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Plasmon instability in two laser fields under a strong magnetic field
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Plasmon scattering by electrons in two laser fields in the additional presence of a strong (quantiz-

ing) magnetic field is discussed. A kinetic equation for the plasmon population is derived, from
which the damping rate is calculated. We found that plasma waves may be amplified over a rela-

tively narrow range of plasmon wave numbers in the direction perpendicular to the magnetic-field
direction. Furthermore, the joint action of the three external fields results in a very large
amplification rate, in contrast to the case where no magnetic field is present.

I. INTRODUCTION II. UNITARY TRANSFORMATION

Much attention is focused currently on the interaction
of laser fields with plasma, ' mainly regarding ther-
monuclear fusion. Another interesting aspect of the in-

teracting laser-plasma problem recently treated by some
authors is the one in which one considers the changes in-

duced by two laser fields, namely, a strong and a weak
field, on the damping of plasma waves due to the
electron-plasmon scattering in the presence of these
fields. It has been found that the plasmon damping may
reverse its signal (amplification) under certain external
conditions for the laser fields and that the threshold con-
dition for plasma-wave instability is dependent upon the
plasmon wave number k; i.e., there is a selective mecha-
nism for plasmon amplification.

Although the electron cyclotron frequency in these ex-
periments is much smaller than the laser frequencies, the
magnetic field probably has little effect on the absorption
of laser energy by the electrons but has a major effect on
particle confinement. However, a resonance condition,
where the laser frequency is equal to the electron cyclo-
tron frequency, may be approached by increasing the
magnetic-field strength. It is therefore important to con-
sider the cyclotron resonance absorption of these radia-
tions.

In this paper we study the plasmon instability by elec-
trons in the simultaneous presence of two laser field as in
Ref. 7 and include the eff'ects of a strong external (quan-
tizing) magnetic field. Our approach follows closely that
of Ref. 7. The plasma is assumed to be infinite and
homogeneous. The laser fields are treated as classical
plane electromagnetic waves in the dipole approximation.
The plasma electrons are described by the solution to the
Schrodinger equation for an electron in the laser fields
and a uniform static magnetic field. Here, contrary to
the method described in Ref. 2, we will make use of a uni-
tary transformation method recently introduced to elimi-
nate the laser field dependences of the kinetic energy
term. To be specific, by using a unitary transformation
the problem of an electron in three external fields will be
reduced to the simple problem of an electron in the pres-
ence only of the magnetic field.

The procedure to solve the quantum-mechanical prob-
lems with the time-dependent Hamiltonian has been dis-
cussed in Ref. 8. Here we shall brieAy outline the main
results.

We begin by writing the Schrodinger equation for an
electron in the two laser fields in the presence of a strong
magnetic field along the z direction, namely,
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where A(t) is the total vector potential of the two laser
fields and Ao is the vector potential of the magnetic field.
We now perform a unitary transformation in Eq. (1),
namely, '

where

ip(t) p/A ia(t) r/A (3)
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In Eq. (3), the function p(t) produces a translation in

space and the function a(t) produces a translation in

momentum. Under a unitary transformation using the
above operator U, the Schrodinger equation for P will

have a modified Hamiltonian. Since the functions p(t)
and a(t ) are arbitrary, we can use them to cancel
unwanted terms in the modified Schrodinger equation to
transform the time-dependent problem into a problem of
a particle in the presence only of a static magnetic field.

By substituting the expression for g in the Schrodinger
equation (1) we obtain the equation for P, namely,

iA =H$,Q(6
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In Eq. (5) 8 is the static magnetic field. The components
of the vector functions P(t ) and a(t ) are chosen to cancel
the terms of H which are time dependent and linear in r
or p. Assuming the case of linear polarization for the
two laser beams the following relations result:

1 eH= p — BXr
2m 2c

(6)

which is the Hamiltonian of an electron in a static mag-
netic field B whose cyclotron frequency is co, =eB/2mc.
The solution of Eq. (4) with the Hamiltonian (6) is well
known and is given by the Landau wave function. '

Therefore, under U the problem of an electron in the
presence of the two laser fields and a static magnetic field
is reduced to the one of an electron in the presence only
of the magnetic field with the original wave function P
given by

P=(P„(t ),P, (t ),0),
a = (a„(t ),a~(t ),0),

eE0] eE02
13„(t}=— i i cosco, t —
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p, (t)=
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2 2
COSC02E
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eE0] co, eE02co,
ay( t ) = i i coscoit

z z coscoit
2(co, —coi) 2(co, —co&)

where E, and cu; are the laser field amplitudes and fre-
quencies, respectively.

