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In this paper we discuss interaction of intense, subpicosecond laser pulses with plasmas. We pro-
pose a self-consistent analytical model of the anomalous and normal skin effects in plasmas with
steplike density profile. The heat transport is described by classical Spitzer conductivity with new
boundary conditions accounting for laser absorption in the thin skin layer. We obtain self-similar
solutions for the heat-conduction problem, and the scaling laws for important plasma parameters
are also discussed. Our predictions are consistent with the recent experimental results.

I. INTRODUCTION

In recent years the new technology of high-intensity
subpicosecond lasers has stimulated exciting develop-
ments in physics of laser-matter interactions. These stud-
ies have been motivated by new applications for x-ray
sources of high brightness,"? x-ray lasers,>* and also by
interesting unexplored physics related to behavior of
dense plasmas in super-strong electromagnetic fields.’~’

Plasmas created by intense subpicosecond laser pulses
by irradiation of metal targets have several important
differences from conventional laser plasmas studied, for
example, in the context of laser fusion. Absorption and
electron heating occur within a skin depth, and there is
almost no hydrodynamical expansion during the time of
interaction. Consequently, the electron density is two to
three orders of magnitudes higher and corresponds to
solid density. The typical plasma scale lengths involved
are much smaller than a laser wavelength. We will ana-
lyze processes of absorption and heat conduction in such
plasmas, over a wide range of parameters, trying to estab-
lish a set of scaling laws and self-similar solutions. Our
approach is based on well-known classical physics. Heat
conductivity, for example, is given by a Spitzer-type ex-
pression and corresponds to the upper bound of the possi-
ble heat flux. The interesting question of thermal-
transport inhibition, anisotropy in the heated electron
distribution function, will be discussed in future publica-
tions and compared with the results of a simpler theory
derived here.

We will consider an ideal experimental situation, where
the short laser pulse interacts with a steplike density
profile. Under these conditions, the interaction takes
place in the thin skin layer of an overdense plasma. The
physics of the classical, stationary skin effect has been
studied in great detail for metals and low-intensity elec-
tromagnetic fields.>® However, the subpicosecond laser-
pulse plasma interaction leads to a time-dependent situa-
tion because of the rapid absorption and plasma heating.
The theory of anomalous and normal skin effect will be
discussed in such plasmas, complementing previous
works!'%~!3 on absorption and thermal conduction.

In recent experimental studies®~7 on the physics of sub-
picosecond laser plasmas, intensities on target never ex-
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10'® W/cm? and were achieved by focusing laser pulses of
energies below 1 J. In all of these studies, the measure-
ments and theoretical calculations have shown that the
hydrodynamical evolution of plasmas did not play a ma-
jor role during the main pulse duration, but that the den-
sity scale length depended on the prepulse energy. The
interaction in the thin skin layer took place when the en-
ergy of the prepulse was small, and no plasma was pro-
duced on the surface of a target before the main pulse ar-
rived. The temperatures achieved in these experiments
were of the order of a few hundred electron volts, and the
main absorption mechanism was related to electron-ion
collisions in the skin layer. This is the physical situation
related to normal, collisional skin effect.®®

For higher laser intensities, and therefore higher plas-
ma temperatures, in the range of a few kilo-electron-
volts, the physics of the interaction can be quite different.
It has been shown in Ref. 11 that the mean-free path of
electrons could exceed the skin-layer depth for high-
temperature plasmas, leading to the anomalous skin effect
and collisionless energy absorption. The characteristic
laser parameters correspond to intensities above 10'7
W /cm? and pulse durations of 100 fs. For these fluxes of
electromagnetic radiation, the electric field of the laser
wave is of the order of an atomic electric field and pro-
duces the instantaneous direct ionization of atoms.

Temperatures which can be achieved during rapid
plasma heating and absorption of electromagnetic radia-
tion depend on the heat-transport processes. For pi-
cosecond and longer laser pulses, the main physical pro-
cess regulating plasma temperature is an adiabatic cool-
ing related to plasma expansion into vacuum.’ In the
case of shorter laser pulses, the dominant role is played
by the thermal transport by electrons into dense cold
matter. The role of radiative cooling is negligible in the
energy balance because of the small plasma layer thick-
ness.>!!

