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Model for current patterns in physical systems with two charge carriers

C. Radehaus, * R. Dohmen, H. Willebrand, and F.-J. Niedernostheide
Institut fii r A ngetoandte Physi k, Uni Uersi tat Mii nster, 4400 Munster, Federal Republic of Germany

(Received 2 February 1990; revised manuscript received 23 July 1990)

The temporal and spatial evolution of patterns in physical systems due to electrical current flow

can be described for a certain class of systems, which includes certain semiconductor and gas
discharge systems, by a two-layer model in terms of the electrical current density and the electrical
potential. An equation for the nonlinear layer is derived, the characteristic parameters of which can
be obtained from experiments at the respective systems without inhomogeneous patterns lateral to
the main current direction. The resulting equation takes into account diffusion and drift effects in

the nonlinear layer. It turns out that the drift effects occur only if there is a "net space charge. "
Two special cases are derived depending on which of the two layers gives the main contribution to
the displacement current density, and the typical static and dynamic behavior is studied by numeri-

cal calculations. Furthermore, the application of the model to rea1 devices is discussed, and a com-
parison is made with experimental results obtained with a dc glow-discharge system.

I. INTRODUCTION

The formation of temporal-spatial patterns in thermo-
dynamic open systems is a well-known phenomenon. '

The appearance of inhomogeneous patterns is observed,
e.g. , in chemistry and biology. ' Mathematical inves-
tigations were carried out, e.g. , by Rothe and Maginu. '
It has been shown in recent studies that such phenomena
can also occur in physical systems. " Special examples
for such systems are dc gas-discharge systems, ' ' semi-
conductor systems, ' and electrical networks. "

In electrical systems that show different electrical
properties along the current direction, often pattern for-
mation lateral to the main current direction is observed.
In order to describe such a system it may be possible to
divide the system approximately into two layers. In Ref.
16 we have proposed such a two-layer model to describe
pattern formation. One of the two layers has linear Ohm-
ic electrical properties, the other one has a nonlinear
current controlled current-voltage characteristic, which
contains a current region of negative differential resistivi-
ty. This model leads to a pair of coupled reaction
diffusion equations in terms of the electrical current den-
sity and the electrical potential at the interface of the lay-
ers. While the equation concerning the linear layer was
derived by means of an approximation of the potential,
for the nonlinear layer a phenomenological estimate was
made that considers diffusion and the reaction of charge
carriers. The resulting model realizes the chernical-
biological principle of autocatalysis and lateral inhibi-
tion and shows interesting dynamic and static patterns.
This includes stable spatial patterns, nervelike pulse
transmission, or irregular behavior. The same model is
obtained when we consider an appropriate electrical net-
work as an equivalent circuit for the two-layer model
and carry out the formal limit to the continuous case.

In this work an equation for the nonlinear layer is de-
rived. This is based upon the continuity equation, the

Poisson equation, and the usual transport equation for
the case of two kinds of charge carriers, which is a fairly
weak requirement. By reasonable assumptions for the
material and by applying an averaging procedure to the
nonlinear region a nonlinear equation is obtained, which
has the structure of an ambipolar transport equation that
takes into account reaction, diffusion, and drift effects of
charge carriers. It turns out that the phenomenological
estimate used in Ref. 16 is a special case of this equation.
Coupling the nonlinear and the resistivity layers leads to
the complete model in terms of a partial current density
and potential, both deviating with respect to a reference
state.

The outline of the paper is as follows. In Sec. II the
equation for the behavior of the partial current density
caused by the kinetics of charge carriers in the nonlinear
layer is derived, and the complete model is established.
Additionally, the stability limits concerning hard- and
soft-mode instabilities are given for the purpose of a later
discussion of the numerical results. In Sec. III numerical
results are presented and ambipolar drift effects are dis-
cussed. Furthermore, numerical results concerning irreg-
ular dynamic behavior of the system are illustrated by the
time dependence of the total current. In Sec. IV the ap-
plication of the model to real devices is discussed. Espe-
cially experimental results of a dc gas-discharge system
are shown and compared with the predictions of the ex-
tended model. Finally, in Sec. V some conclusions are
drawn.

II. DERIVATION OF THE MODEL

The starting point is the physical model of Ref. 16
shown in Fig. 1. It forms a stack of two layers, the linear
resistivity layer, labeled L, of thickness 6 and the non-
linear layer, labeled X, of thickness a ((b. The whole de-
vice is enclosed by metal contacts. Applying an external
voltage to the metal contacts via the load resistance R&,
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Bn =f(n, n, E )+(1/e)V„,j
an+ =f(n, n+, (E( ) —(1/e )V„j+,

(la)

l
V (x, y, z, t) V„,E=(e/ceo)(n+ —n +C), (lb)

(] x
Q

,/
„ Z ) j&0(x,y, t) , U (x, y, t) 52

I

N
/ N V (x, y, z, t)

F

FIG. 1. Physical two-layer model consisting of a resistive lay-
er denoted by L and a nonlinear layer denoted by N; the
hatched areas are metal electrodes.

the main current flow direction will be parallel to the z
direction. To describe pattern formation in the device we
derive a system of equations in terms of deviations of the
potential and a partial current density j~o relative to a
reference state at the interface A. j&0 is the partial z com-
ponent of the current density due to charge-carrier densi-

ty deviations from the reference state, from which the to-
tal z component of the current density can be computed.

We first derive a nonlinear partial differential equation
which should suKce to describe the essential features of
the z component of the current density in the layer N
caused by a given potential at the interface. Later on this
equation will be coupled to an equation for the potential
of the linear layer, which has been developed in Ref. 16.
The derivation for the equation of the nonlinear layer is
carried out for materials in which the kinetics is deter-
mined by two kinds of charge carriers. This situation is
given, e.g., in certain gas-discharge and semiconductor
devices.

In order to simplify the derivation we assume l ))d,
i.e., we regard the interface as quasi-one-dimensional. To
keep the formulas simple we introduce one-dimensional
"current densities" and two-dimensional carrier densities
with the units A/m and 1/m, respectively. The deriva-
tion can be extended easily to the two-dimensional case.

A. Modeling the nonlinear layer

Owing to the electric field in the nonlinear layer,
caused by the electrical potential at the interface, com-
plex transport processes take place accompanied by a
typical distribution of electric field, charge carriers, space
charges, etc. In order to derive an equation for these
complex transport processes we start with the continuity
equations for the positive and negative charge carriers of
the concentration n (x,z, t) and n+(x, z, t), respective-
ly, and with the Poisson equation. The equations are
given by

where e is the relative dielectric contant and
e=8.85 X 10 ' F/m, E(x,z, t ) is the electric field vector,
e is the elementary charge, V„=(a/ax,a/az) and

h, =B /Bz . These equations shall be solved in the re-
gion 0 X [0,a ] with the boundary condition f 'E, dz = U

between the bottom electrode and the interface, and con-
ditions depending on the system at the boundary
MX[0,a] (see Fig. 1). f denotes the reaction term and
contains the generation and recombination rates of
charge carriers. C is a background charge, which is tem-
porally constant, i.e., BC/Bt =0, and homogeneous in the
x direction. The net current density j(x,z, t) is given by

j=j +j and includes all the contributions of free
charge carriers in different states (energy, velocity, etc.).
We consider the case that j can be expressed in the form
of the usual transport equations (Refs. 27 and 28 for
semiconductors, Ref. 29 for gas discharges)

j =en p E+eD V, n
(lc)

j+ =en p+E —eD+V, n+,
with mobilities p and p and diffusion constants D
and D for the positive and negative charge carriers, re-

spectively. Effects caused by temperature and magnetic
fields are not taken into account explicitly. To include

anisotropic effects which occur, e.g. , in semiconductors
we choose anisotropic mobilities and diffusion coeScients
so that p, p+ and D,D+ are diagonal matrices.

The matter of interest in this paper is the time-spatial
pattern formation transverse to the main current flow.

