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Two balls in one dimension with gravity
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A study is reported of a simple dynamical system with two degrees of freedom having discontinui-

ties due to collisions. It consists of two point masses or balls constrained to move in one dimension

above a floor in a constant gravitational field. All collisions are assumed to be elastic. When the ra-

tio r of the upper mass to the lower mass is less than unity the motion is chaotic almost everywhere.
On the other hand, when r ) 1 the motion shows typical Kolmogorov-Arnol'd-Moser behavior with

quasiperiodic and chaotic trajectories coexisting in the phase space. It is shown that for particular
values of the mass ratio, denoted by r„, a sequence of n rapid ball-ball collisions close to the floor
has the net effect of reversing the velocities of both balls. This demonstration leads to the
identification of families of stable and unstable fixed points of the Poincare section, which to a con-
siderable extent determine the overall structure of the map. By means of a method due to Lorenz,
the largest Lyapunov exponent A, , has been calculated for many values of the mass ratio and for a
variety of trajectories. For chaotic trajectories, a plot of A,

&
as a function of r is found to have local

minima at the values r„corresponding to velocity-reversing collision sequences. This is thought to
result from the fact that when r =r„ the chaotic trajectories lie in many isolated regions of the

phase space, whereas when r is different from any of the r„, the chaotic regions merge to form a sin-

gle region of global chaos.

I. INTRODUCTION

Despite their relative simplicity, Hamiltonian systems
with two degrees of freedom, such as two coupled non-
linear oscillators, give rise to very complex behavior. A
well-known example of such a system is the Henon-Heiles
Hamiltonian' for which the position coordinates and the
momenta show a transition from quasiperiodic motion at
low energies to almost completely chaotic motion at
higher energies, with both types of behavior coexisting at
intermediate energies. The general features of this transi-
tion may be understood on the basis of the Kolmogorov-
Arnol'd-Moser (KAM) theorem. The physical content of
this theory has been well described by a number of au-
hor

While the flow induced by coupled-oscillator systems is
generally continuous and differentiable, there is another
class of Hamiltonian systems for which the flow is piece-
wise continuous with discontinuities in the momenta re-
sulting from collisions. In this general class there are
some systems which do not exhibit quasiperiodic behav-
ior. The most physically interesting example is the gas of
n-dimensional hard spheres with elastic collisions which
Sinai ' has shown to be ergodic and mixing for n =2 and
to have (possibly many) ergodic components of positive
measure and positive entropy for n &2. There are also
dynamical systems with discontinuities in which both
quasiperiodic and chaotic motions are known to coexist.
A classic example is the simplified model of cosmic ray
acceleration developed by Fermi, Pasta, and Ulam in
which a point mass moves between two walls, one fixed
and one oscillating. Another example is the motion of a
billiard inside a plane convex region, sometimes referred
to as the stadium problem. ' Recently, Lehtihet and

Miller" have reported a numerical study of a billiard
confined to a symmetric wedge-shaped region in a con-
stant gravitational field. These examples all show typical
KAM behavior despite the fact that the equations of
motion of the point mass are strictly linear. Clearly the
collisions themselves are equivalent to the action of non-
linear forces. .

Mathematical studies of dynamical systems with singu-
larities caused by collisions have been carried out by
Wojtkowski' ' and by Katok and Strelcyn. ' The
latter authors have extended to a broad class of such sys-
tems the theory of Pesin' relating the ergodic properties
of a system to its Lyapunov exponents. The billiard in-
side a plane convex region has been studied by
Wojtkowski, ' who has established conditions on the
shape of the boundary which lead to nonzero Lyapunov
exponents and strong mixing properties. Very recently
Wojtkowski' studied a system of balls confined to one di-
mension above a floor in a constant gravitational field, all
collisions being assumed to be elastic. For the case in
which the masses decrease monotonically with height, he
established the existence of at least one nonzero
Lyapunov exponent for almost all trajectories in the
phase space.

The present paper is an exploration of the physics of a
simple dynamical system with singularities caused by col-
lisions. The system consists of two point masses —we
think of them as balls —constrained to move vertically in
one dimension under the influence of a constant gravita-
tional field. In addition to conserving momentum, the
collisions between the balls are assumed to be elastic.
Furthermore, when the lower ball collides with the floor,
taken to be at x =0, its velocity is simply reversed in
direction. Except for the instants when collisions occur,
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the system is described by the Hamiltonian,

PzH= + +m, gx, +m2gxz,
1 2m 2

where g is the acceleration due to gravity, and m, and

m2 are the masses of the balls. If x, denotes the position
of the lower ball, the motion is constrained by the condi-
tions x& +0, x& +x&.

Our system with two degrees of freedom is the simplest
nontrivial case of Wojtkowski's system of one-
dimensional balls. ' In the appendix of his paper,
Wojtkowski shows that this system is related by a canoni-
cal transformation to the billiard in the symmetric wedge
studied by Lehtihet and Miller" —a demonstration that
is particularly interesting in the light of the fact that from
a physical point of view the two systems behave quite
differently. As the dynamical behavior of the two-ball
system is easy to comprehend, we believe the present
work complements Lehtihet and Miller's paper while
showing certain similarities in the structure of the results.

The plan of the paper is as follows. After defining suit-
able dimensionless variables and Poincare maps in Sec.
II, we examine the simple fixed points of the two-ball sys-
tern in Sec. III. In Sec. IV it is shown that for particular
values of the mass ratio r„a sequence of rapid collisions
near x =0 can effectively reverse the velocities of both
balls. This leads to identifying families of stable and un-
stable fixed points, described in Sec. V. It is shown in
Sec. VI that these fixed points largely determine the
structure of the Poincare maps. The motion of the sys-
tem in the limit of large r is studied in Sec. VII, 1-ading to
a demonstration that the fraction of the accessible area of
the Poincare map occupied by chaotic trajectories is pro-
portional to r ' . This supports our belief that the in-
tegrable case corresponds to the limit of infinite r. In Sec.
VIII we describe the results of calculations of the
Lyapunov exponents for chaotic trajectories as a function
of r. The structure of these plots is interpreted in terms
of the suppression of chaos at the values r„associated
with velocity-reversing collision sequences. Concluding
remarks are contained in Sec. IX.

One of the objectives of the present work is to show
that the physical behavior of the simple two-ball system
with discontinuities is intimately related to the
mathematical structure of its fixed points. One might
even argue that it is this structure which ultimately deter-
mines the characteristics of the dynamical motion.

where m =m, +m2, E is the total energy of the system,
and g is the acceleration due to gravity. In terms of these
variables the usual constant-acceleration equations are

v =vo —t

2

u' =uo —2(x' —xo) .