In this paper we will discuss a quasilinear approach to
the anomalous and normal skin effects. The self-similar
regimes of the laser heating of overdense plasma will be
analyzed and compared with experimental results. Our
discussion is based on the self-consistent model of energy
absorption by the skin effect and classical, collisional heat
transport into cold plasma. In Sec. II the theoretical
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model of an anomalous skin effect will be discussed.
Analysis of absorption and heat conduction for the
anomalous skin effect will be given in Sec. III. The self-
consistent model of laser plasma interaction for the nor-
mal skin effect will be described in Sec. IV. Section V
gives scaling laws, comparisons with experiments, and a
summary.

II. THEORETICAL MODEL

The complete description of laser energy absorption,
heating, thermal conduction, and plasma expansion is a
complicated problem. In our simple theoretical model,
we neglect all hydrodynamical effects related to ion
motion, and we also assume instantaneous plasma ioniza-
tion. The plasma is modeled as a slab with a sharp
smooth boundary. The density of electrons is assumed to
be constant. The electrons inside the plasma undergo
specular reflection from the boundary. We only consider
the normal incidence of a laser radiation.

First, we propose a kinetic theory for the anomalous
skin effect, based on a quasilinear approximation for the
slowly varying part of the electron distribution function.
This approach explores the separation of scales between
the thickness of the anomalous skin layer and a much
longer electron mean free path, which defines the charac-
teristic gradient of the averaged electron kinetic energy.
Therefore, absorption in the skin layer will be described
as a special kind of boundary condition for the electron
distribution function.!* Later, in Sec. IV, a similar con-
cept will also be introduced for the normal skin effect in
the situation where the skin-layer depth is much shorter
than characteristic scale of the heat wave.

The kinetic equation will be solved in the region of
plasma, where there is no electromagnetic field. The
self-consistency of the model is related to the fact that ab-
sorption, which is described by the boundary condition,
depends on the solution of the kinetic equation outside
the absorption region. This is the important difference
between anomalous and normal, collisional skin effect.®’
In the latter case, the skin depth can be comparable to
the characteristic scale of temperature inhomogeneity
(see Sec. V for more discussion on the applicability con-
ditions and dominant physical processes for given plasma
parameters).

The electron distribution function f(r,v,f) is
represented in the skin layer by two parts: a slowly vary-
ing part on the scale of the laser wave period F(r,v,t)
and a quickly varying part §/"(r,v,t) that is proportional
to the laser electric field. In Sec. II A, we will find the
distribution of electric field and the distribution function
f inside the skin layer following the usual approach of
the linear theory of the anomalous skin effect.>® Later,
the quasilinear equation for F will be derived by our sub-
stituting 8/” into the nonlinear term of kinetic equation
and averaging with respect to laser period. The quasilin-
ear equation can be integrated over the skin depth in or-
der to obtain the boundary condition for the distribution
function outside the absorption region.

A. Linear theory of the anomalous skin effect

Let us consider a plasma occupying half-infinite space
(z>0), with ion density n,=n,/Z, where Z >>1. The
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laser electromagnetic wave, with frequency w, (where the
critical density is mw§/4me?=n,<<n,) propagates in
vacuum (z <0) and interacts at a normal angle of in-
cidence with sharp plasma boundary at z =0. We assume
that an electric field E, of the electromagnetic wave
penetrates plasmas over the skin-layer depth /;, which is
much smaller than the mean-free path for electron-ion
collisions /, ;.

The evolution of electron distribution function
f=F+8/ is described by the following kinetic equa-
tion:

of . 8f e
ot +o; az+m

6+%Wx$)

Of
o =Cl/1,

where the collision operator C is taken in the Landau
form. In Eq. (1), e and m stand for electron charge and
mass, respectively, and the electromagnetic fields are
given by the following expressions:

6(z,t)=RE(z,1) exp( —iwgt) +E,(z,¢) , (2)
Blz,t)=RB(z,t)exp( —iwgt) , (3)

where the amplitudes E,B of electromagnetic radiation
satisfy the Maxwell equations:

¢cVXE=iwyB , 4)
cVXB=4rj . (5)

The displacement current has been neglected in Eq. (5)
due to high density of the plasma ny>>n.. In the
geometry of normal incidence, vectors E,B are in the
(x,y) plane and do not have any component along the z
axis. The ambipolar electric field E, acts along the z axis.
This field is produced in order to maintain electric neu-
trality disturbed by strong electron heat flux into cold
plasma.