The description of the inhomogeneous patterns starts
from a reference state, which represents a certain
configuration of the electric field, the velocity field, and
the charge-carrier densities, and is homogeneous in the x
direction with an arbitrary structure in the z direction,
which is typical for the considered system. Structures in

the x direction for given potential in the boundary layer
are interpreted as x- and z-dependent deviations from the
reference state. Later on, as a result of an averaging pro-
cedure, the reference state will supply ambipolar values
for the diffusion constant and the mobility of the charge
carriers, which are assumed to hold also for a certain vi-

cinity of the reference state. It will turn out that by this
averaging procedure the complex processes of pattern
formation in the z direction can be established in the pa-
rameters (diffusion constant and mobility) as well as in

the global j(U) characteristic, which can be obtained
easily by experimental measurements. This is a very
comfortable way to take account of the influence that
these effects in the z direction have on the pattern forma-
tion in the x direction. In order to describe the behavior
of the nonlinear layer from this viewpoint we set up the
following definitions and assumptions.

(i) The stationary reference state, which is homogene-
ous in the x direction, is given by
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Po(z)=(no (z), no (z), Eo(z)} . (2a)

In this reference state all physical quantities (potential,
current flow, etc. ) are constants parallel to the electrodes.
For illustration the distributions of the electron concen-
tration for a reference state and for an idealized inhomo-
geneous pattern are shown schematically in Fig. 2.

The stationary reference state Po Eq. (2a) satisfies Eqs.
(1). From this we obtain

f("o "o IEol)=po ("o &o )+
&

Do "o
Bz Bz Bz

f(no—, no, ~Eo~)= —
po,

&
(no Eo, )+ Do, no

+ + ~ + i} + ~ +' az '
c}z ' az

Eoz, z=(eleo)(no —no +C),
(2b)

for the given electrical potential f oEo,dz = Uo at the in-

terface Q. Expressing n +, n, and E by deviations

(n, (x,z), n,+ (x,z), E,(x,z) } (2c)

from the reference state Po Eq. (2a), we write these and
the additionally listed quantities as sums according to

n+=no++n~+, n =no +n,

(iii) It is assumed that the mobilities and the diffusion
matrices are constant and given by

D 0
D+=

0 D,

D 0

0 D+
Z

with

p+ 0

0 p+

(2e)

Pm +I m&

n, =f(n, n, E, )+p„n„E„+p,n E„+p,n, E,
7

(iv) The deviations of the quantities (2c) from their
averaged values in the z direction are supposed to be
small. Furthermore, we restrict the discussion to
sufficiently small deviations from the reference state Po,
especially we assume ~E, ~

&& ~Eo~.

The last assumptions effect, in particular, E =E„so
that the kinetics is determined by E, . By inserting (lc)
and (2e) in (1) we write more explicitly

E=Eo+ E] U = Uo + U&

v =vo +v& = —p (Eo+Ei),
(2d)

+pn E, +D n„+D,n„ (3)

v+ =vo++ v, =p+(Eo+ E, ) .

v and v+ are the drift velocities of the charge carriers.
(ii) The deviations of the charge carrier densities from

the reference state are supposed to be quasineutral, i.e.,
n& =n&+. This means the space-charge distribution of
the reference state is constant regardless of the patterns
in the x direction. n, , =Go(ni, E&, )+poni „E„+Don,„,, (4)

with the notation n, =On/i}z for partial derivations,
which is used throughout this paper. For the positive
charge carriers we get an analogous equation. If we mul-

tiply the two equations with appropriate factors, add
them, and take advantage of the quasineutrality
n

&

= n ~+ =n &, we get one equation

with

V u. ("o "o)
Po

px no +px no

p,+D, no+ +D,+p, no
D Q

+ +
p no +p, no

z=Q
(a)

z=Q
FIG. 2. Schematic illustration of the distribution of an elec-

tron concentration for (a) a reference state and (b) an idealized
inhomogeneous deviation.

in terms of the deviation n& alone. Note that space-
charge terms proportional to E„aredropped out by
this procedure. Go is an effective reaction term; for de-

tails see Appendix A, Eq. (A2b).
Up to now we have succeeded in reducing the behavior

of the nonlinear layer to one equation for the special case
of two kinds of charge carriers, which behave quasineu-
trally. The following derivation, however, depends only
on an equation of the form (4) and not on how it was ob-
tained. More generally, we can proceed in the same way
whenever it is possible to describe the complex behavior
of the nonlinear layer with one equation for a physical
quantity, which is related to the charge-carrier distribu-
tions.

As we want to derive a model in terms of the current
density, we use the fact that the current through the sys-
tem is dominated by the drift current due to the strong
electric field in the z direction and consider the z corn-

ponent j, of the drift current density
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j,=j, +j:
= —en U, +en U,

=jo+j~,
with jz, the deviation of the total current density from
the reference state. The next aim is to obtain an equation
for the evolution of the current density

j,o= —e(1+a)n p), Eo„which corresponds to that part
of jz, which takes account only of the changes of
charge-carrier concentrations providing a constant veloc-
ity field [for details see Appendix A, Eq. (A3)]. In order
to set up the evolution equation for j&o we multiply Eq.
(4) by —e(1+a)uo, . Because of the constancy of 00, in

the x direction, we get [for details see (A4)]

J)0, ( Go(J)o El )+Pojlo, El +Do J)o,

This equation is a partial-differential equation for j]o of
the independent variables x, z, and t with the reference
state Po as a parameter, as well as E,„andE, , as input
parameters. The new "reaction term" Go(j,„,E„)is an
operator on j]o and E„because it contains z derivatives.
Equation (6) has the structure of an ambipolar diffusion
equation for j&o and contains a drift term with the
effective mobility po and a diffusion term with the
effective diffusion constant D o.

As we focus our interest on pattern formation in the x
direction, whereas the structures in the z direction are
not of concern for the present investigation, we eliminate
the z dependences by averaging Eq. (6) with respect to z.
The averaging is denoted by

( & =(1/a) f dz .

Each quantity is split up into an averaged value and a de-
viation. Note that we have deviations from the reference
state and deviations from the averaged distribution in the
z direction, which should not be confused.

We now want to show under which conditions it is pos-
sible to express the averaged equation (6) and especially
the reaction term (Go& in terms of (j,o& and (E„&.
For this purpose we carry out a functional expansion of
Go,

Go(J)0 El. )=G,i lo+GFEI +G,EJ)OE)

+G„j]o+GzzE L-+

around the reference state Po with the variational deriva-
tives 6 and GF, etc. taken at the reference state Po and

Go(0, 0)=0 (see Appendix A) and get

& j„&,=-&G, &(&j„&,&E„&)+&),*&(j„&„(E,„&
+&D," &&J,„&„.+~,„.

R contains all higher-order terms of the deviations; for
details see Appendix B. In the special case that j,o and

E, are approximately constant in the z direction, the
term R can be neglected for arbitrary deviations of the
functional derivatives and of the constants po and Do
from their averaged values. For R,„sufficiently small the

averaged reaction term ( Go & can be expressed in terms
of (j,o & and (E„&and has the same Taylor-series ex-

pansion structure as Go, but with averaged coefficients.
If there are highly different time scales for different re-

gions along the z axis, the fast time scales are thought to
be adiabatically eliminated, and the averaging procedure
is then carried out with 'respect to the remaining region in
the z direction. The resulting time constant, which fol-
lows from the averaging procedure, is shifted to the

larger time scales, which dominate the stability.
Next we determine (E„&and (E„&from the poten-

tial distribution at the interface. With

U(x ) = Uo+ Ul (x ) as the electrical potential distribution

at the interface, the relation

(E„&= U, (x )/a (loa)

and averaging this we get

(E,„&=—U, , (y, (z)& . (lob)

This means (E,„&is proportional to U, „.In Ref. 16
the case y)(z)=1 —z/a is considered, which leads to
(g)(z ) &

= -„'. Introducing the notations

(10c)

and neglecting the terms R resulting from the averaging
procedure according to the smallness of the variations
froin the averaged state, we end up from Eq. (9) with the
following equation:

&jlo&, =Do(i)0& ..—Po&jlo&,.U), , +go(&jlo& Ul)

(1 la)

This equation has the structure of an ambipolar evolution
equation for the mean current density (j,„&depending
on the voltage deviation U&. Besides the "reaction term"

go, ambipolar diffusion and drift effects are taken into ac-
count.