With this choice for P(t) and a(t ), the modified Ham-
iltonian becomes

l
P„(r, t ) =—exp(iP p/iii)exp(ia r/A')exp(ip, x /A)

where

Xexp(ip, z/ft)exp[( —i /ft)s„t]y„(g g—o), (7)
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In Eq. (7) y„(g) is the harmonic-oscillator wave function.

III. TRANSITION PROBABILITY

where V(q)~ =2ire fico~/Qq is the electron-plasmon
vertex, " co is the plasmon dispersion relation, and Q is
the normalization volume. By substituting Eq. (7) and
Eq. (8) and performing the integrations over x and z, we
obtain

The probability amplitude for the electron transition
from the initial state i with quantum number
v=(p„,p„n) to the final state 'v=(p„+q„,p, +q„n')
due to a collision with a plasmon of momentum Aq is
given by

a(v~v', q)= ——' J f '
d r dt &*~V(q)e'

'
fi V

a(v~v';q) = ——'V(q)(2ir) f dy y„(g go)e '—y„(( (0%(p—„' —p„—q„}fi(p,
' —p, —q, }

7'/2 l
X dt exp i co—sco, t i cosco&—t ifico t+ ——(e, —s„)t (9)—7/2 %CO]

'
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where A, ; =eEO; bpco;/m(co; —co, ) (i =1,2) is the field parameter. Integrals in the y variable similar to the one in Eq.
(9) may be found elsewhere. "' The integral over t in Eq. (9) may be performed after expanding the exponentials
exp[( i A, /fico—; )cosco;t] in the usual form

—i(A, . /A~ )casey t
l l l

(
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e

Then Eq. (9) may be written

ci(v~v';q) = ——V(q)(2ir) F(n, n', p)5(p„' —p„—q„)5(p,
' —p, —

q, )

+ oc

X g ( i )'Jl-
Aco i
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( i ) J — 6(e, —s,,
—fico —lii!co, —mRcoi} .

AC02
(10)

In Eq. (10), J (x ) is the Bessel function of order j and argument x. Also in Eq. (10) F(n, n, p) is given by the following
expression:
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1/2
t1

F(n, n', p) =5„„e L„(p)+ 8(n —n') i(n —
n')gati

—p/2 {n—n')/2 r n —n'1

n1+ 8(n' —n) n!

1/2
1(n' —n)tt) —p/2 (n' —n)/2 r (n' —n )1e e p I„ ipse,

/=tan '(q /q„), p=A (q„+q~)/2m&0i, . (12)

In Eq. (11) L„"' "(p-) is the Laguerre polynomial. Equation (10) is now squared to obtain the transition probability per
unit time, namely, '

a(v v'q)I' +" +"
T( 1, m; v~ v', q),

7 I= —oo m = —oc

T(l, m; v~v', q) =
I V(q)I J& (A, , /fico, )J (Ai/A'co&) F(n, n', po) 6(e, e„fi—c0 —laic—o, —miricoz), (13)

where po is given by Eq. (12) with qo=(p„' —p„,q,p,
' —p, )

in place of q. It followed from the 5 function of Eq. (13)
that the transitions are induced between Landau levels n

and n' due to a collision with a plasmon q with the ab-
sorption (l, m &0) or emission (l, m (0) of IlI and Im I

photons of the two laser fields.