Following the familiar theory®® of the anomalous
skin effect, we assume the subsequent form of the
high-frequency electron distribution function:
8/ =REf exp(—iwyt), where §f <<F. Linearizing Eq.
(1), we obtain

. adf _ e . OF

iwdf+u, 32 - E v (6)
We also assume that the plasma heating rate and the col-
lision frequency v,, are much smaller than w, The
Lorentz force term is also neglected in Eq. (6), as we as-
sumed that the anisotropic part of F is small. One can
solve Eq. (6) with the boundary conditions:
5f (v, <0,v,,v,,z— ,1)—0, and with the requirement
of the specular reflection of electrons from the plasma
boundary: §f (v, <0,z=0,t)=8f(—v,,z =0,1).

One can write the solutions to Eq. (6), for electrons
moving to the left and to the right, in the same form us-
ing a formal and even extension of the electric field into
the region of z <O (cf. Refs. 1 and 2). Thus, by formally
taking E(z <0,7)=E(—z,t), we have the following solu-
tion for the high-frequency part of the electron distribu-
tion function:
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where 8/~ corresponds to particles with positive v, (+) and negative v, (—). The slowly varying part of the distribu-
tion function F is approximately constant over the skin-layer depth [ ; therefore, in Eq. (7), we evaluate F at z =0.
Using solutions (7) we can write an expression for the high-frequency current induced in the plane of incidence by the

electromagnetic field:

j=e [dvv,8f=e[ _dvv,(8f*+5f7),

(8)

where v, stands for the velocity vector in (x,y) plane. Substituting Eq. (8) into the Maxwell equations (4) and (5), one
obtains an equation for the electron-field amplitude inside the skin layer:

3’E 41rie2a)ofwdvz
922 mec? Yo v,

In the usual treatment of the anomalous skin effect,®° Eq.
(9) is solved with the assumption that F is known and has
the form of the Maxwellian or Fermi distribution func-
tion. In our case, we do not know F, and later we will
study the equation for the low-frequency distribution
function; however, we can at least assume that the aniso-
tropic part of F is small, and use in Eq. (9) only the iso-
tropic part F.

In order to solve Eq. (9), we assume the following
form of the electric field:

z

I(1)

’

ol
E(z,1)=—=B(z =0,t)X ~=u
¢ |z|

where B(0,¢) is a value of the magnetic field on the
boundary, and u(§) is a dimensionless function satisfying
the following equation derived from Eq. (9):

d’u i [+

= % ’ ’ et R 1

e Trf_wdg u(§)o(E—¢') (10)
where the kernel Q is given by
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where 1 =v, /v, and the characteristic depth /; of the skin
layer is given by
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(12)

In the regime of the plasma parameters characterizing
the anomalous skin effect, the ratio wyl, /v <<1, where v
is of the order of the average electron velocity (v ).
Therefore, in Eq. (11) the main contribution to the in-
tegral with respect to u comes from the small values of pu.
Physically, this means that only electrons moving almost
parallel to the plasma surface can effectively absorb elec-
tromagnetic energy. Calculating the Fourier transform
of Q (11), we obtain

fdva(vp,vz,z=0)f_+:dz’ E(z')exp

|z —z'|

9)

l‘wo

wols

= | 0
where the small correction, ~wgl,/{v), describes the
reactive part of the electric conductivity and does not
have considerable influence on the structure of the elec-
tric field inside the skin layer. The solution of Eq. (10),
with Q given by the leading term of Eq. (13), can be ob-
tained using the Fourier transform method. One should
notice, however, that due to our formal extension of the
electric field for z <0 [cf. Eq. (7)], functions u (£) and
E (z) have discontinuous derivatives at the boundary. In
order to find the values of the derivatives at z =0, we use
the Maxwell equation (4) and express OE/dz in terms of
B(0,?); we find that du /d§|§:0=i. The Fourier trans-
form of the function u (£) reads as

u(q)=(i/m)ilgl'—gH". (14)