According to Eqs. (10c), (A2a) and (A2b) )Mo (the
coefficient of the drift term) is proportional to no+ no-
If the reference state has no "net charge, " the drift term
vanishes. In this case, we obtain an equation for the
current de»sity (j,o &, which is of the same form as the
equation for the nonlinear layer X introduced in Ref. 16.
In the following, for the reaction term go, we use non-

linear functions of the form

go(( j)() &, U, )=[U) —h(( j,() &)]// (11b)

with 8 as a distributed inductance. By (j,o & we are able
to determine the mean value for the z component of the
complete current-density deviation as

holds. In order to compute (El„&we assume that the
deviation V, (x,z) of the potential in the nonlinear layer
can be separated into two factors according to
V, = U, (x )y) (z ) with y)(0) = 1 and y)(a ) =0. This esti-
mate holds for small a. it follows that

OV, aU,
E = — = —y(z)

Bx Bx
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(J,&=(J„&+(,,&U, / +&J &U /U, (11 )

by averaging jz, from (A3) with the same assumptions as
used above, where a0

=j0 /E p denotes the conductivity
in the reference state.

Let us briefly discuss what we have done up to now.
Initially the description of the nonlinear layer was
equivalent with solving a problem in three dimensions.
The quasi-one-dimensional consideration (I »d ) meant a
reduction to two dimensions, resulting in a system of
equations depending on x and z. The solution in the z
direction was substituted by measuring the global j(U)
characteristic, which is mathematically rejected in the
averaging procedure. What is left is an equation describ-
ing the pattern formation in the x direction, which takes
account of the structures in the z direction only in the
form of constant parameters and the j( U) characteristic,
which can be obtained from experiments.

B. Modeling the resistivity layer —the complete model

Up to now we have established equations for the physi-
cal quantities in the nonlinear layer N. In order to get
the complete two-layer model we have to put together the
linear and nonlinear layer. To distinguish between physi-
cal quantities like current density and electric field in the
two layers we denote quantities in the linear resistivity
layer with the index "L"and quantities in the nonlinear
layer with "N." In the layer N all quantities like the
electric field and the current density are averaged in the z
direction. In order to get a simple notation in the follow-
ing, we omit brackets indicating averaging of quantities
in the N layer and also omit the index "1"indicating de-
viations from the reference state Pp. In this way
U, U„,U„I"', j and ELz denote deviations and, e.g.,
EN,:—E„means the averaged deviation of the z com-
ponent of the electrical field in the N layer.

In order to derive a model for the layer L with respect
to the potential distribution U at the interface, we use the
potential approximation of Ref. 16, which is given by

VL (x,z, t ) = U+( U —U„)z/b —(q, z+q2z +q3z ) U„„,

[J't '(x, z=O, t)],=[J'~"(x,z=O, t)], .

The insertion of (13a) yields

BEttz (x,O, t )
@pet.

&
+—Et, (x,0, t ) =jN, +6pe~

Bt p r)t

(13b)

From the potential estimates (12a) and (12b) we can com-
pute ELz at the interface 0 as

8VL
E (x,z=O, t)=-

Bz
z=p

U„—U 5b

b
+ 26,xx

UL

b

5b
L,XX (14)

Now we proceed with Eq. (13b) and insert EL, from Eq.
(14). Etv, is given by Eq. (10a}, which reads in the new

notation as E&, =U(x)/a. Furthermore, we replace in

Eq. (13b)jN, according to (1 lc) by (j~, & and obtain the
equation

~o~L, ~ 1+-
dt p

Uv —U 5b
,XX

apU U U,+J10+J10 +KOAN
a 0 a

which can be rewritten as

e'oet, B 1 5b $2U Q Uv U

where p is the specific resistivity of the linear material,
and E'0 6'L and eN are the dielectric constant and the rela-
tive dielectric constants, respectively.

In connecting both layers, we must maintain the con-
tinuity conditions for the electric potential and for the z
component of the total current densities at the interface
0:

q, =5b/26, q, =
—,', q, =4/13b,

with

b(z (0 . —(12a)

(isa)

U„=U+U,=U, —I"'R, , (12b)

where Rz is the external load resistance. I'" is given by

Itot( t )
— J totdxl.

0

where j'" is the total current density including the dis-
placement current densities. Its z component is defined
as

[Jt (x,z, t)], ELz/p+eoeLEt, ,—
for —b &z &0

(13a)[j„,(x,z, t)],= '

[j N (x,z, t)],=j„,+EpENEN, ,
'

for 0&z &a

This is an equation for the evolution of the potential at
the interface for a given j,p.

Now we have reduced the description of the complete
physical model to a system of two equations at the inter-
face Q. The system consists of the evolution equation
(1 la) for the averaged current density j,o, with the poten-
tial U as input, which now is written in the new notation
as

J o, , =aoJio... I ~io,.U,.+go(Ji—o U» (15b}

and the evolution equation (15a) for the potential U with

j&0 as input.
In the following, the limit cases eL/b «eN/a and

eL/b &)eN/a are investigated, and the model becomes
simplest.
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1. The case eL/b ((ez/a

In this case we neglect the displacement current densi-
ty of the linear layer and Eq. (15a) becomes

y = 1+(paob ) la, 8= —U* lUO,

d„=Dog/l(pb), d„=,', b—/y, cr=d, /d„
p= 26po~g'U*/(5pb'), o =a,e~b 'p'/(a y'I ),

~O~N 5b

26p

1 +'p U+ v J10
U

pb a pb Uo
I'=I/(dw )', f (u ) = —h( j*u )/U*,

(18b)

and the total current I'" is given by (12c}and (13a),

totI"'(t)= J [jL"(x',z=O, t)],dx'

(16) ~ Us/[(1+ r)yU*], r =Rsl l(Pb),

V=—

we obtain as the final equation system

=oAu+p(V'u }(V'w)+f(u) —w,
C}~

(19a)

Inserting Eq. (14) for EL, we get

1I"'(t ) =—Jp 0

U —Uv 5b+ U,„dx'
26

lUv
Udx'+ +8 U,

pb o pb

with 8(U, )=[5b/(26p)][U„(1)—U„(0)]=0for Neu-
mann or periodic boundary conditions, which are used in
the following. Thus by solving this equation with respect
to U~ we get together with (12b)

5 =bw+u(1+6w) —w —ir+, f w(g')dg' .
w r 1

O'7 1+r yl' o

(19b)

Equation (19bj contains the nonlinear term 8uw. For
~E&~ && ~EO~ it follows that U/UO=Bw &&1 so that the
term 8w can be neglected. In this case, except for the
drift term, we obtain an equation of the same form as
that derived for the network of Ref. 25.

2. The case eL Ib &&ez/a

U =U —I"'R 1

1+R I l(b )

Rs
X Us+ J U(x')dx'

pb o

U h(j)o)
j10 t oj10 xx I GI10 x x+ (17a)

5b
~0~%

26 U, j10a p

ap 1+ U — j]p U
pb a Up

Combining this with (16) and (15b) and restricting our-
selves to functions of the type (1 lb) we get

This case is more complex and will require further as-
sumptions to derive simple equations. In this case we

neglect the displacement current density of the nonlinear
layer and Eq. (15a) turns to

5bee —+—0 L g b 26 Lxx
p

ap Uv —UL
( Uq —Ut )+j,o 1+-

a 0

(20)

with UL = Uv —U, where the voltage Uv between the
contacts is given by (12b). To avoid time derivatives in

the integral terms we express Uv in terms of UI and j,o

and compute I '"' in the following way:

II'"'(t ) = j~.(x', z =0, t )dx'
0

+ U + U( ')d
1+Rsl /(pb ) pb 0

(17b)

apv +j]o 1+
o a Up

dx

for the complete sytem.
Changing to dimensionless variables, with U' and j*

as problem-dependent normalization constants, accord-
ing to Uv= Us —~s

aoU I ap If ULdx'
a a Q

Together with Eq. I', 12b) we obtain for U~

u =j, /j*, w = —U/U*, j*/U*=y/bp,

g=x /d'r, r=(pb )/(gl )t,
and defining

(18a)
1+ U1, l 1 I+ J]pdX J ]p ULdX

Uo o Uo o

and solving with respect to Uv yields
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Uv=
a I 1+ fJiodx

Uo
1+Rs

a

ap
Us —Rs fj iod»' f Ut. d»' f ULj iodx'

a Uo
(21)

EPEL 5EPGL b

b L t 26 L Jt'&r

(22a)

5

26p
UL, +J IO

ao+ UL
pb a

+ Uv+
ao jio(Uv —Ui)
a Up

(22b)

with Uv from (21).
In order to get an equation comparable to Eq. (17}we

again use the fact that UIUo =(Uv —
UL )/Uo is a small

quantity, which gives us reason to neglect the last term of
Eq. (22b). Additionally, ao=ep, (no ano+ ), E—q. (A3),
is assumed to be a small parameter.