This is equivalent to setting g =1. Furthermore, if we
define the dinmnsionless masses mI =m, /m =1/(r+1)
and mz =m2/m =rl(r+1), the equation expressing
conservation of energy takes the form

—,'m)v) +—,'mqv2 +m)x', +mqx~=1 . (4)

~tw)l„ I I I

(
I I ( (

Throughout the rest of the paper the primes will be omit-
ted and x, U, t, m„and mz will denote these dimension-
less variables.

It is well known that a dynamical system with two de-
grees of freedom can be reduced to the study of a two-
dimensional area-preserving map. A suitable map of this
kind in the present problem is the Poincare section of Uz

plotted against x2 at each instant that the lower ball hits
the floor. For brevity we call this the x& =0 Poincare
map. A slightly different map is the Poincare plot of Uz

against x2 at each instant that the balls collide. This will
be called the ball-ball collision (BBC) map or BBC Poin-
care map.

An example of an x, =0 Poincare map is shown in Fig.
1 for the case r=0.5. The parabolic boundary of this
plot is approached when the upper ball has nearly all the
energy of the system while the lower ball makes many
low bounces against the floor. All the points in Fig. 1

arise from a single trajectory, and it is noteworthy that
they appear to be distributed uniformly inside the para-
bolic boundary. Behavior of this kind is found for almost
any initial conditions, indicating that the motion is er-
godic. This is consistent with Wojtkowski's theorem'

II. PRELIMINARY DETAILS

Because the constant-acceleration equations for a par-
ticle moving in a uniform gravitational field are indepen-
dent of its mass, we have found it convenient to use posi-
tion and velocity instead of the usual canonical variables.
It is also useful to introduce the following dimensionless
variables:

x'=(mg/E)x,
u'=(m/E)'~ u,
t'=(m /E)'~2gt,

I I 1 I I

0 1 2

FIG. 1. x& =0 Poincare section for r=0. 5 calculated using
15 000 points. Initial values: x, =0.28, U „=—1.2, U2, = 1.2.
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that when r (1 there is at least one nonzero Lyapunov
exponent almost everywhere in the phase space.

In Fig. 2 we show the x
&

=0 Poincare section for r =6.
(How this figure was calculated will be described in Sec.
VI.) This plot is fairly typical of the general behavior
found when r & 1. In the central part of the plot one finds
that the points generated by a single trajectory lie on a
continuous closed curve, and the associated behavior of
the system is quasiperiodic. Within the outermost closed
curve is a group of nine islands belonging to a single tra-
jectory, the associated behavior of the system again being
quasiperiodic. Inside the nine islands there are fixed
points constituting a 9-cycle (defined in Sec. III). The be-
havior of the system for this special trajectory is exactly
periodic. Surrounding the outermost closed curve there
is a broad chaotic region, the points of which were gen-
erated by a single trajectory. A prominent feature of this
region is the set of three bumps" ranged along the U2

axis. Finally, within this chaotic region is a set of five
large islands and another set of six smaller islands, two of
which (on the sides of the parabola) are not easily discer-
nible. These features —the central family of closed
curves, the numerous island chains, and the broad chaot-
ic region with several bumps —are common to all the
Poincare plots for r greater than about 3. It is these
features that we wish to explain in mathematical and
physical terms.

Greene' has argued that the structure of a two-
dimensional area-preserving map may be understood in
terms of its fixed points and their stability. Accordingly,
in the following section we examine the fixed points of
the ball-ball collision map.

0

~P-'
0 0.2 0.4 0.6 0.8 1

Xp

FIG. 2. x, =0 Poincare section for r=6, calculated as de-
scribed in Sec. VI.

value of the mass ratio r there exists a simple fixed point
g=(x„v„,v., ) such that during the time that the upper
ball rises to its maximum height and falls back to x„ the
lower ball makes a single collision with the floor and re-
turns to x, . It is not difficult to show using Eq. (4) to-
gether with conservation of momentum in the collision
that, just before the collision,

2r +1
X

3r +1
III. FIXED POINTS

OF THE BALL-BALL COLLISION MAP
2

U&c r
3 +1

' 1/2

(6)

Let g; denote the vector (x„v„,vz, ) immediately be-
fore the ith ball-ball collision. Then if T is the map from
one BBC to the next, we can write

U 2c
2

3r +1

1/2

0;+i='rk,

A fixed point of the map satisfies g= Tj.
In the two-ball system we have found that for every

This leads to a fixed point in the x
&

=0 Poincare section
at x2 =2(r +1)/(3r+1), Vi =0.

For this simple fixed point one can calculate explicitly
the Jacobian matrix J as a function of r. The result is

2U1c —2(r +1)v„
2(r —1)

r +1
J(g) = 2r (2r —I )/Vi, r 4r +1—

(r+1)
2r (r —2)/v „ —2(2r —1) r 2r —3—

16r(3r+1)(1—r)
(r+1) (9)

The eigenvalues of this matrix determine the nature of
the stability of the fixed point. For all values of r there is
one eigenvalue equal to unity while the other two eigen-
values are the roots of the equation

( —4 —1)
(g)

(r +1)
The discriminant of this equation is

which is positive for 0 & r (1 and vanishes at r =0 and 1.
For r in this range the modulus of one of the eigenvalues
is always greater than unity, implying that g is a hyper-
bolic fixed point. This means that a trajectory starting
from initial values close to those given by Eq. (6) will rap-
idly move away from the fixed point of the x& =0 Poin-
care map. One expects to find chaotic trajectories in this
case, as in Fig. 1. For the case r ) 1 the eigenvalues are
complex with unit modulus, implying that g is an elliptic
fixed point. Thus, if the system starts out from initial
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values close to those given by Eq. (6), the subsequent
motion will be quasiperiodic, resulting in points in the
Poincare section lying on regular closed curves. This be-
havior is exactly what is found for the central family of
closed curves in Fig. 2, in the rniddle of which lies the
fixed point of Eq. (6).

In addition to the simple fixed point g there exist, for
suitable values of the mass ratio, fixed points correspond-
ing to m bounces of the lower ball from the floor between
each ball-ball collision. It is not difficult to show that the
corresponding values of x„v„,and v2, are

x, =P [1+2r—(m —1)r ],
U„= r&2P —m, U2, =&2P m,

(10)

where

P =[1+(m +2)r (m ——1)r~]

For m 2, the above expression for x, is positive if
r (1/(m —1), implying that the fixed point correspond-
ing to m bounces of the lower ball exists only if
0(r (1/(m —1). Although we have not found an ex-
pression for the Jacobian at these fixed points, they are
almost certainly hyperbolic.

Apart from the fixed points of the map T, there exist
fixed points of the map T" for integer values of n. If g, is
a fixed point of T", then starting from g, and repeatedly
applying the map T, one generates a sequence of n —1

additional fixed points (2, . . .g„of T" such that

g;+, =Tg, , i=1, . . . n —1

(12)

These points define a periodic orbit of period n, also
called an n-cycle. The set of points [g, j is either stable
(elliptic fixed points) or unstable (hyperbolic fixed points)
since the trajectory which they define has one character
or the other.