By taking the inverse Fourier transform of Eq. (14), we
obtain

_1 re .3 —1
u(g) ‘ITfO dg q(1+ig°)” " cos(qg§) . (15)

Following Ref. 8 we can evaluate integral (15), and we
find that

w(0)y=—1o — L (16)

From the conditions for the parallel components of elec-
tric and magnetic fields on the plasma boundary, we have

|B(0,t)|=2E, ,

17
C()o[s(t) ( )

E(0,t)=2

Equ (0),

where E; stands for the electric field of the incoming ra-
diation in vacuum. Note that since wyl; <<c, the ampli-
tude of the electric field inside the plasma E(0,¢) is much
smaller than the vacuum field E,,

Knowing the electric field in the plasma [(14) and (15)]
and the high-frequency part of the distribution function
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(7), one can calculate the absorption efficiency of the laser
radiation inside the plasma, which yields

-1
(E})
8

=|Eq| 2R |E(0,1) X B*(0,1)]

A=

c

1 * *().
SR [ TdzE*(2)j2)

—_4_ oD (18)
W3 ¢
Thus the solution for the electrodynamical part of the
problem depends on the symmetric part of the electron
distribution function on the plasma boundary. In Sec.
II B, we use the quasilinear approach in order to find F,
and /..

B. Kinetic equation for an electron distribution
function in a quasilinear approximation

Let us begin by noting that the high-frequency part of
the electron distribution function §f (7) is much smaller
than F for the laser electric field satisfying the following
relation:

_ e|E(0)]

vp=———"<<{(v), (19)
maw,

where v is an amplitude of an electron oscillatory veloci-
ty in the laser field. Our theory will be valid in the re-
gime of parameters satisfying condition (19).

In order to derive an equation for the slowly varying
part of the distribution function, we average Eq. (1) over
the period of laser oscillations:

OF [ LOF  ep OF | e ppe®f i (o
m “dv, 2m av

ot %oz »

The last term on the left-hand side of Eq. (20) describes
electron heating inside the skin layer z =/.. From rela-
tion (19) it is evident that the energy gain by electrons in
the skin layer is much smaller than the average kinetic
energy. As the variation of F in the region of skin layer is
small and takes place over a very short distance, we will
describe the whole heating process as a boundary condi-
tion for the evolution of F inside a cold plasma, i.e., for
z 2[;. Neglecting the time derivative, the ambipolar field
term, and the collision operator in Eq. (20) for z </, we
can write the following:

aF:—.E- E*.——‘an .

bz 3z 2m v,

2n

We integrate Eq. (21) over the skin-layer depth, and using
the condition of specular reflection of electrons from the
plasma boundary, we will represent the boundary condi-
tion for F in terms of the discontinuity at z =0:

(F),—o=F(v,>0,v,,z>>1,1)=F(—v,,v,,z>>I,1)

e
2muy,

[ 7dz RE*(2)-20—(8 * +677) .

0 av,
For simplicity, let us assume that the laser light is unpo-
larized or circularly polarized, and that we can assume
symmetric conditions in the (x,y) plane. Taking these as-
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sumptions into account, we can rewrite the boundary
condition in the following form:

2
VE, | wol; wol v 3 ;30 1
(F):=0= c? v uv p? ' Y v
aFo(U,Z =0,t)
Nl ki (22)
v

where p=v,/v=cos>0, vg =e (E3})'"?*/mw, (the
averaged electron velocity in the oscillatory electric field

in vacuum), and the function V describes the angular dis-
tribution of heated electrons:

Vw =2% [ “dsu(@) [ dg'u(g) expliw]g—¢1) .

We can rewrite the expression above for ¥V (w) using Eq.
(15) for the spatial structure of the electric field and
Fourier representation:

4w - iq* 1
R d
T f 4 (

Viw)= = .
0 1-+-iq3)2 wz—q“

The integrand above has a pole at ¢ =w, which corre-
sponds to the resonance interaction between fields and
electrons. We can deform the contour in the vicinity of
the real axis, w-—»w +1i0, and close it along the line con-
structed by rotating the positive real axis by —7/6 and
along an arc for large arguments (cf. Ref. 8). There is no
singularity inside the contour, and we can write V(w) in
the following form:

_ 4w = K K* w2—«?/2
(1+3)P? wh+rk*—wi?