Changing to dimensionless variables, with UI' and j*
as problem dependent normalization constants, according
to

v=J olJ', w=U, /U;, ULIJ'=pb

g=x Id„'~, r=(pb II')t,
and defining

d„=DoPI(pb ), d„,= ,', b, o =d, ld„—,

(23a)

p=26poJ "El(sb ), 5=eoeLbp IP,
(23b)

i'=!l(d )', f(v)= h(j *u)/UL, tt—=UsIUL,

r =Rsl l(pb ), V=
ag'

'

we obtain the final equation system
t

=o du+it(Vv)(Vw )+ f (u )
—w+tr ——,f u(P)dg',I' 0

(24a)

b
Bw

b
B(b,w) =EN+V —N . (24b)

In the numerical simulations presented in Sec. III we
will consider the case where the term 58(b,w)/Br is
neglected. As seen in Sec. II C, this term has no qualita-
tive influence on the linear stability properties. In Ref. 30

Combining the two layers by coupling the evolution
equations for jio and UL, i.e., Eqs. (15b) and (20), respec-
tively, and eliminating Uby U= Uv —UL we get, togeth-
er with (21), the complete equation system in terms of Ut
and j&0.

Jio, t =DoJio, +isoJio, „UL„+[Uv Ut. —h(jio)]/8,

it is also shown that it has no considerable effect on the
bifurcation into stationary states. This is a motivation to
investigate Eqs. (24a) and (24b} at first without this term.

3. Discussion of the two limit cases

Now we have developed the mathematical description
of the two-layer model for two special cases. The derived
systems of equations have the structure of a reaction-
diffusion system. In terms of biomathematics U can be
identified locally as activator, m as inhibitor. Additional-
ly, the load resistance causes a global inhibition; in terms
of biomathematics this means limited resources.

The two cases of the model refer to where the main
capacity is localized. If the capacity is mainly localized
in the linear layer L, we get the case eL Ib ))ella. The
other case corresponds to a capacity localized in the non-
linear layer X. Both cases efFect a global inhibition,
which has influence on the time behavior of the systems
and is reflected in the mathematical description by
different integral terms. For the two limit cases this leads
to a difFerent dynamic behavior in the case of Rs%0.

As mentioned above [Eq. (11a)], we obtain
iso (no -no )

—from Eqs. (A2a), (A2b), and (10c). This
implies that drift effects only occur if we have a net space
charge caused by the positive and negative charge car-
riers at the reference state Pp. Because of the ambipolar
diffusion process we have differential charge separation at
the edges of inhomogeneities of the charge carrier distri-

butions. In the case of a net space charge a part of these
separated charges is compensated by the net charge. So
the component E„=—OUI'» arising from the inhomo-
geneous potential distribution forms driving forces to the
edges. The F. component has opposite signs at the two
edges of a current-density inhomogeneity, so the inhomo-
geneity is expanded or compressed depending on the sign
of the net space charge. If @0=0, we get the model of
Ref. 16. In this case the systems of Eqs. (19) and (24) can
be interpreted intuitively by two equivalent circuits in the
form of periodic chains of elements. Each element
represents the behavior of the corresponding equation at
a discrete point of the quasi-one-dimensional interface 0,.
The nonlinear layer is represented by a nonlinear resis-
tance and an inductance, which takes into account the
time behavior (for details see Ref. 31). The linear layer is
represented by two resistances, one modeling the current
flow in the z direction and the other the current flow
parallel to the electrodes. In this way the current flow
parallel to the electrodes couples adjacent elements. To
simulate the displacement current a condenser is placed
in parallel to the resistance of the linear layer or to the
nonlinear resistance according to the two cases
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Et /b ))Eiv /a and eL /b « e iv/a, respectively. By apply-
ing Kirchhofrs rules we obtain the spatially discretized
form of the systems of Eqs. (19) and (24), respectively, for
a discretization according to Euler. The procedure for
obtaining the network equations is described in detail in
Ref. 25. The network with a condenser in the nonlinear
layer is investigated in Refs. 11 and 24—26; the network
with the condenser in the linear layer is introduced in
Ref. 30.

Hi JN (Jp+JN ) H jo
By solving Eq. (11c)with respect to j,p we get

j~, —(ap/a ) U

1+UI Uo
(25)

so that it is possible to determine the characteristic that
fulfills the condition H, (jiv, ) = U = h (j,p ) numerically by
computing (j,o, U) point by point. For definitions see
Appendix A, Eq. (A3). For the case where UIUo and ap
are small parameters the two current densities j]o and jz,
and the characteristics H& and h coincide. In the neigh-
borhood of this limit case we derive an analytical rela-
tionship between the two characteristics. h (j io ) can be
derived from H, (j~, ), with jiv, from Eq. (11c), in the fol-
lowing way:

h (J' io ) =H i (J'iv )

Hl(Jio+(Jo/Uo}U+(Jlo/Uo)U) U="(Jio)

Jo+J]o=0] j)o+ h(jip)
Uo

Jo+J]o=Hi(j io)+Hih(jlo) +
Uo

with

aH,
H') =

~jwz
Jxz j lu

Restricting ourselves to the first order of the expansion,
we can solve with respect to h (j,o )

Hi(jio)
h(jio)=

1 —Hi(jo+jio)/Uo
(26)

The derivation of H, (jz, ) from h (jip } is carried out in

a similar way. The limit case jz, =j,o means physically

4. relationship between the characteristic h(J'to }
and the total characteristic H(j,)

In experiments it is often easier to determine the
characteristic Up+ U =H(j, ) instead of U =h (j,o ),
where j, is the whole current density according to
definition (5) and j,o is the partial current density used in

the equations. Here we want to show how to obtain
h (jip ) for the partial current density if H( j, ) is given. At
first we fix a reference state Po, which corresponds to
(jp, Up) [see (A3)] and define the function Hi according
to

that the partial current density jo, =(j p/Eo )Ett, is small
because the conductivity jp/Ep =Qo is small. Because of
(j~~ & ~jp, ~

the partial current density jz can also be
neglected. In this case the velocity distribution of the
charge carriers is approximately constant in the x direc-
tion.

Uk

ip'(k, g)exp[to'(k )r] .
Np

i =1,2 corresponds to the Eqs. (19) and (24), respectively;
qr'(k, e) are the eigenfunctions of the Laplace operator to
the eigenvalue —k for the interface 0 of Fig. 1 with the
given boundary conditions.

This leads to the following matrices of the linearized
systems:

ok +f'—
1/5 —(1+k )/5+5k pr/[(r+1)y5]

(27a)

for Eq. (19) with 8=0 and

C
crk +f' r5i,—p

—1—
1/(5+5k )

(27b}

for Eq. (24). Here f'=df Idu at us and 5i, i denotes the
Kronecker symbol. The integral term is replaced by a
term proportional to 5i, o. This is valid for the case of
eigenfunctions with vanishing mean value for k )0.
Equations (27a} and (27b) are independent of p, , the
dependence on ~ is contained in f ', as us depends on a.

If Re[to'(k )] is negative for all k, the system is linearly
stable. This is fulfilled if Det(C/ ) &0 and Tr(C/, }&0 for
all k. The stability margins for the hard-mode and the
soft-mode instability are given by Tr(C/ ) =0 and
Det(C/ }=0, respectively. Solving these functions with
respect to f' we get the two neutral curves f,''(k) and

fH '(k ). From Eq. (27a) it follows that

(o+1/6)k +1/5 for k &0
[1—r/y(r+1)]/5 for k =0

hark +1/(k +1) for k &0

I 1 —r/[(r+1)g]I ' for k=0

(27c)

and from (27b)

C. Linear stability analysis of the system

To get more insight into the system it is useful to inves-

tigate the destabilization of the stationary homogeneous
solutions of the systems (19) and (24) by considering the
eigenvalues of the linearized equations. To obtain the ei-
genvalues oi(k ) we make the following assumption for the
perturbations of U' and w' in the homogeneous state
(u,', w,'):
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O.k +1/5 for k)0
k ='

fH ' '= 1/5+. fo. k=o

ark +1/(1+k ) for k)0
k ='

I+r for k =0 .

