square lattice with a time-dependent external field. Its
Hamiltonian is given by

&=—Jo g s, s —H(t)gs;,
(li &

(2. l)

FIG. 1. Mean-field phase diagram for an Ising model in an ac
field, from Ref. 2. The external field is given by Eq. (2), and
h —=H/J. The tricritical point (TCP) separates first-order (on
the left) from continuous transitions (on the right). The disor-
dered phase ( (M(t})=0}is denoted by Pand the ordered phase
[(M(t})WO] is denoted by F

where s, =+I, (i,j ) denotes nearest-neighbor pairs, and
the external field H (t) is given by

H(t) =Hosincot . (2.2)

We denote the field period by v =2m/co. Our Monte Car-
lo simulations were performed on lattice sizes of
140X 140, and we employ periodic boundary conditions.
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A ~H a)~ (2.4)

where a'=0. 66+0.05 and P'=0. 33+0.03 independent of
temperature. In Fig. 5 we plot on a log-log scale the area

checked this assertion by running the simulations up to
650 periods of the field (for r =50 MCS) and the average
magnetization is essentially time independent (with a
standard deviation less than 10 ) (see Fig. 3). In that
sense the large fluctuations about the mean evident in
Figs. 2(b) and 2(c) do not represent an upward trend of
(M(t) ); rather they are merely large fluctuations. From
Fig. 3 it is apparent that the transient period after the in-
troduction of the field is approximately 200 field periods.

As first discussed by Rao, Krishnamurthy, and Pan-
dit, the hysteresis loops will look qualitatively different
in different regions of the H —T phase diagram. In Fig. 4
we show examples of these loops at a fixed temperature
given by J=0.48 and a ~=1000 MCS. For large enough
fields [Figs. 4(c)—4(e)], it is meaningful to calculate the
area of this loop. In Ref. 3 the large-N calculation pro-
duced a scaling law for this area of the form

versus H [Fig. 5(a)] and the area versus r=2m /co [Fig.
5(b)]. From these plots we conclude on the basis of least-
squares fitting that

a' =0.46+0.05,
P'=0. 36+0.06,

(2.5a)

(2.5b)

if we neglect the roundoff at small H (where the statistics
of the area calculation are poor), and the roundoff at
large co, where we are presumably out of the asymptotic
regime. The value of 13' is in good agreement with that
found in Ref. 3, while a' is substantially different, sug-
gesting that a' may have N dependence while P' does not.
To further check this scaling law we have replotted the
data of Fig. 5 onto a single plot (Fig. 6), plotting area
versus the scaling variable H co . The fit to a
straight line is quite good, except for some points at low
fields, where again our statistics on the area are poor [see
Fig. 2(a)]. Finally we have attempted to search for a tri-
critical point but at this time our data is inconclusive and
we are unable to assess the order of the transition. The
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FIG. 4. Examples of the different types of hysteresis loops for v = 1000 MCS, J=0.48 for the following values of H: (a) H=0.01,
(b) H=0.03, (c) H=0.05, and (d) H=0.4. Only six cycles of the field are plotted to aid visualization. (b) would probably become
smoother if we were to average the results over many seeds of the random number generator.
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FIG. 5. Scaling of the area A of the hysteresis loops. (a) A vs

H for various values of ~ in units of MCS, (b) A vs ~ for various
values of H. Least-squares fitting yields the exponents of Eq.
(2.5).

III. CONCLUSIONS

We have performed Monte Carlo simulations on a
two-dimensional Ising model in an ac field with the aim
of studying a dynamical phase transition and the scaling

oscillations in the time-averaged magnetization are rela-
tively large near the transition, making it difficult to
probe the critical regime accurately. To provide an idea
of how much computer tine is needed, we note that Fig.
3 required 2 h of CPU time on an IBM 3090. Near the
transition considerably more time would be required.

of hysteresis loops. Our results are in at least qualitative
agreement with the mean-field and large N calculations of
Refs. 2 and 3, suggesting that the transition is not des-
troyed by either thermal fluctuations or a finite number
of spin components. Our results are inconclusive regard-
ing the existence of the tricritical point found in the
mean-field theory. We hope to perform more simula-
tions in the future to study this point.

Another item of interest which we have not touched on
here is the nucleation process and the structure of the
droplets of minority spins. When H)H„ the critical
field M(t} changes sign, and we are confronted with a nu-

cleation problem in the presence of a time-dependent
field. Once M (t}has changed sign, there are still droplets
of spins of opposite sign, and they are especially prolific
in number when H -H, . We have performed some pre-
liminary simulations on the droplet size distribution func-
tion which appear to suggest a power-law behavior.
However, our statistics are not very good at this time and
further work is needed.
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