IV. KINETIC EQUATION

dN
7q q

(14)

usual, ' we may convert this schematic equation into a
mathematical one by substituting the transition probabili-
ty. One has

The change in N, the number of plasmons of wave
number q, may be written schematically as in Fig. 1. As where

Vq

+oo + oo + oo

Ji'(~i/&~i) J' (~i/&~i) I
I'(q) I'IF(n, n+s, po) I'[f(e, )

—f(s.)]
I= —oo m = —cc n, p, p s= —oo

X6(e„—e„—irtai I fico i
—m —

iiicoi ) . (15)

In Eq. (15) and in Fig. 1 we have introduced for conveni-
ence a new label s such that s =n' n Also i—n E.q. (15)
f(e, ) is the electron distribution function. We proceed
now to evaluate the sums in the kinetic equation (14)
from which the dainping (amplification) rate y is evalu-
ated. From the beginning we have assumed the laser
fields to be linearly polarized plane waves

E, =Ee„sin0i, t (i =1,2)

so that the field parameters k; appearing in the argu-
ments of the Bessel functions in Eq. (15}depend on the
laser field strengths Eo, (i = 1,2), the laser frequencies co;,
and the electron cyclotron frequency co, . The case
co, &&co; is essentially the problem considered in a previ-
ous paper. We consider here only the interesting case
co, =co;. We also consider the case where one of the two

I

laser fields, say, i =1, is a weak laser field and i =2 is the
strong pumping field. In the latter case A, 2 » irtcoz and the
argument of the Bessel function J (A,z/RO~i) is large. For
large values of the argument, in the Bessel function J is
small except when the order m is equal to the argument.
The sum over m in Eq. (15) may be written approximate-
ly7

J (A, i/%cod)5(E
m ficoi)—

mWO

—= —,'[6(E—A2)+6(E+A2)] .

where E =c, —c. —Ace —I%co, . The first 6 function cor-
responds to the emission and the second to the absorption
of A,2/6~2 photons. Since A,2/Am2 && 1, only multiphoton
processes are significant. The damping rate then becomes

COp

1=-00 f5=-00 0, P, P S=-OO
X Z

FIG. 1. Change in X, the number of plasmons of wave number q. The wavy lines represent plasmons; the dashed lines, photons.
Solid lines are for electrons.
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+oo +oo
Ji'(~i/&~i) I V(q)I'IF(n, n+s, po}I'[f(r„)—f(e„)]

n, p, p I= —oo s= —oo

s&0

X [5(E„—e,—iiico —/h'co, —
Az )+5(E —E,—iiicoq —/%co i +Az )] . (16)

We now assume a Maxwellian distribution for the plasma electrons and in the case in which laser 1 is a weak laser
field, A, , «A'co, , the Bessel function J& appearing in Eq. (16) may be written approximately

1 1
Ji (A, , /iiico, ) -=

(/!)z 2 irico&

and, consequently, only the I =+1 terms should be retained, i.e., in the weak-field regime of laser 1 only single-photon
processes are significant. Under the foregoing assumptions, Eq. (16) then becomes

r

1 ~i z
+ oo

y, = —— IV(q)l' & g IF(n, n+s, pu)l'[f(e„)(e
2 Am) n, p„,p s = —cc

sAO

—(X,+~~ -~co, )/~, T+f(e„)(e ' ' ' —1)5(e i
—e„—A'co&+i)icoi —Az)

(A, 2
—fico —

%col ) /k~ T+f(e,)(e ' ' ' —15(e„—s„—iiico —irico, +A.z)

+f(e„)(e ' ' ' —1}5(e„—s„fico +—irico, +A, )] .
(17)

We now take the classical limit of Eq. (17) by letting' '
A~O and n~~,

such that

nkco~ ~
2 plUy

( )f(e„)~Qf d'u( )f(v) .
" p„p

(20)

—(vozqi+co —co, )5(sco, +u, q, —co +co, —vozqi)

+(vozqi co coi)5(sco +u, q, —co —co, +vozqi)

+ ( vpzqi coq +coi )5(sco + v q coq + coi +vozqi )]

Hence expanding Eq. (17) in powers of h and retaining only the lowest-order terms (because R~O), one has