(27d)

As mentioned above, the term 58(b,w )/Br of Eq. (24b)
shall be neglected in the numerical simulations. By doing
so, the neutral curve fH is slightly varied in such a way
that the factor of k becomes o+1/5 [see Fig. 3(b)].
This means the modes k &0 will be more stable when
neglecting the term 5t)(hw)/t)r, whereas the neutral
curve for the soft-mode instability remains unchanged so
that the qualitative behavior is the same as before. This
gives us reason to examine the equation without this
term.

For a rough impression of the behavior of the system it
is useful to discuss the stability properties by means of
the neutral curves. For r =0 the neutral curves for both
systems have no discontinuities at k=0. The neutral
curve for the hard-mode instability always has a

minimum at k =0, i.e., the hard-mode instability can take
place only for the mode k=0, especially if the system
cannot be destabilized by traveling waves. For o. (1 the
neutral curve for the soft-mode instability reaches its
minimum at k&0 depending on the value of o, i.e., the
system can be destabilized by stationary spatially periodic
waves. The parameter 5 has only an effect on the hard-
mode neutral curves fH. Large values for 5 make the
system generally more unstable in such a way that the
curves fH

' move downwards, and homogeneous oscilla-
tions are preferred.

For r&0 discontinuities in the neutral curves occur at
k =0, and for both systems the value of f,' '(0 } becomes
larger with respect to the case r =0, i.e., the destabiliza-
tion of the mode k =0 becomes less likely. For the mode
k =0 the two systems differ in the hard-mode instability.
In system (19) the critical value fH '(0) becomes smaller
with respect to the case r =0, whereas in system (24) the
critical value fH (0) becomes larger, i.e., the mode k =0
is more likely to be destabilized for system (19).

(a) III. NUMERICAL RESULTS

1
r

(r+&)X

The equations for the two special cases of Secs. II B 1

and IIB2 show a rich variety of interesting structures.
In the following we present typical numerical results con-
cerning the static and dynamic behaviors of the dimen-
sionless equations for one-dimensional space. The two
systems are treated numerically in the following form.
For the case eL/b «e)v/a we restrict ourselves to 8=0
and y= 1 with respect to Eqs. (19),

—(
6

1- r
X0'+1)

„

6
0
0

=crb, u+p(Vu )(Vw )+f(v )
—w,

7

5 =Aw+v —w —T,Bw

O7

with

(28a)

(28b)

T=x a2J, —lr2r/(r+ I), J= —, w(g')dg' .

1
6

z
Bv =crbv+p(Vu)(Vw)+f(v) —w+ T,
87

(29a}

Concerning the second system for the case eL /b «ez /a
we neglect the term 5t)(b, w )/t)r with respect to Eqs. (24).
This yields

0
0

6 =Aw+v —w,Bw

07

where

I'
T=x ~~J, a r2, J=—,f u(g')dg' .

(29b)

FIG. 3. Examples for the neutral curves of the hard-mode
and soft-mode instabilities: (a) fH' and fs' corresponding to
system (19) with 8=0, (b) fH and fs corresponding to system
(24); neglecting the term 58(hm)/B~, the hard-mode neutral
curve changes to f H' Parameters in both cases: .o. =0.1,
r=1.6, 5=1.5, and ~=1.0.

(30)

In the calculations we approximate the nonlinearity

f ( u ) by a function that is composed of a cubic and a
quadratic polynomial. Both are connected continuously
differentiable in vf ..

yu +Av for u vf

au +@v+8 for u )uf,
(v)= '

z
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where
1/2

a 3y(g —
A, )1+ 1+

f fv [2(A, —P}—auf)
3

variation of ~, which corresponds to variations of the
externally applied voltage U, of Fig. 1. In order to get a
stable stationary structure we start with the stationary
distribution corresponding to the previous value of v.

l. z&=0, varying a

for given a, P, y, and A.. For uf ~ ao the special case of
a cubic polynomial is obtained. Figure 4 shows the iso-
cline system of Eqs. (28) and (29) for the decoupled sys-
tem and a&=0. Depending on the value of X in (30), the
uncoupled system possesses one or three steady states.

The numerical simulations of Eqs. (28) and (29) have
been carried out with homogeneous Neumann boundary
conditions. For the calculation of stationary patterns
Euler's method was used for differential equations in the
explicit and/or implicit form, and the dynamic solutions
were calculated by the Crank-Nicholson method. In all
cases where different methods were used, the same final
results was obtained. The initial conditions for each cal-
culation are mentioned later in the text.

A. Stationary structures

In general small values for the parameter 5 in Eqs. (28)
and (29) favor stable stationary states as has been dis-
cussed in Sec. II C. If additionally o is small, inhomo-
geneous stable states are favored because the minimum of
the soft-mode neutral curve is shifted to lower values of
f' for decreasing o. The parameter p does not appear in

the linear stability analysis, but may be important when
taking into account nonlinear terms.

Near the critical point of the soft-mode instability
analytical results can be obtained, which are presented in
Ref. 30. In this section the behavior of the system, espe-
cially going beyond the range of analytical treatment of
Ref. 30, is treated by numerical simulations. These simu-
lations are carried out analogously to experiments by a

f (v)—

V —W

FICz. 4. Isocline system of the spatially decoupled systems
(28) and (29) for the case v=@2=0, i.e., T=O For f (v) a func-.
tion of the form (30) is used. Depending on the model, a value
TWO corresponds to a shift of the straight line parallel to the U

axis by —T or a shift of the nonlinear characteristic by the
value T.

~,=~, +
(8+30o'' )/9o'' —Q(a )

g (Ir2) =

4~2

(o' —I) +ir2

4v2

(o' —I ) +Ir2A, ,

for system (29)

for system (28) .

The third characteristic value, denoted by A, 3, is larger
than A.2, but the exact value could not be determined yet.
The typical behavior of the model shall he discussed by
means of these characteristic values.

For k & A, , the corresponding distributions for U and w

remain homogeneous during one sweep, because the slope
f ' of the nonlinear characteristic is smaller than the
minimum of the soft-mode neutral curve in the whole
range.

For A, , &k(A, 2 the homogeneous state is destabilized
when the slope at the operating point is equal to the
minimum of the soft-mode neutral curve. This is given
when K' reaches the critical value

Ir„(A,) =—
1/2

2A +k)1—

The first case refers to ~2=0 due to 8~=0; the two
special systems (28) and (29) coincide except for a simple
transformation of ta. This case was roughly sketched in
Ref. 16 and now is studied in more detail. %e use the cu-
bic nonlinearity f (u) =A, u + yu

3 in the whole u range and
study Eq. (28). By monotonically increasing or decreas-
ing ~ over the whole range we vary in Fig. 4 the position
and the number of intersection points of the straight line
with respect to the nonlinear function f (v}. Along with
the variation of the intersection points the slope f' at
those points is varying and therefore the stability proper-
ties are changing. This can be seen from the diagrams f '

versus k in Fig. 3.
Carrying out the described simulation for selected

values of A, we get the curves of Fig. 5(a) for J versus the
term T =~, which corresponds to the global I-Uz charac-
teristic of the device of Fig. 1. All numerical simulations
in this section are carried out without considering noise
unless it is mentioned explicitly. From the diagram in
Figs. 5(a) and 5(b) we see that the behavior of the systems
depends on the form of the nonlinear function. There ex-
ist three characteristic values of A, , for which the behavior
of the system changes. Two of them, denoted by k, and
A,2, result from bifurcation analysis. While A,

&
merely

depends on 0-, X2 depends on 0., a2, and p. For p, =O
these values are given by

—~t/2(2 1/2)
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At this oint thep he system undergoes a supercritical bifur-
cation, i.e., it changes continuously into a spatially
periodic steady state with growing amplitude by further
increasing ~. The amplitude reaches a maximum fum or

and decreases for positive values of ~ to a homo-

,„ascan e seen in Fig. 5(c)geneous distribution at —K as can b
' F'

or A, =0.5 and the amplitude defined as half of the
difference between the maximum and minimum value of v

within the distribution. The resulting characteristic J
versus v is continuous without any hysteresis [see Fi
5(a), curve A, =0.5].

see ig.