An example of a stable periodic orbit of period 9 is
shown in Fig. 2 for the case r =6, generated by the (ap-
proximate) initial values x, =0.2950, U„=—1.9467, and

vz, =1.0067. If one follows the points as they are gen-
erated in the x, =0 Poincare section, one finds that they
move in a clockwise direction around the central fixed
point, requiring two circuits to return to the original
point. Greene' has shown that in a two-dimensional
area-preserving map such as that of Fig. 2, isolated fixed
points may be identified by their rotation number P/Q,
where P is the number of rotations around the central
fixed point when going from a fixed point to its image
though all Q members of the family. According to this
definition, the 9-cycle of Fig. 2 can be identified with the
rotation number 2/9. If any of the initial values is
changed from the above values for x„v„,and v2„ the
nine points become islands such as those shown in Fig. 2,
and the motion of the system changes from periodic to
quasiperiodic.

IV. COLLISION SEQUENCES NEAR x =0

In attempting to explain the structure lying close to the
v2 axis in plots like Fig. 2, we have discovered interesting
families of fixed points which occur for special values of
the mass ratio r. It turns out that these values of r, which
are derived below, lie close to the locations of minima in
the largest Lyapunov exponent calculated as a function of
r for chaotic trajectories (Figs. 8 and 9). This will be dis-
cussed in Sec. VIII.

We consider a situation in which the upper ball has al-
most all the total energy of the system. While it rises to a
maximum height and falls back to the vicinity of the
floor, the lower ball, which has little energy, makes
several low bounces on the floor. When the upper ball in
its downward motion encounters the 1ower ball some-
where near the floor, it initiates a sequence of rapidly
occurring ball-ball and floor-ball collisions which have
the net effect of reversing the velocity of the upper ball.
Under the right conditions the upper ball will emerge
from the collision sequence with nearly all the energy of
the system and the process will continue indefinitely.

To determine the values of r which enable this kind of
periodic or quasiperiodic behavior to occur, consider the
map which takes the velocities (U„uz) just before a BBC
to the velocities (w, , w2) immediately after it. Conserva-
tion of momentum and kinetic energy in the collision
leads to

T

1 P 2T V)

W2 r —1 vz
(13)

If this collision occurs very close to the floor, it will be
followed almost immediately by a collision between the
lower ball and the floor which changes m, to —m&. Ig-
noring the change in the ball velocities caused by the
gravitational acceleration during the short-time interval
between one BBC and the next, we obtain the following
matrix mapping the velocities (v&, uz) from one BBC to
the next:

1
M

r —1 —2r
2 T —1

(14)

Now let us assume that the collision sequence near
x =0 has exactly n BBC's, at the end of which the veloci-
ties of the two balls are equal in magnitude but reversed
in sign from what they were at the start of the collision
sequence. This means that M" has an eigenvalue equal to—1. With the help of energy conservation (and excepting
the case n =1) this implies that M"= I where I is the—
2 X 2 unit matrix. Denoting the two eigenvalues of M by
y+ and y, it follows that y+ = —1. Expressing y+ and

y in terms of r we find

r —1+i2&r =exp(+i/),
(15)

r„=cot (m/2n) . . (16)

P=arctan[2&r /(r —1)] .

Finally, setting exp(+in/) =exp(+in)and solving fo.r r
we obtain,
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fn

1 0.000
2 1.000
3 3.000
4 5.828
5 9.472

n

6 13.93
7 19.20
8 25.27
9 32.16

10 39.86

rn

11 48.37
12 57.70
13 67.83
14 78.77
15 90.52

TABLE I. Values of r„ from Eq. (16).

16 103.09
17 116.46
18 130.65
19 145.64
20 161.45

and x, is small but nonzero going into the first collision.
Then at the end of the collision sequence we will have, to
a good approximation, the same value of x, as at the be-
ginning and u, =0, v~ = [2(1—x, )(r + 1)/r]'r .Now
suppose that during the time interval ~2 between the end
of the collision sequence and the first BBC of the next
collision sequence the lower ball makes exactly m
bounces, each of period ~, . It is not dificult to show that
the condition '72=Pl'T] leads to the following fixed point
(in which v, and vz are the velocities just before the first
collision of the collision sequence):

The numerical values of r„ for n up to 20 are given in
Table I. (Note that solutions of exp(+in/)
=exp[+i(2p —1Hz] corresponding to p =2, 3, . . . are
not of physical interest: instead of giving n collisions
close to the Hoor, the upper ball acquires an upward ve-
locity uz )u, after approximately n/(2p —1) collisions
and the mapping of Eq. (14) no longer applies. ) In view
of (16) it is not surprising that the relation r =cot 8 gives
the correspondence between the mass ratio r of the two-
ball system and the semiangle 8 of the billiard in the sym-
metric wedge studied by Lehtihet and Miller. " This will
be discussed further in Sec. IX.

To sum up, if r is equal to r„and if the state of the sys-
tem is {x„ui,u2} going into the first BBC of the collision
sequence, with ~uz~ large, x, very small, and ~u, ~

& ~u2~,
then the system will emerge from the collision sequence
in the state (x,', —v„—v2). Note that provided it is a
good approximation to take the ball velocities to be con-
stant between one collision and the next during the col-
lision sequence, x,' will be very close to x, in accord with
energy conservation. It is evident that in this special situ-
ation with r equal to r„ there is essentially no loss of in-
formation during the collision sequence; v& and v2 are
simply reversed in sign. We believe this provides a plau-
sible explanation of why the Lyapunov exponent A,

&
cal-

culated for chaotic trajectories as a function of r displays
minima at the values r„given in Table I. This will be dis-
cussed in more detail in Sec. VIII.

V. FAMILIES OF FIXED POINTS
ASSOCIATED WITH VELOCITY REVERSALS

The preceding analysis leads to a description of fami-
lies of fixed points associated with the velocity-reversing
collision sequence for r equal to r„. In what follows we
shall assume that r =r„and that the collision sequence
consisting of n BBC's occurs near x =0 with

~
u i ~

initially
small. While not required by the velocity-reversal argu-
ment, the assuinption that ~u, ~

is small at the beginning
and end of the collision sequence ensures that the next
BBC (initiating the next collision sequence) will occur
near x =0.

As before, let T be the map from one BBC to the next.
It is clear from above that T" maps (x„u i, uz) to a near-
by point (x,', v', , v2 ) in the phase space. Our primary in-
terest is in sets of fixed points of the type defined in Eq.
(12) for the map T"

Consider the fixed point of T" corresponding to the
first BBC of the collision sequence. Suppose that v, =0

r„+1
X

m r„+r„+1
(17)

u=Ou=—
1 ~ 2

2m (r„+1)
m r„+r„+1

where m is an integer large enough to make x, &(1. Be-
cause of the approximation of constant ball velocities be-
tween collisions of the collision sequence, which is in-
volved in the derivation of Eq. (17}, these values do not
locate the fixed points precisely. However, the error will
decrease as m increases.