2 2
eEO& q e CO + U~

7q z z z g d u J, f(v)[ —(vozqi+co~+co&)5(sco, +u, q, —co —coi —uozqi)

s&0

where we have written Az as iiiqivpz, with uoz=(eEuz/mcoz)(1 —co, /coz), and replaced IF(n, n+s, po)I by its classical
liinit, namely, IF( , n+np s)I,oiJ, (q i/ui)c.oHere qi stands for q perpendicular to the magnetic-field direction. Re-
placing f(v) by no(muT) exp( —u /uT), where uT=2k&Tlm, and performing the integration over u, using the 5
function, Eq. (21) reduces to

where

1/2

2

e4E2 n a2 +-
I, (qiuT /co, )G, (a,P, a ),

m (coi —co, ) vz.q, =
s&0

I, (q ilucoT, )=f dx e "J,(qiuT"tax /co, ),
0

G, (a,P, a)=expI —[P +(1—sb) ]a I(IPtanh[2Pa (1 sb)] —1Icosh[2Pa —(1 sb))— (22)

+exp[ —a (a —P )]{atanh[2aa (1 sb)] —l]cosh[2aa (—1 sb)]}, (23)—
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and

a=(v pique
—cpi)/cp, p=(vp2qi+cp, )/cue,

a=co /q~vT,

b —ca~ /coq

it is more favorable for G, to be positive when cv, » vp2qi
and 2Pa (1 —sb) «1. Then P= —a=ca, /cue and Eq.
(23) reduces to

G 8e
—a (1 —sb)e —x (x22, 2

S 2

(24)
X =CO ) /q g V y-

In arriving at Eq. (22) we have assumed that the
plasmons are propagating parallel to both EI and E2, the
laser field amplitudes.

V. DISCUSSION AND CONCLUSIONS

Equation (22) is the expression for the plasmon damp-
ing under two laser fields in the simultaneous presence of
a strong (quantizing) magnetic field we want to discuss.
It tells us that if yq is positive, the plasmon population
grows with time, whereas if y is negative, it is damped.

We first notice by looking at Eq. (22) that for cp2=cp,
(i.e., vp2~ ee ), cv2 being the strong laser field frequency,

y vanishes. Physically this result may be interpreted as
follows. Consider the problem of one electron in the elec-
tromagnetic field of the strong laser described by A2(t )

and moving in the potential V (the plasmon field). We
have

+= 2mv~~2+ 2mv02+ V 9

where —,'mv~~ and —,'mv02 are the longitudinal and trans-
verse energies on the electron, respectively. For co2
=cp ( vp2 ~ ae ), the transverse energy is much larger
than V, and the electron interaction is "frozen. "This re-
sults in a vanishing y . The interesting case is, however,
the one in which ca2 is near cp, but not necessarily at reso-
nance. In this case the plasmon population may in prin-
ciple grow (amplification) with time provided G as given
by Eq. (23) be positive. On the other hand, for B~0 the
argument of the Bessel function in Eq. (21) is large, so
that as before we will reproduce results of previous
work, namely, the expression for the plasmon damping if
we had only the two laser fields.

Finally, the expression for 6, is, in general, quite in-
volved. A detailed analysis of it, however, indicates that

provided cv2 «qivpz «cv, , and vp & vT (i =1,2). It fol-
lows from Eq. (24) that as in the previous case, namely,
the zero magnetic field case, the threshold condition for
plasmon amplification is also dependent upon the value of
q, namely, the values of q in the direction perpendicular
to the magnetic field. This is seen from Eq. (24), which
becomes positive for x & I/v'2 (or qi & coiv'2/vr), has a
maximum at x =i/3/2 and then decreases quite rapidly
with increasing x. In other words, in the simultaneous
presence of a weak laser, a strong laser, and a strong
magnetic field, the plasmon population in a relatively
narrow range of q in the direction perpendicular to the z
axis may become unstable, i.e., there is a very selective
mechanism for plasmon amplification

By comparing the expression for the damping
(amplification) in the B+0 case with that in the absence
of the magnetic field we notice the presence in the form-
er of a resonance factor (cpi —co, ), which can be made
very large whenever the resonance condition ~&=co, is
reached, co& being the weak laser field frequency.

In closing, we have proposed in this paper the
amplification of plasma waves by electrons in two laser
fields in the additional presence of a strong magnetic
field. We have shown that the joint action of the two
laser beams plus the magnetic field results in a very large
amplification rate whenever cp, =co, (the resonance condi-
tion) in contrast to the case where no magnetic field is
present.
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