For A, &A, &A, th h2 3 the homogeneous state is again destabi-
lized when the critical value ~„is reached, but jumps

iscontinuously into a spatially periodic steady state with
well-defined wave number k, i.e., the system undergoes a
subcritical bifurcation. The amplitud f th'i u e o t is state grows
up to a maximum and vanishes discontinuously when a
second critical value ~,', is reached, where la,'„l& la„l[see

ig. 5(c), curve k=0.8]. Passing through the critical re-
gion the other way around we observe a hysteretic behav-
ior of the amplitude curve and of the J-T characteristic.

'q e a e origin jseeote that the characteristic is uniqu t th
' '

j
ig. 5 a), curve A, =0.9 and the larger scale tca e presentation

For A, ) A, 3 the spatially uncoupled system has three
steady states corresponding to two stable and one unsta-

e homogeneous state. When reaching the critical value
t e system jumps discontinuously from one homo-

geneous state into the opposite homogeneo t t d
e -T characteristic shows an enlarged hysteretic re-

gion, the origin is not unique [see Fi . 5( )

we apply noise, we can observe as inter-
mediate state an inhomogeneous distribution, which hints
that the system is multistable for this parameter range.
The distribution reached depends on the history of the
system (see Fig. 6).

(a)
2.0

1 .5

1.0

0.5

0.0
—0.5

—1 .0

—P =0.5 \ ~ ~ ~ ~ ~

0.8

0.6

0.4

0.2

0.0

—0.2

-0.4

-0.6

-0.8 (

0.0
T

—1 .5

—2.0-2.0 - 1 .5 - 1 .0 -0.5 0.0 0.5
T

--X=3 O

0 ~ 2 0.4

1.0 1.5 2.0

2. zq )0, varying K

This case is characterized by an additional global inhi-
ition, which is controlled by the total current flow and

leads to a kind of limited resource controlled by the load
resistance Rz in the following way. If at a certain loca-

e o er regions aretion there is a high current flow th th
indered from switching to a high current state. This

eads to a competition of the occurring patterns resulting
in ocalized patterns. We now have to distinguish be-
tween the two cases e~ /b &&e~/a and EL /b &&E~/a. ?n

the following we present numerical simulations carried
out in the same way as has been done for the case ~2 =0
with a somewhat changed value for A 2. The main
difference is that solitary structures in the form of single

aments and also groups of filaments can occur b th
corn petition. In contrast to the case ~ =0 h

y e

2—,w ere spatial

well-defined
mo ulations appear all over the space bce, we now o serve
we - e ned regions of nearly homogeneous distribution
and other regions with strong modulation of U and m

For A, & A. , and X, & k & A, 2 we obtain similar results as
those observed in the case R =0.S

Fork, &k&k, th2 e parameter range of the subcritical
bifurcation we eg t a separation into two spatial regions

~ ~

(c)
0.7

0.6

0.4

0.3

!

l

V

0.2

0.1

Tc
Tcr '

-0 20 -0 15 -0 10 -0 05

—cr1

0.00 0.05 0. 1 0 0.1 5
T

Tcr-
~ c

0.20

FIG. 5. (a) J-~) -~ characteristic obtained from (29) with
from (30) foror selected values of A, . Parameters: o.=0.07 1

wit U)

= —50, 5= 1, and r =0. (b) Larger-scale pre-
sentation of the curve 1=0.9 of (a). (c) A l'a . c mp itude of U defined

ximum an minimum valuesy a of the dift'erence of the maximu d
o t e u distribution vs T =~ for k, & A, =O. 5 (A,

A.2 & A, =O. 8 & k res
and

~ 3 respectively, and the other parameters as in (a).
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14

12

detail later on in connection with the experimental re-
sults.

10 B. Nonstationary structures

kM ~%&aa~i &M~kNAM4lLH44 @bed& I NANAK lkI I Nl I ktlggP

-2-2

FIG. 6. J-g characteristic obtained from (29) with f(U) of
(30) for /I, )k, with (C) ) and without (~ ) noise. Parameters:
X=2.0 and the other parameters are the same as in Fig. 5.

Large values of the parameter 6 favor nonstationary
structures, and calculations done so far show that if, in
addition, o. is large, nonstationary inhomogeneous pat-
terns may appear. In this case exciting temporal-spatial
patterns can be observed. In what follows we present cal-
culations of the dynamic behavior for some typical sets of
parameters. The diagrams show the temporal evolution
of the spatial patterns and/or time series of the mean
current density J. We observe the following typical kinds
of behaviors.

K) =3.28

when reaching the critical value T„,a homogeneous and
a spatially periodic region [see Fig. 7(a)]. Increasing Ir the
periodic region becomes larger, whereas the homogene-
ous region is decreased until the whole interface is filled

by the periodic pattern. This behavior is accompanied by
small discontinuities in the J-T characteristic. By further
increasing of ~, the amplitude of the periodic pattern
grows, reaches a maximum at T=O, and decreases again.
When reaching T,'„the structures vanish, accompanied
by a steep slope in the J-T characteristic, until the distri-
bution is homogeneous again [see Fig. 7(b)]. By decreas-
ing ~ we observe a hysteretic behavior, but as in the case
of R, =0, the J-T characteristic is unique at the origin.

For X ) A, 3 the homogeneous state is again destabilized
upon reaching the critical value T„andbifurcates into a
spatially periodic pattern, which, however, is not stable
but increases in amplitude. Through this pattern we have
a grid of peaks the amplitude of which increases. Now
the competition takes effect and through fluctuations one
of the peaks is selected and enlarges at the expense of all
other peaks resulting in a solitary filament at one of the
well-defined maxima of the preceding periodic pattern
(winner-takes-all principle).

Up to now the drift term does not affect the solutions
qualitatively. However, it becomes important for the
process of generation of more filaments. When reaching
the critical point at both sides of an existing filament, the
distribution of U and w is modulated by a wave, the am-
plitude of which is very small and strongly decaying with
the distance from the filament so that the region appears
to be homogeneous in Fig. 8(a). For p, =0 further fila-
ments are spontaneously generated at the maxima of this
modulation accompanied by a discontinuity in the J-T
characteristic [see Figs. 8(a) and 8(b)]. In the case of ap-
propriately chosen p&0, new filaments are generated by
the separation of already existing filaments into two.
This is also reflected in the shape of the resulting J-T
characteristic [see Figs. 9(a) and 9(b)] in that the critical
value of T, at which the first filament was generated, is
not reached again. These differences will be discussed in

xr — x~/
V V K ) =3.18

i~r ~~r — x~/
V V V' V V V K)=3.13

%~~~ r
V Y V

x~/
V' V V V K) =3.08

%~~~~~~~~~/
V V V V V Y V V V V K1=2 98

V V V V V V V V V V v-1" K)=293

n n n n nn n n nV V V V V V V V V V K) =199

1" A A A A A A A A AV V V V U' V V 'V K ) =1.44

A A A A. A A A A'LJ K) =1.34

A A A K)=124

K) =1.09

(b)

0.6—

0.4

0.2

0.0—

—0.2

—04

—0.6—0.3 —0.2 —0.1 0.0
T

0.1 0.2 0.3

FIG. 7. (a) Spatial distribution of v and (b) J-~ characteristic
of system (29) for /Iz&A, &A, 3. Parameters: 0.=0.071, p=0,
y= —1, a=O, P= —50, 6=1, r=4, and A. =0.9.
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Self c-reation and propagation ofpulses. To get this be-

havior we work with no-flux boundary conditions and
operate system (29) with ~z+0 and A, around 1 near the
threshold where the stationary homogeneous state is des-
tabilized. Starting from a homogeneous initial condition
near this critical point and, applying noise, a pulse is
created which splits into two pulses that move in opposite
directions. %hen the two pulses have a sufticiently large
distance, two new pulses are generated spontaneously be-

K) =29.95

tween them, while the initial pulses vanish at the boun-
daries. Figures 10(a) and 10(b) show this behavior of the
distribution and the corresponding time series of J.

Oscillating homogeneous domains. Operating system
(29) with rWO and a large value of 5, and starting from an
initial condition, where about half of the distributions v

and w in the center of the system is put in a state of
higher concentration, we observe an oscillation of the
homogeneous domains as presented in Fig. 11.