It will be seen in Sec. VI that Eq. (17) generates island
chains having the fixed points in their interiors. [For the
case r3 =3.00 this is true even for as small a value of m as
m =2, showing that it is not essential to have x, ((1 for
(17) to be meaningful. ] Clearly there is an infinite num-
ber of such fixed points corresponding to the integer
values of m. Furthermore, each of these fixed points
gives rise to a periodic orbit of period n. It may be noted
that, for given n and m, while the upper ball executes one
complete cycle (a complete up and down motion), the
lower ball executes m +n —1 complete cycles. If angle
variables are introduced to describe these two oscillatory
motions, one can think of the motion occurring on a
torus with winding number a(n, m ) =m +n —l.

It is interesting to consider the stability of the fixed
points specified by Eq. (17). For given n and m, Eq. (17)
gives the approximate location of a fixed point of T". It
is easy to show from the equations of motion that a small
departure 5u, from u, =0 induces changes in x, and u2
going as 5u i. Similarly, the change in r, (defined above)
is of order 5u i. Hence, to first order in 5u i, there is no
change in v, , x„or v2. If one uses this special feature of
{17) and the velocity-reversing property of the collision
sequence near x =0, and if one also uses the fact that the
determinant of the Jacobian is unity, one can show that
one of the eigenvalues of the Jacobian at the fixed point
(17) of T" is —1 while the product of the other two is—l. But since one eigenvalue must be unity (correspond-
ing to the zero-valued Lyapunov exponent along the tra-
jectory of the n fixed points), it follows that the eigenval-
ues of the Jacobian at the fixed point (17) of T" are 1, —1,

Because the velocity-reversal property is only ap-
proximately satisfied, these values are not exact for finite
n and m. However, they will be approached in the limit
as m~~.

This suggests that the special fixed point of T" located
at
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x, =0, v, =0, uz= —[2(r„+I)/r„]' (18) I P

U 2

2(r„+1)
m r„+1
2m (r„+1)

m m+1

(19)

Note that since x, =0 throughout the collision sequence,
there is no approximation involved in arriving at this re-
sult. Here too there is an infinite number of fixed points
corresponding to integral values of m. The points lie
along the U2 axis of both the BBC Poincare map and the
x, =0 Poincare map for r =r„. It is interesting to note
that in the limit as m ~~, they approach the same spe-
cial fixed point of T" as that approached by the first fami-
ly, namely the parabolic fixed point of Eq. (18).

is a parabolic fixed point when viewed as a two-
dimensional map of the surface of section into itself.
Since any neighborhood of this point contains an infinite
number of fixed points whose approximate locations are
given by (17), it is not isolated and therefore its stability
cannot be examined by linear stability analysis. The
analogous fixed point in Lehtihet and Miller's problem"
corresponds to the billiard dropping vertically right into
the center of the wedge.

A second family of fixed points of T" arises in the fol-
lowing way. Suppose the first BBC of the collision se-
quence occurs at x, =0 with ~u, ~

small and v2 large and
negative going into the collision. One can then imagine
the map M of Eq. (14) being repeated n times in an
infinitesimal time interval, after which the system
emerges in the state (x„—v„—uz). Now if during the
upper ball's rise and fall in time ~2 the lower ball makes
exactly m rises and falls, each of period w&, the condition
r2=mri leads to the following fixed point (in which vi
and U2 are the velocities just before the first collision of
the collision sequence):

x, =0,

0

I I I I I I I I I I-

0 0.5 1

Xg

FIG. 3. x& =0 Poincare map for r =r3=3.000, calculated as
described in Sec. VI.

tion. Among these curves, the innermost curve of Fig. 4
consists of 23 islands, which failed to connect even when
the trajectory had 10000 points. In this case the initial
values happened to generate an island chain of a kind
known to be associated with the larger islands in the
KAM theory. Other island chains of this nature will be
described shortly.

Outside the largest regular curve in Figs. 3 and 4 lies a
chaotic region generated by setting m =1 in Eq. (19).
(For computational reasons x, was chosen to be 0.0001
and u„adjusted to conserve energy. ) We shall call this
the m =1 manifold. Setting m =2 and m =3 in Eq. (19)
gives two additional chaotic regions, each of which con-
sists of thin crescent-shaped outlines extending all the
way to the U2 axis, plus thin parabola-shaped regions
around the outside, the m =3 region lying beyond the
rn =2 region. It is clear that the fixed points of Eq. (19)

VI. STRUCTURE OF THE POINCARE MAPS

Having located certain families of fixed points which
exist when the mass ratio is equal to one of the r„values,
we are in a good position to understand the x, =0 Poin-
care maps for r =r„. Later in this section we shall de-
scribe how the structure changes when r moves away
from one of the r„values.

Figures 3 and 4 are the x, =0 Poincare maps for
r3 =3.000 and r4=5. 828. These were constructed in the
following way. In each case the simple stable fixed point
of Eq. (6) yields a fixed point on the x2 axis, a little to the
right of center. Surrounding this point are several regu-
lar curves which gradually change from approximately
elliptical to a more and more distorted shape. Each of
these curves was generated by 1000-4000 points using
the following sets of initial values: u „set equal to U&, of
Eq. (6); x, changed in increments of 0.1 from the value x,
given by Eq. (6); uz, determined from energy conserva-

I I I I I I I I I I I I I I I I I I I I I I

0 0.2 0.4 0.6 Or8 1

X2

FIG. 4. x& =0 Poincare map for r =r4=5. 828, calculated as
described in Sec. VI.
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are unstable. It is also to be noted that the chaotic re-
gions are not connected to each other.

Within the m =2 and 3 unstable manifolds lie island
chains which were generated by setting m =2 and 3 in
Eq. (17). These initial values gave islands rather than
chains of fixed points because of the approximation of
constant ball velocities between collisions of the n BBC
sequence near x =0, which underlies Eq. (17). The actual
fixed points lie inside these islands and are clearly stable
fixed points. It can be seen in Fig. 3 that for m =2 there
are four islands, while for m =3 there are five islands ly-

ing outside the four-island chain. A similar situation ap-
pears in Fig. 4: m =2 gives five islands while m =3 gives
six islands lying outside the five-island chain.