V{w) (23)

T 0

The expression (22) will be applied as the boundary con-
dition for the kinetic equation (20) describing an evolu-
tion of the slowly varying part of the distribution func-
tion. Note that F depends now only on the particle speed
v, the angle O between the velocity vector v and the axis
z, the coordinate z, and the time z. Also, since we have
assumed that Z >>1, we can neglect electron-electron
collisions in Eq. (20), which now can be written in the fol-
lowing form:

OF AF e dF  sinf oF
O o8+ L E o _ sinb oF
ar ToeosO t o Ea jeosba ==
1 9 [. oF
=y, — 9 9 (24
Vel 5in@ 36 lsme 36 24)
where v, ;=27Ze*A/m?vi=vy/v® stands for the

electron-ion collision frequency, and A is the Coulomb
logarithm. The kinetic equation (24) describes the evolu-
tion of the distribution function under the influence of
collisions; however, as a result of rare electron-electron
collisions, only the effect of isotropization of the velocity
distribution function is taken into account in Eq. (24).
The ambipolar electric field E, arises in Eq. (24) in order
to maintain quasineutrality in the presence of an electron
thermal flux into cold plasma. This field is defined by the
condition that the electric current component along the z
axis vanishes, i.e., that
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fwdv v3f] dupF(v,u,z=0,t)=0. (25)
0 -1

The system of equations (24) and (25), together with
boundary condition (22) and the necessity of particle den-
sity conservation,

fwdv 1)2fl duF(v,u,z,t)=const , (26)
0 -1

constitute the main equations in our theory.

It is important to note, that the boundary condition
(22) describes the transfer of electromagnetic energy to
electrons primarily in the direction perpendicular to z,
and results in the energy flux AI,, where A represents
the absorption coefficient (18), and I,=c(E}) /8w
represents the laser energy flux. The boundary condition
(22) does not induce any electric current in plasma; there-
fore, the ambipolar field in the vicinity of the plasma
boundary is zero. The nonzero E, is related to the iso-
tropization of the electron distribution function due to
electron-ion collisions.

III. ABSORPTION AND HEAT CONDUCTION
FOR THE ANOMALOUS SKIN EFFECT

A. Equation for the symmetric part of a distribution function

As an example, we first consider the situation where
the temperature scale length is much longer than the
mean-free path for electron-ion collisions. This some-
what ideal case is nevertheless a good starting point for
the discussion of the heat-conduction problem. Our solu-
tion will establish the upper bound on the heat-
conduction rates.

Following the standard procedure for the solution of
the kinetic equations, we expand the distribution function
F into a series of eigenfunctions of the collision operator
(24). In our case, these are Legendre polynomials P, ().
Substituting

F(v,u,z,t)= 3 F,(v,z,t)P,(u) (27)
n=0

into the kinetic equation (24) and keeping only the first
two Legendre polynomials, we obtain

oF, , OF, N eE, a(szl)_O 08)
ot 3 oaz 3mu2 dv ’

P v OF, eE, OF, -

! 2v,; 9z 2mwv,, Ov @9

In the equation (29) we have dropped OF,/dt¢ as com-
pared with v, ;F,, and we have also neglected terms with
F,. Both of these assumptions are the standard elements
of classical-transport theory and are related to the dom-
inant role played by collisions and to the Eq. (19). This
theory is only valid for the characteristic distances longer
than the mean free path. For the anomalous skin effect,
the transition range within a collisional mean free path of
the skin layer is especially poorly approximated by taking
only zero- and first-order Legendre polynomials in Eq.
(27). Beyond this transition region, however, the local
temperature is a well-defined quantity, and our solution
to the kinetic equation (24), based on only two Legendre

7405

polynomials, will give reasonable approximation to the
thermal-transport problem.

Using Egs. (29) and (25), we can find the explicit form
for the ambipolar electric field:

m o« -19 S
E,(z,n=" ’ J — ’F, .
Az 0= [fo dov’Fo | o [ “dov'F, . (30)

In order to obtain the boundary conditions for F,, we
take the first © moment of Eq. (22):

F,(v,z=0,1)
2 4
_ JEo | ool @ols | 3 | 8F,
c? v 51 v ”au v dv
B o N I
2w dv (v ’
where 3D
1 _
siw=3 [ dup”'V ﬁl ,
(32)
1 u
sz(u)=gfodWV ;l .