Breathing /laments. The breathing filament as
presented in Fig. 12 is obtained when the system (28) is
operated with the parameters r=O, A, =1.4, and a large
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(b)
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Ki =26.15

Kl =21.1
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K) =1.1
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n, R n n

R 6
R. R n
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Ki =107.6
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K) =5602

K) =55.78

K) =42.08

Kq =38 00

K) =37.98

K) =37.94

K) =29.36

K) =29.34

Kq =26. 86

K) =17.12

K) =16.00

K) =12.90

10 B"

( I/2) L'

K„=1002
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FIG. 8. (a) Spatial distribution of U and (b) J-T characteristic
of system (29) by changing ~; the filaments are spontaneously
generated from the quasihomogeneous parts of the distribution
accompanied by discontinuities in the J-T characteristic. Pa-
rameters: o =0.1, p=O, y= —11.5, A, =7.89, a=O, P=0.6,
5=1, and r=4.

FIG. 9. Analogous simulation to the one in Fig. 8, but with
changed parameters, especially p&0, which causes a division of
filaments. Parameters: o =0.1, p =0.000035, y = —11.5,
A, =7.89, a =0, P=0.6, 6=0.1, and r= 10.
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FIG. 15. Schematical spatial distribution of dark and lumi-
nous zones, space-charge density, electrical potential, and elec-
tric field in a glow-discharge system. It can be seen that the
"net space charge" e(no+ —no )&0 between the electrodes.
(Cited from Ref. 33.)

1900 9500 17100 i

FIG. 14. Time series J vs number i of time steps b,~, in which
the irregular behavior is caused by the drift term (a) for system
(28) with f (v) of (30); parameters: o =0.1, @=0.0005,
y= —11 5, A, =S, a=0, P=0.6, 5=0 1, r=7, i'd=1, and
Br=0.02; no noise; (b) for system (29) with f (v) of (30); parame-
ters: o'=0. 1, @=00003, y= —11.5, A, =S, a=0, /3=0. 6, 5=1,
r= 10, a =7.46, and b v.=0.01; no noise.

In the following we describe the experimental setup
and the results obtained with a gas-discharge system con-
sisting of two rectangular electrodes, one of which is
made of copper and the other of a doped silicon single
crystal as resistive layer. The discharge slit between the
electrodes is covered by glass plates, with a spacing of
about 0.3 mrn. The discharge slit contains an inert gas
(He with 10% air) with a pressure varying in the range
10—160 hPa. This arrangement is connected to a voltage
source through a series resistance Rz of about 80 kQ.
The device is shown in Fig. 16.

B. Gas-discharge system "xperimental setup and results

As mentioned above an application of the model is
found in glow-discharge devices. Figure 15 shows
schematically a cross section through a glow-discharge
system parallel to the direction of the current Aow.
Volume ionization and processes at the cathode cause the
generation of charge carriers and lead to transport pro-
cesses that are associated to the typical distributions of
charge carriers, electric field, space charges, etc. In this
case, we have electrons and positive ions as charge car-
riers. The positive column of a discharge has a charac-
teristic which contains a region of negative differential
resistivity and fulfills the requirement of quasineutrali-
ty. From Fig. 15 it can be seen that the positive

29

column has a positive net space charge. From these facts
the positive column can serve as nonlinear layer in terms
of the two-layer model.

I „Rs
T

FIG. 16. Schematical arrangement of the gas-discharge sys-
tern: M, Cu electrode; I., doped n or p silicon; M', Al contact of
the layer I.; X, gas-discharge gap; R&, resistance; U&, applied
voltage.
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In its dependence on the parameters pressure, applied
voltage, and electrode distance, the gas-discharge system
exhibits inhomogeneous patterns of the radiation density,
which is proportional to the current density in a wide pa-
rameter range. In particular the following experiments
have been performed.

By increasing the applied voltage Uz to a critical value,
a luminous filament is spontaneously generated while the
I-Uz characteristic exhibits a discontinuity. Further
enhancement of Uz leads to a broadening of the filament
and finally to its splitting into two filaments. Additional
filaments result from subsequent division processes of the
same kind. Figure 17(a) shows the evolution of the spa-
tial distribution of the radiation density, which can be
shown to be proportional to the current density in the in-

0-

0

0
0 X

I {mA)

20-

10—

1

400
I

800 1000
U (V&2000 600

FIG. 17. (a) Spatial distribution of the radiation density,
which is proportional to the current density and {b) correspond-
ing I-Uy characteristic under variation of the externally applied
voltage Uz. Parameters: specific resistivity, p =0.9 kQ cm;
pressure, 212 hPa; Rz =74.5 kQ; I=45 mm; d=0.3 mm; a=2.5
mm; and b=10 mm.

vestigated current-density range, when U~ is varied. The
corresponding discontinuities in the global I-Uz charac-
teristic are shown in Fig. 17(b).

By starting from a homogeneous discharge and de-
creasing the applied voltage, we obtain a spatially period-
ic pattern of the radiation density shown in Fig. 18.
Furthermore, when the polarity of the applied voltage is
changed, we observe a struggling motion of the filaments
accompanied by an irregular behavior of the total
current, which is shown in Fig. 19.

In order to determine the important parameters 5, o,
and p for the experiments leading to stationary struc-
tures, further experiments have been done. The time ~
that passes until the current density in the gas volume
reaches its stationary value after an increase of the ap-
plied voltage was determined by means of a pulsed
discharge between two metal electrodes. As result we ob-
tain ~=10 s; from this we can estimate 8=5X10
Vsm /A (for details see Ref. 30). With er =10, ejv =1,
and typical values b =10 mm, p=0.9 kQcm, and a =3
mm the gas-discharge system matches the case
eL /b ))e~/a better than the case eL /b «E„/a,so that
according to (18b), we obtain 5=0.14 provided that g= l.
From the intrinsic wave length, which appears in bifurca-
tion experiments similar to that of Fig. 18, we can deter-
mine the ambipolar diffusion constant to Do =50 cm /s,2

which is in a reasonable range between the diffusion con-
stants of He ions and electrons, respectively. This leads
to the value o.=3X10 . Furthermore, we know that
the positive column has a positive net space charge so
that p )0 can be assumed.

These estimations reveal that the parameters for the
experiments concerning the filament generation and the
bifurcation from a homogeneous into a spatially periodic
state lie in a suitable range. The conditions o., 5&1,
which are decisive for the occurrence of stationary struc-
tures, and p) 0, which is important for the division of
filaments, are fulfilled. This gives us the legitimation to
compare the experimental results to the numerical solu-
tions in Sec. III.

Concerning the experiment in Fig. 17, the comparison
to the numerical simulations of Eqs. (29) shows that the
model with p=0 supplies the spontaneous generation of
filaments and suSces to explain the occurrence of stable
inhomogeneous current density distributions (see Fig. 8),
but does not provide more details. The extended model
with the appropriate p&0 matches the experimental re-
sults to a great extent. Numerical simulations and exper-
imental observations are in good qualitative agreement
about filament division [see Figs. 9(a) and 17(a)]. The
theoretical J-T characteristic fits well the measured I-Uv
characteristic in that the critical value of T for which the
first filament is generated is larger than the value of T for
which the division process starts [see Figs. 9(b) and
17(b)]. The experiment referring to Fig. 18 can be ex-
plained in terms of bifurcation theory in that the behav-
ior of the radiation density is in good accordance with
the predictions of Turing structures. A bifurcation
analysis and a detailed comparison are the subjects of an
additional paper, where also a first quantitative analysis
of the wavelength of the periodic patterns is given. To
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FIG. 18. Photograph of the spatially periodic structure of the luminous density in the discharge slit. Parameters: specific resistivi-

ty, p =0.9 kQ cm; pressure, 90 hPa; Rz =20 kQ; 1=45 mm; d=0.3 mm; a=4.6 mm; b= 12 mm, and Uz =922 V.

what extent the irregular behavior presented in Fig. 19
corresponds to the numerical results in Sec. III B upon
mere qualitative agreement is still an open question.

In summary we can state that the experimental obser-
vations at the gas-discharge system are in good qualita-
tive agreement with the numerical solutions of the model
equations. Furthermore, the bifurcation experiments
yield a first quantitative confirmation, whereas the
filamentation up to now could not be calculated with ex-
actly the value o. =3 X 10,which is typical for the gas-
discharge system due to a present limitation of comput-

ing power.
As a variation of o in the range 0.005—0.5 leads to

similar results as described above for the case o =0.1, we
assume that a further decrease of o. would not effect a
fundamental change in the behavior. From the present
state of investigation we therefore conclude that the mod-
el can serve to reveal the mechanisms of pattern forma-
tion in the described gas-discharge system. Further
work, especially concerning quantitative analyses, will be
done to confirm the model.