The pattern of alternating regular and chaotic regions
continues to be generated by assigning successively
higher values to m in Eqs. (17) and (19). Figure 5 shows
an enlargement of the region near x2 =0, U2

= 1.1 of Fig.
4 obtained by setting m =2, 3, . . . , 10. This beautiful in-

terweaving of regular (stable) and chaotic (unstable) re-
gions is similar to the behavior found in other nonlinear
systems with two degrees of freedom. '

It remains to mention various island chains having no
connection with Eqs. (17) and (19). An example is the
chain of 13 islands in Fig. 3 lying between the m =1 un-
stable manifold and the largest regular curve. Another
example is the chain of nine islands in Fig. 4 lying be-
tween the two largest regular curves. These are represen-
tative of many island chains that we have found by trial
and error. In accordance with the KAM picture, we ex-
pect there are unstable (hyperbolic) fixed points between
neighboring islands of each chain.

Close to the chaotic region generated by setting m =1
in Eq. (19) there are a number of related island chains
which we now briefly describe. These are conveniently
identified by their rotation numbers (Sec. III). For r = r3
we have found island chains outside the largest regular
curve but not embedded in the chaotic region with P/Q
equal to 4/13, 9/29, 14/45, 19/61, 24/77, and 29/93.

1.2

Note that in each case the numerator increases by 5 while
the denominator increases by 16. This does not continue
indefinitely since we have found the 5/16 resonance lying
embedded in the chaotic region. Thus the motion be-
comes unstable at a rotation number lying between
29/93=0. 3118 and 5/16=0. 3125. Similarly, for r =r~
we have found interior island chains with P/Q equal to
2/9, 5/22, and 8/35. Here the numerator increases by 3
and the denominator by 13 in each case. However, we
have also found the 3/13 island chain lying embedded in
the chaotic region. Therefore the first unstable rotation
number is somewhere between 8/35 =0.2286 and
3/13=0. 2308. Note that for both r =r3 and r~ the first
unstable rotation number is close to 1/n, the rotation
number of the m = 1 fixed point cycle given approximate-
ly by Eq. (19). It appears to be a general result that the
first trajectory to become unstable on moving outward
from the stable region lies very close to the m =1 unsta-
ble manifold.

Although we do not have a systematic way of generat-
ing the various island chains described in the preceding
paragraph, we do know how to generate r =r„Poincare
maps such as Figs. 3 and 4. How do the plots change
when r moves away from r„'? Some indication of what
happens may be obtained by comparing Fig. 4 for
r =r4=5. 828 with Fig. 2 calculated for r =6.000. Both
figures used almost exactly the same sets of initial values.
[The simple fixed point of Eq. (6) is at slightly different
positions in the two figures. ] The most striking difference
is the fact that the entire chaotic region of Fig. 2 was gen-
erated by a single trajectory of 12000 points; the many
isolated chaotic regions of Fig. 4 have merged into a sin-
gle unstable manifold. Another noteworthy feature is the
appearance in Fig. 2 of four small "bumps" between the
three main bumps of the m =1 unstable manifold of Fig.
4. These are probably associated with n =5 BBC se-
quences which become possible once r is greater than r4.
If r were increased beyond 6.000, these latter bumps
would grow in size while the set of n =4 bumps would di-
minish. It is remarkable that so much of the structure of
the Poincare maps is connected in some way with the
velocity-reversing collision sequences.

VII. MOTION IN THE LIMIT OF LARGE r

C I'

0 0.02 0.04 0.06 0.08 0. 1

X2

FIG. 5. Enlargement of the part of Fig. 4 near x2=0,
Uz = 1.1. The cluster of six islands is visible in both figures.

As the mass ratio r becomes large one might expect in-
tuitively that the motion of the heavy ball would become
like that of a single bouncing ball making elastic col-
lisions with the floor. In other words, the very light
lower ball might be expected to have a scarcely discerni-
ble effect on the upper ball's motion. This expectation is
borne out by the calculations we have performed. How-
ever, instead of the upper ball making a single elastic col-
lision with the floor, its velocity is reversed by means of
numerous rapid collisions with the lower ball, which is
trapped between the upper ball and the floor.

In Sec. IV we showed that for particular values r„of
the mass ratio, a rapid sequence of collisions involving n
BBC's near x =0 has the effect of reversing the velocities
of both balls. This mechanism appears to continue to
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I I I tions are made (with less and less justification at each

step) it is not diilicult to show that succeeding BBC's
occur at x, /5, x, /7, and so on. In the same approxima-
tion scheme the positions of the points generated on the
xi =0 Poincare inap turn out to occur at x, /2, x, /4,
x, /6, and so on. Thus in the middle of the collision se-

quence the upper ball reaches its minimum position of
x2'"=x, /2(n/2)=x, ln Substituting for n from Eq.
(21) and setting x, = 1 (an upper bound), we obtain

min
&

—1/22—
xp

VT

(22)

0 0.2 0.4 0.6 O. B 1

Xp

FIG. 6. x l
=0 Poincare map for r = 100.

operate in approximately the same way even when r is ap-
preciably different from any of the r„values.

Figure 6 shows the x
&

=0 Poincare section calculated
for r =100. A prominent feature of this plot is the para-
bolic boundary which can be calculated by assuming all
the energy of the system resides in the upper ball. From
energy conservation one finds

r+1
u2 =2 2x2 (20)

which accurately describes the points on the outer
boundary of the parabolic curve of the figure. The part
of the figure for which x2 is less than about 0.15 comes
from the time interval during which the upper ball rev-
erses its direction. There are 15 small peaks in this re-
gion, including the stretched-out peaks along the sides of
the parabola. Now from Table I it can be seen that
r =100 lies between r» =90.52 and r,6=103.09. Since
when r =r„ there are n —1 peaks in the x, =0 Poincare
section, it appears that the 15 peaks of the chaotic trajec-
tory of Fig. 6 arise from approximately velocity-reversing
collision sequences near x =0 involving 16 BBC's.

When r is large, Eq. (16) allows us to estimate the num-
ber of BBC's that are required to reverse the velocity of
the upper ball. For large n we find,

(21)

When r =100 this yields n =15.7, implying 16—1=15
peaks, as found in Fig. 6. For r =1000 it gives n =49.7,
which predicts 50—1=49 peaks, in accord with the 49
peaks found on a plot similar to Fig. 6 for this case.

Equation (21) can be used to estimate, as a function of
r, the width of the chaotic region bordering on the u2

axis. Suppose an n BBC sequence begins at x„which we
assume to be small, and let us further assume that just be-
fore the first BBC v, =0 while ~u2 ~

is large. After the first
BBC, ~u

& ~
=2~ v2 ~

while
~ v2 ~

is hardly changed by the col-
lision. [See Eq. (13) for large r.]j In this approximation
the next BBC occurs at x, /3. If the same approxima-

A comparison with Fig. 2 for r =6 shows that (22)
gives a good estimate of the width of the chaotic region
bordering the v2 axis in this case. This suggests that the
proportionality constant in Eq. (22) is about right, despite
the unreliable way in which it was obtained. The in-
teresting part of Eq. (22), however, is its dependence on
r ' . For r = 100 this predicts the width of the chaotic
region along the v2 axis to be 0.064, in very good agree-
ment with the calculated results of Fig. 6.