Equations (28)-(30) and the boundary condition (31) con-
stitute the complete description of the evolution of the
symmetric part of the distribution function. We can fur-
ther simplify the boundary condition (31) by taking the
asymptotic values of the functions s,(#) and s,(u) for
u =wyl;, /v <<1, which is a proper region of parameters
for the anomalous skin effect. In this limit,
s,~—4V3u <<1 [and the corresponding term in Eq. (31)
may be neglected], the function s, is of order unity:

_mT_
V3
As a result, we obtain the following kinetic equation for

the isotropic part of the slowly varying distribution func-
tion:

silu<<)=sy= (33)

dF, 2 OF, ew OE, OF,
ot  6v,, 9z* 6mv,; 0dz Ov
ek, P
— C_(y3F
3m"’e,,‘U2 aZaU(U 0)
eE? 3 | s9F, (34)
6m?v, v°> v v

This equation should be complemented by the relation
(30) for the ambipolar electric field and by the boundary
condition (31), which can be now written in the following
form

oF, eE,(0,t) O0Fy(v,0,¢)
az 2=0_ mvu aU
) i, [wol, 1P 5 [ 8Fy(v,0,0)
Ve-iSo ¢? v v v v
(35)
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In Sec. III B we will derive from Eq. (34) a simple theory
of heat conduction, based on the assumption about the
existence of the local Maxwellian distribution function.

B. Solution to the thermal-transport problem

Let us propose the electron distribution function in the
form of a local Maxwellian, with the space- and time-
dependent temperature:

3/2
nom

- [27T (z,1)]?"?

2
Fy(v,z,t) exp —-E—;L(UZT) (36)

One should stress that the form (36) of the distribution
function is not a solution to the kinetic equation (34), and
is only used here in order to obtain the approximate be-
havior of the averaged electron kinetic energy as a func-
tion of space and time. Our simple approach will eluci-
date the important role of the new boundary condition
(35) characterizing the anomalous skin effect.

Taking the v* moment of the kinetic equation (34),
with F, given by (36), and using relation (30), we obtain
the following expression for the ambipolar electric field:

5 oT

Eﬁ; F (37)

and the equation for thermal conductivity,

R -
where the thermal flux g is given by
2 i no sn 0T
qg=—32 P WT R (39)

Taking the moment of Eq. (35) with v®, we obtain the
boundary condition for the thermal heat flux:

q(z=0,1)
7/6 2 8/3 1/6
S22 e || |2 T
3 o 070 c cap mc2
=Al,, (40)

where A is the absorption coefficient of Eq. (18), and
w,=(4me’ny/m)'"%.

The problem of thermal conduction defined in Egs.
(38)—(40) is very similar to the usual formulation of the
heat-conduction  problem,'> with one important
difference, however, in the boundary conditions (40),
which is now given in terms of a relation between temper-
ature and heat flux.

We now introduce the dimensionless units of

t=1tyT, V=VUpou ,
z=vptef, T=mv2,0,

to bring Egs. (38)-(40) to normalized forms:
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L A T
85/2%—? (o= 9", 42)
O(§— »0)=0.

Normalizing Eqs. (38) and (39) requires that
v3oto ' = &(m/2)!"2v,. Then vry is determined from Eq.
(40), and hence ¢, as

3
_ 64 |2 V70
the=—0"|=| —
3 |7 Yo
13/4 29/16 v 9/4 3
=32 |2 2 < om| o o
32 59 ,
3 T Vo c o),
3/4 7/16 v 374 (43)
2 Eg Wy
p=c | = 3/8|_C0 Yo
10~ € 3 So
T c @,

One can find a self-similar solution to Egs. (42). By intro-
ducing the new variable n=£/7*/°, and the self-similar
function ©(&,7)=7%2°®d(7), we rewrite Egs. (42) in the
following form:

5 d 5/212_+_ d(b

2 — == 3 =
4 4 am ! am ‘O(I) > (44)
¢7/3%‘37_> qzoz—l’ ®(0)=0.