21
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FIG. 19. Experimentally measured time series of irregular time-spatial behavior of the total current. Parameters: specific resis-
tivity, p = 1.7 kQ cm; pressure, 230 hPa; Rz = 120 kQ, 1=45 mm; 1=0.3 mm; a= 2.5 mm; b= 18 mm; and U = 1250 V.
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V. CONCLUSIONS

We have derived, on a mesoscopic scale, a two-layer
model for physical systems in which the reaction and
transport of charge carriers causes the formation of pat-
terns. The model consists of a pair of linear and non-
linear layers, each of which is described by a partial-
differential equation. The approximation of the equation
for the nonlinear layer is carried out for the case of two
types of charge carriers whose densities deviate from a
reference state but behave quasineutrally. By the
quasineutrality the two equations for the charge carriers
can be reduced to one and the space-charge terms drop
out. The reference state itself can have a nonvanishing
distribution of space charges, which is constant parallel
to the electrodes. This is a typical situation for boundary
layers in gas-discharge and in semiconductor devices.
Therefore this should be a good approximation for sys-
tems such as, for example, capillary gas-discharge de-
vices, p-i-n diodes and the thyristorlike devices.

The phenomenological equation for the nonlinear layer
of Ref. 16 contains only a diffusion term and reaction
term. Numerical simulations of the resulting system of
equations show that this model supplies the spontaneous
generation of filaments and roughly reflects the experi-
mentally observed formation of inhomogeneous distribu-
tions of luminous density, and the I-Uv characteristic of
the gas-discharge system described above. Drift effects
caused by the net space charge and potential gradients at
the interface of the two layers are taken into account in
the so-far-developed extended model. The predictions of
the extended model match the experimental results to a
satisfactory extent, especially with respect to the division
of filaments and the form of the global I-Uz characteris-
tic.

Besides the comparison to experimental results, we
have shown that the model possesses a rich variety of
solutions depending on the values of parameters charac-
terizing stationary and nonstationary states of the system.
In particular we discussed spatially periodic solutions and
the formation of filaments with special attention to some
parameters and to the influence of the drift term. We
have studied the dynamic behavior of breathing fila-
ments, nervelike pulses and irregular motion.

Further investigations will be concerned with an
analysis of the quantitative agreements between experi-
mental and theoretical results. For this purpose, we must
determine carefully the parameters corresponding to the
material constants, and the j-E characteristic of the gas-
discharge system. Another matter of interest is to find
out to what extent the dynamic behavior of the model
corresponds to the experimental observations. This in-
cludes the dynamics of filament division and the experi-
mentally observed irregular behavior of the luminous
density distribution. We hope that the model can be ap-
plied also to the two-dimensional high-frequency gas-
discharge system of the Boyers-Tiller type. '

The next step in the further development of the model
will include extensions in modeling the nonlinear layer
for thyristorlike devices and models for the nonlinear lay-
er in which the condition of quasineutrality is not
fulfilled. In the latter case we have to deal with stronger

inner fields because of the charge separation. As a result
the internal drift terms can no longer be disregarded
compared to the external drift terms, which are propor-
tional to U . A typical example for effects of this type is
the injection of one kind of charge carrier in semiconduc-
tor devices.
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APPENDIX A

Using the definitions (2) we get from ( la)

n~, =f+p, n, ,E&„+p,n E&„„+p,, n, E,

+p, n E, , +D„n&„+D,n
„

and the corresponding equation for the positive charge
carriers. The Poisson equation turns to

E& +Ep +E~ =(e/eep)(np +n
~ np n

~
+C)

=(elEEp)(np np +C)=Ep, ,

(Al)

n ~+, =F —p„+n&+ „E„—p+n+Ej, +D„+n&+ p n

with the "effective reaction terms" F+ and F given by

F =f+p, n, E, +p, n E, , +D, n „,
and F =F+=0 for Pp =(n p, np+, Ep) according to (2b).
Note that F and F+ contain z derivations and are
therefore operators.

Multiplication by the factors p„+n+ and p n, respec-
tively, and adding both equations (Al) causes the space
charge terms p n E,„„and—p+n+E,

„

to drop
out. With n, =n, = n &+ it follows that

, =F*(np" +n~, np +n~, Ep, +E~, )

+p*n ) E] +D*n
1 (A2a)

with

Summing up in F all terms containing no operators in x
and/or t we obtain

n&, =F +p n, E& +p n E, „+Dn& p„+n+,
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p,„p, (no —no ) p„p„(no
p n +p n p no +p np

=po+
p+D n ++D+p n

p+n++p. n

p,+D no++D, p no +
p+no++p, n,

=Do +T,
p„+n+F +p„n F+

FQ
p+n++p, n

=Do +'T,
p+n+F +p n F+

p+n +p n

1,= —e(no vo, +no u[, +n/uo, +n/vI,

+ano+uo, +ano+v, , +an, vo, +an, v, , )

=Jo+Jo&+J&o+J2

=Jo+Jxz

with

jo= —e(no +n„a)vo,=aoEo, ,
+

(A3)

ao e("o +no a)tu. ,
joi = e ~no +no &)v i.=aoE&, =aoE&, ,

+

j,o
= —e (1+a)n, uo, =a2n, Eo„a~= —e (1+a)p,

jz e(1+a)n[v) =J/oE) ~Eo

Jxz Jo&+J to+Jr

Multiplying (A2b) by —e(1+a)vo, we obtain an evo-
lution equation for the partial current density j~o,

where 'T represent terms higher than first order in n, .
Expressing F* in terms of the deviations we define the

function Go (n „E„,z) =F' with coefficients that depend
on the reference state. Approximating p* and D* by
their constant parts po and Do and introducing Go we

get from Eq. (A2a)

jo = e(1+ a) von, ,

= —e(1+a)uo, Go —)Moe(1+a)uo, n, „E,
„

Doe(—1+a)uo, n~,
„

=Go+p{*.jio, . «i +Dojio ... (A4)

n &, =Go (n ~, E~, )+pon~ „E~„+Don~„„.(A2b)

Note that this equation is z dependent.
The z component of the current density j is given by

Jz =Jz +Jz
= —e (no +n, )(uo, +u, , )+e(no+ +n, )(uo+, + v,+, )

= —e(no voz+no u&, +niuoz+n&ui
+ + + + + + ino vo n{}vi n/vo n)vi J

With v,
+ =p+E, =ap E, = —nv, we get

with Go defined as

Go(j,o(x, z), E„(x,z) )

= —e (1+a)vo, Go (n „E„)
e(1+a)uo&Go(j&ol[ e(1+a)p, Eo&] E~&)

and Go(0,0) =0 because of F =F+ =0 for n, =n,+ =0.

APPENDIX B

Denoting the deviation from a mean value ( Y) by BY
we can write every quantity as Y=( Y) +B .YInserting
Eq. (8), the expansion of Go, in Eq. (6), and splitting the
quantities we get

&j „),+&j„,=(&p,")+&p)(&j„)„+&j„.)((E,„)+&E,„)+((D,*)+&D)((j„)„,+&j„„.)

+((6, )+BG, )((j, )+Bj, )+((6 )+BG )((E„)+BE„)

+((6 )+BG, )((j, )+Bj, )((E„)+BE„)

+((6,, )+BG )((j, )+Bj, ) +((G )+BG )((E„)+BE„)'+.. .

Averaging this equation yields
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&j„&,=&i,*&(j„)„(E,„&+(D,*
&&j„&„„+&G,&&j„&+«,&«„&+&G„)&j„)«„&+

+(BlzBj, „)(E,„)+(BABE,„)(j,) +(Bj, BE,„)(p*)+(BpBj,BE,„)+(BDBj,„„)
+ (BG,Bj, ) + (BG BE„&+& BG„Bj ) (E )

+ & Bj„BE„&& G,,&+ & BG,,BE„) & 1„&+& BG„BI„BE„&+.
=&@..*&(j„&„(E,„)+&D,* &(j„&„.+(G, &&j„&+(G,&(E„)+(G„&&j„&(E„&+ +R.
=()Lto )(j,o) „(E&„)+(Do&& jio&, +(Go&(&jio& &Ei, ))+R

where R contains all terms containing mean values of higher-order products of Bl .
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