It is also possible to estimate the thickness of the para-
bola in the vicinity of v2 =0. It is easy to show that if the
upper ball has all the energy in the system, it rises to a
maximum height x2'" =1+1/r. The inner boundary of
the chaotic parabola may be estimated by calculating the
maximum height to which the upper ball rises while exe-
cuting regular or stable motion. We have calculated this
to be unity with an error of order r . Thus
xz'" =1+0(r i~2). Hence the spread in the points lying
on the parabola at v2=0 is b,xz=1/r+O(r ~ ). This
estimate is in excellent agreement with the calculation of
Fig. 6 for r = 100.

From the preceding arguments, the area of the chaotic
region of the x

&

=0 Poincare map is dominated at large r
by the bumpy strip bordering the v2 axis, the area of
which is approxitnately 2&2x2m" --(4V2/m )r ' . Since
the area enclosed by the parabola of Eq. (20) (in the limit
of large r) is 4V2/3, we estimate that the fraction of the
accessible area of the Poincare map occupied by the
chaotic region is close to I /&r.

In the limit as r ~ ~, the chaotic region is predicted to
disappear completely. This suggests that the limit of
infinite r is an integrable case for the two-ball system.
The corresponding situation for the billiard in the sym-
metric wedge is the limit 8~0. Lehtihet and Miller" ar-
gued that the force acting on the billiard becomes purely
radial in this limit and consequently the square of the an-
gular momentum about the vertex is conserved. This ad-
ditional conserved quantity makes the limit 0~0 an in-
tegrable case. Using the canonical transformation' relat-
ing the two systems, we have determined that the corre-
sponding conserved quantity in the two-ball system is
x2(v~ —v, )

2 2

There is another more physical way of obtaining this
result. Except near the beginning and end of the collision
sequence one has u, &&u2, and in this regime the max-
imum height of the lower ball is just x2, the position of
the upper ball, which changes slowly. According to the
Hamilton-Jacobi theory, the action integral for the lower
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lower ball, J, =2m, v, ~x2, is conserved. Thus when

u& »u&, we have that u&x& is conserved, in agreement
with the result of the preceding paragraph in the same re-
gime. It may be noted that a similar argument involving
the constancy of the action integral for the horizontal
motion of the billiard in the symmetric wedge (in the re-
gime u, O « u&, where u, and u& are the vertical and hor-
izontal velocity components of the billiard) leads immedi-
ately to the magnitude of the angular momentum about
the vertex being constant.

VIII. LYAPUNOV EXPONENTS

The method described in the Appendix enables one to
calculate the Lyapunov exponents for any trajectory.
The results may be expressed either in the form "per unit
time" as in Eq. (A5) or "per collision" as in Eq. (A6).
Since in the chaotic regime it is the collisions which cause
neighboring trajectories to diverge, one might guess that
the X~'s (per collision) have greater physical significance
than the A, 's (per unit time). This has been confirmed by
our calculations. We have also found that when A, , is
plotted as a function of the mass ratio, the resulting curve
is smoother if Xi is taken per collision of either type rath-
er than, say, per ball-ball collision. This perhaps reflects
the fact that a nonlinear jolt occurs at every collision.

Because of the property expressed by Eq. (A7) it is
sufficient to give results for A, , only. Figure 7 shows A, ,
calculated at 100 different values of r between 0 and 1.
The solid curve results from following a trajectory until
lnyi exceeded 100 (or until the number of ball-ball col-
lisions exceeded 250), repeating this process 50 times
while continuing along the same trajectory and then
averaging the results. The error estimated from the stan-
dard deviation of these 50 calculated values is about 1%.

Also shown in Fig. 7 as the dashed curve is X,(g ) calcu-
lated for the fixed point g of Eq. (6). It was obtained by
simply taking the natural logarithm of the modulus of the

0.4

0,3

0. 1

p
0 0.2 0.4 0.6 0 8 1

FIG. 7. The largest Lyapunov exponent A, I calculated at 100
values of r. Solid curve: calculated for chaotic trajectories by
the method of the Appendix. Dashed curve: calculated at the
fixed point g by taking the natural logarithm of the largest ei-
genvalue of the matrix J(g) of Eq. (7).

eigenvalue of the matrix J(g) of Eq. (7) having the largest
absolute value. (At a fixed point of the BBC Poincare
map, the time displacement matrix H of the Appendix is
the same as the Jacobian matrix at the fixed point. ) Al-
though this curve comes from one very special periodic
trajectory, it has the same shape as the solid curve and is
in fairly good agreement with regard to the magnitude.
Furthermore, using the fact that for the trajectory at g
there is one Hoor-ball collision for every ball-ball collision
and that A. , is defined as per collision of either type, it is
not hard to show from Eq. (8) that X,(g) =r' for small
r, and that Xi(g) = —,'(1 r—)'~ for r just less than unity. It
is interesting that in addition to the square-root behavior,
the numerical results in Fig. 7 show the asymmetry at
r =0 and 1 due to the factor of —,'.

The corresponding behavior for the billiard in the sym-
metric wedge studied by Lehtihet and Miller and by Mill-
er and Ravishankar" may be obtained from [see Eq. (16)]

r =cot 0, (23)

which relates the mass ratio r of the two balls to the semi-
angle 8 of the wedge. This relation follows from
Wojtkowski's canonical transformation' relating the
two-ball system of the present paper to the billiard in the
symmetric wedge. Since r =0 corresponds to 8=m. /2
and cot(n /2 —g) =r1 for small g, it follows from our re-
sults that Xi(g) =g for 8=m /2 —g. Likewise, since r =1
corresponds to 8=n /4 and cot(n. /4+ g }= 1 —2' for
small q, our result for r just less than unity becomes
A, i(g)= —,'(4il)' =r1' . These exponents of 1 and 1/2 are
precisely those found by Miller and Ravishankar" from
both numerical studies and from a careful study of suit-
ably averaged Jacobian matrices. Studies of similar two-
dimensional billiard systems by Benettin' showed that as
a parameter e measuring the departure from the inte-
grable case tends to zero, the largest Lyapunov exponent
varies as c', a result which has been proved rigorously
for a particular case by Wojtkowski. ' In the light of the.
above results it would appear that an appropriate choice
for s in the billiard problem of Ref. 11 is ~cot 8—cot 8; ~

rather than ~8 —8; ~, where 8; is either n /2 or n /4.
In Fig. 8 we show the results for A,

&
calculated for

chaotic trajectories at 80 values of r between 1 and 5.
This has the interesting feature that X, appears to become
small but nonzero near the point r3=3.00. Figure 9
shows the results for A,

&
calculated at 190 values in the

range 5 & r & 100. The estimated numerical error at each
point is approximately 5%. Here one finds minima close
to the values r4=5. 8, r5=9.5, r6=13.9, r7 =19.2,
rs =25.3, r9=32.2, rio=39. 9, and so on. (See Table I.)
We believe these minima in A,

&
result from the fact that

the chaotic regions visible in Figs. 3—5 near the uz axis
are not connected to each other. Consequently, any
given chaotic trajectory is confined to a relatively small
part of the phase space, and the exponential separation of
initially close trajectories is thereby highly constrained.

There is another rather different way of explaining the
minima at the r„values. It was shown in Sec. IV that for
r = r„ the velocity-reversing collision sequences occurring
near x =0 have the effect of preserving information about
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0.2

0.1

sure p, (x } in the chaotic region is taken over the constant
energy manifold I . Since both A(x) &0 and p(x) &0 in
the chaotic region, a decrease in the K entropy at r = r„
implies a decrease in either A(x) or p(x) or both. This
provides a plausible explanation of the results shown in
Figs. 8 and 9.

IX. CONCLUDING REMARKS

0.05

FIG. 8. The largest Lyapunov exponent k& calculated at 80
values of r between 1 and 5 by the method described in the Ap-
pendix.

the system. It is likely that for long chaotic trajectories,
such collision sequences will occur much more frequently
when r =r„ than when r is not close to one of the r„
values. Thus we expect the Kolmogorov entropy, which
is a measure of how rapidly information about the system
is lost, to decrease when r approaches one of the r„
values. The theorem of Pesin' relates the K entropy (or
metric entropy) to the invariant measure of the flow and
the sum of the positive Lyapunov exponents. Since for a
Hamiltonian flow with two degrees of freedom there is at
most one positive Lyapunov exponent, under suitable
conditions one can write the metric entropy of the flow
as22

h„=f A,(x)d)u(x) . (24)

Here A, (x) is the positive Lyapunov exponent (written as
a function of the trajectory's initial position in phase
space), and the integral with respect to the invariant mea-

0.1

0.05 ',—

0
20 40 60 80 100

FIG. 9. The largest Lyapunov exponent A, , calculated at 190
va1ues of r between 5 and 100 by the method described in the
Appendix.

The two-ball system with discontinuities due to col-
lisions exhibits complex dynamical behavior yet is simple
enough that a great deal may be understood in physical
terms. We have found that a central role is played by the
velocity-reversing collision sequences occurring near
x =0. While these are most sharply defined for particu-
lar values r„of the mass ratio, they seem to occur, at
least intermittently, for other values of r. The n BBC se-
quences near x =0 led to identifying families of stable
and unstable fixed points which, together with the central
elliptic fixed point and its invariant curves, largely deter-
mine the structure of the Poincare maps for r greater
than about 3. The infinite families of fixed points that we
have identified have a common limit which we believe to
be a parabolic fixed point.

It was mentioned in the Introduction that
Wojtkowski' has shown that the two-ball system of the
present paper is related by a canonical transformation to
the bilhard in a symmetric wedge studied by Lehtihet and
Miller. " The simple relation (23) gives the correspon-
dence between the mass ratio r in the two-ball system and
the semiangle 8 of the wedge. When 8&n./4, Lehtihet
and Miller found that "the motion is completely chaotic
and suggests E-system behavior, " just as we have found
in the two-ball system for r &1. For the special case
8= m /4 the motion of the billiard separates into two in-
dependent falling motions. This corresponds in our prob-
lem to the masses of the balls being equal (r = I}.One
can then regard the balls as passing through each other
on collisions, giving essentially two independent motions.
When 8(m /4, Lehtihet and Miller found coexisting
quasiperiodic and chaotic trajectories and the same kind
of complex dynamical structure that we have found in
the two-ball system for r ) 1.

When the wedge semiangle is equal to one of the values
8„=m /(2n) for n =3,4, . . . , Lehtihet and Miller, and
Matulich and Miller" found that their Poincare sections
exhibited distinctive geometrical features. For the case
8=~/6 they found their Poincare section divided into
infinitely many chaotic regions separated from each other
by stable regions, instead of there being a single connect-
ed region of "global" chaos. Since 0=m/6 corresponds
to r =r3 =3.00 in the two-ball system, it is not surprising
that we have found similar behavior in our Poincare map
for this case (Fig. 3). A similar situation probably pre-
vails at each value of r„and the corresponding angles 0„
for the wedge semiangle (for n =3,4, . . . ). Furthermore,
as soon as one moves away from one of the r„or 0„
values, it appears that in both systems the previously iso-
lated chaotic regions merge together to form a single
chaotic region. Judging from Figs. 2 and 4, this transi-
tion to global chaos appears to happen as soon as r dift'ers
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from r„, although if the departure is very small it may
take a long time for the trajectory to move from one pre-
viously isolated chaotic region to another.

We have presented an argument in Sec. VII showing
that the measure of the chaotic region decreases as r
as r increases. This suggests that the limit of infinite r
(corresponding to the lower ball having zero mass) is an
integrable case. Thus if the KAM theorem regarding the
destruction of invariant tori remains valid for systems
with discontinuities, it may be applicable for suitably
large but finite values of r.

In contrast to this, Lehtihet and Miller argue that
8=n/4, w. hich corresponds to the two balls having equal
masses, is an integrable case. To support their view they
state that if 8 is decreased below m/4, the measure of the
chaotic regions gradually increases, and that "except for
the presence of a small amount of global chaos, this be-
havior is similar to the perturbation of smooth systems
for which the KAM theorem applies. " We have
confirmed that for r =1.05 the x, =0 Poincare map con-
sists of a large number of island chains embedded in a
sparse sea of global chaos. Thus, despite its peculiar na-
ture, it may well be an integrable case to which the KAM
theorem is relevant for r ) 1. However, as Lehtihet and
Miller have noted, when 8 is increased above m l4 (or r is
decreased below unity), the motion abruptly changes
from being integrable to being completely ergodic. This
sudden change of behavior seems to rule out the possibili-
ty of applying the KAM theorem for r & 1.
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5(tf ) =H5(t0) . (Al)

H(tf tQ)=H(tf, t; )H(t, tQ) (A2)

The method of calculating the Lyapunov exponents
from H has been clearly described by Lorenz. A tiny
sphere of departures from the initial point of the refer-
ence trajectory at time t p is given by

5 ( t 0) 5(t 0)
= e (A3)

From Eq. (A 1) this is carried into an ellipsoid at time tf
given by

(A4)

The lengths of the semiaxes of the ellipsoid are
y, c., y2c, y, c., where y, , y2, y3 are called the singular
values of the matrix H. They are simply the positive
square roots of the eigenvalues of HH or H H, and by
convention are arranged so that y& y2~y3. The key
point is that while H is not a symmetric matrix, the prod-
uct matrix HH or H H is symmetric and therefore has
real eigenvalues, which, in fact, always turn out to be
positive. Furthermore, the directions of the principal
axes of the ellipsoid of Eq. (A4) are given by the eigenvec-
tors of HH . Finally, the Lyapunov exponents are ob-
tained by taking the limits

As Lorenz has indicated, an easy way to calculate the
matrix H numerically is to choose 5(t0) to be successively
the column vectors (bx„0,0), (O, b, u&„0), and
(0,0, b, uz, ), where T denotes the transpose. One can
then subtract the numerical solution for the reference tra-
jectory from the perturbed trajectory in each case, divide
by the initial displacement and thus obtain the corre-
sponding column of H. The matrix H has the property '

that for any intermediate time t; between to and tf,

APPENDIX:
CALCULATION OF THE LYAPUNOV EXPONENTS

lny
11m

~ tf —tp
(A5)

assuming that the limits exist. Strictly speaking, the
Lyapunov exponents pertain to a single trajectory start-
ing from an initial point at tp.

For reasons discussed in Sec. VIII we have found it
useful to introduce a different set of Lyapunov exponents,
defined per collision instead of per unit time:

In this appendix the method used to calculate the spec-
trum of Lyapunov exponents associated with a given tra-
jectory is described. Our method is based on the work of
Lorenz2o and Greene and Kim. '

Consider a trajectory of the system between times tp
and tf. Normally one would think of the trajectory as
the path x, (t), u, (t),x2(t), u2(t) describing the time evolu-
tion of the system on the hypersurface of constant E.
However, we have found it convenient to assume that the
trajectory starts and ends with a ball-ball collision and to
think of the motion as a sequence of mappings from one
collision to the next. This allows us to choose the three
independent variables to be x„v„,and v2„where x, is
the position of the colliding balls and v&, and vz, are the
velocities of the balls immediately after the collision.

One now introduces a small departure 5(t0) from the
reference trajectory at time to and calculates the resulting
trajectory from tp to tf. This trajectory ends up dis-
placed from the reference trajectory by the vector 6(tf ).
The time displacement matrix H(tf, ta) is then defined by

(A6)

Here X is the total number of collisions occurring be-
tween tD and tf (not including the collision at time ta),
and the y' ' are the singular values of the matrix
H(tf, t ).

The numerical problem of approximating the limits in
Eqs. (A5) and (A6) is not at all straightforward. Under
conditions such that the system exhibits chaotic behav-
ior, the magnitude of the small departure 5(t) from the
reference trajectory grows exponentially and soon be-
comes comparable with a typical dimension L of the
volume of phase space in which the motion occurs. One
way of proceeding would be to choose tf in Eq. (Al) to be
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FIG. 10. Lyapunov exponent calculation for a chaotic trajec-
tory for r=0.99. The natural logarithms of the three singular
values are plotted against the total number of collisions n. The
Lyapunov exponents are the slopes of the best-Stting straight
lines.

FIG. 11. Lyapunov exponent calculation for a quasiperiodic
trajectory, the six-island chain of Fig. 2. The largest singular
value y& is plotted against the total number of collisions n. The
fact that y~ grows linearly with n implies that the largest
Lyapunov exponent is zero.

X2=0 (A7)

is expected for any Hamiltonian system with two degrees
of freedom on the basis of time reversal symmetry. We
have found A. , &0, F2=0, and k3= —A, , for all chaotic

the time of the last collision for which ~5(tf )
~

is less than,
say, 0.001L. One would then find the singular values of
H(rf ro ) and hence calculate estimates of A, and X, from
Eqs. (AS) and (A6), disregarding the limits. Good esti-
mates for the A, . and A, would result from repeating this
procedure many times over a long trajectory and averag-
ing the results obtained.

We have found that a better approach is to make use of
the property of the H matrix expressed by Eq. (A2). The
matrix H(t„,t„,) carrying the tiny displacement 5(t„,)

to the still tiny displacement 5(t„) is calculated by the
method described earlier. Equation (A2) is then used to
calculate H(t„, to) froin H(t„„to). The singular values

y,
'"' of H(t„, to) are calculated and the values of lny,'"' are

stored. Apart from questions of numerical accuracy (to
be discussed below), there is no restriction on how large
the singular values y'"' may become. Carrying out this
procedure for, say, 100 ball-ball collisions, we then per-
form a linear regression analysis on the set of values
in@'"', n =1, . . . , 100, plotted against either t„—to or the
collision number n. We claim that the calculated value of
the slope is a good estimate of A.J or of X~. Repeating this
entire procedure many times over a long trajectory and
averaging the results leads to a reliable estimate for A, or
kj0

A plot of the three different lny'. "' as a function of n is
shown in Fig. 10 for a typical chaotic trajectory. The
most striking feature of this figure is the fact that the
slopes of the upper and lower curves (corresponding to X,
and X3) are very nearly equal and opposite while the slope
of the middle curve (corresponding to X2) is close to zero.
In fact the property

trajectories studied. A similar result was demonstrated
by Benettin, Galgani, and Strelcyn for the Henon-
Heiles system. It should be added that Fig. 10 also shows
the advantage of the linear regression analysis over sirn-

ply taking lny" '/100 to estimate X;. The first few col-
lisions have the effect of introducing a nonzero intercept
for the best-fitting straight line, and this affects the nu-
merical value of the slope calculated from ink Ii '/100 or
ink 3' '/100, as is evident from the diagram.

Figure 11 shows the results for y',"' as a function of n

calculated for a trajectory showing quasiperiodic rather
than chaotic behavior. (In fact the initial point for Fig.
11 lies on an island similar to those found in Fig. 2.)
Despite the spiky appearance of this graph, it is evident
that on average y', "' increases linearly with n. Thus it
does not grow or decay exponentially and the corre-
sponding Lyapunov exponent X, is zero. From Eq. (A7)
it follows that all three Lyapunov exponents are zero, a
result which we have found to hold whenever the system
exhibits quasiperiodic behavior. A similar result was
found for quasiperiodic trajectories of the Henon-Heiles
system in Ref. 22.

Finally, we add a few comments about the numerical
accuracy of the calculations. All calculations were per-
formed in double precision arithmetic with an accuracy
of about 16 digits. The main effect of this limited pre-
cision is that the smallest singular value y3 becomes nu-
merically unreliable when the ratio y, /y, is of the order
of 10' . This was checked by repeating a representative
calculation in quadruple precision arithmetic, with the
result that y3 became unreliable when y&/y3-10 '. To
ensure that the correlation coefficient associated with the
linear regression analysis is better than about 0.98, it was
found to be necessary to allow the singular value y, to
grow until lny, —50. Since this was far beyond the point
at which in@3 lost its numerical reliability, we then sim-

ply assumed that A.3= —A,
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