Equations (42) satisfy the physical condition!® that the to-
tal energy contents of the heat wave, W= f 5°d26(z),

changes in time with the rate given by the energy flux at
the left boundary:

AW _ e e
. —0E=0,). 45)

Relation (45), in terms of the self-similar variables and
Eq. (44), leads to the following expression:

J dnem=39%0). (46)

We solved Eq. (44) numerically for several boundary
values of ®(0), and chose the proper value satisfying con-
dition (46). The shape of the heat wave is shown in Fig.
1. The obtained thermal wave front is similar to the front

$
1.2

1.01
08
0.61
04
02

0

0 02 0.4 0.6 08 10

n
FIG. 1. Self-similar solution to the heat-transport equation

(44) for the anomalous skin effect. Function & is proportional
to dimensional temperature, and n=£/7*/° in the self-similar
variable.
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in the case of the constant heat flux;!> however, because
of the uncommon boundary condition (40), the time
dependence of the temperature and the position of the
heat front edge are different:

T(O,t)=mv%0¢’(0)r6/25 R
(47)
Zf=UT0t07]fT4/5 N
where ®(0)=1.35 and 7,=1.07 are found from the nu-
merical solutions of Eq. (44).

Using the scaling coefficients (43) and the power laws
obtained from the self-similar solution, one can obtain
scaling laws for all of the important plasma parameters
which characterize the efficiency of laser-plasma cou-

pling:

176 2/3 1/6
. 27 @ T(0,1)
33/2 T 15 ch ’
p
1/6 1/6
Lin= |2 ¢ %D (48)
s 7 173273 2 ’
wy @, mc
— 12725
Lo =vrotor' 2%,

where [, ; is a mean-free path for electron-ion collisions.
Our results (47) and (48) display a weak dependence on
the time of the absorption coefficient and the skin-layer
thickness, ~t%%. On the other hand, the electron
mean-free path increases rapidly with time, ~:%*% and
so does the penetration depth of the heat front ~¢%3.

The weak time dependence of the absorption coefficient
A (1) results in an almost constant value of the heat flux
on the boundary. Therefore, our power laws are close to
the classical result'> of the heat wave penetration with a
constant heat flux on the boundary.

The following plasma conditions have to be satisfied
for the solutions (47) and (48) to be valid:

™>>1, (49)
le_,->13 , (50)
ZTe 1/2
t<1, . (51)
m;

Equation (49) corresponds to the validity condition for
the self-similar description of the classical-thermal con-
ductivity, which should be valid for the characteristic
temperature scale length being much longer than electron
mean free path, i.e., z,>>/, ;. The second relation above
[Eq. (50)] describes the region of applicability of the
anomalous skin effect.

Finally, Eq. (51) defines the time period of the interac-
tion, when we can neglect the hydrodynamical effects. It
is an important restriction for our theory, which assumes
a sharp plasma boundary and a homogeneous plasma
density. The ion sound speed in Eq. (51) approximates
the expansion velocity in the isothermal rarefaction wave
model. For longer times, violating Eq. (51), plasma coro-
na will be formed, and part of the absorption process will
take place in the critical region leading to the overall
drop in absorption efficiency. This suggests that the max-
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imum temperature in this model will be achieved for
t*~1./(ZT,/m;)"’*. We will discuss this applicability
condition in more detail in Sec. V.

IV. ABSORPTION AND HEAT CONDUCTION
FOR THE NORMAL SKIN EFFECT

Our theory has been devoted thus far to the description
of an anomalous skin effect. The derived system of equa-
tions is based on the conjecture that the depth of the skin
layer is much smaller than the electron mean-free path.
Therefore, the absorption in the skin layer is modeled as
a special kind of boundary condition for the heat wave
propagation into cold plasma. Note, however, that simi-
lar theoretical concepts can be applied to the description
of the opposite physical situation of the normal skin
effect. When /,; <[, and v, ; > w,, but the characteristic
penetration depth of the heat wave is much deeper than
the skin-layer depth, we can still assume that the absorp-
tion process takes place in an infinitesimally thin region
on the surface of the plasma.

Let us start, as before, from the kinetic equation (1),
with a collision operator in the Landau form. Equation
(6), for the high-frequency part of the distribution func-
tion, will now take the following form:

e . OF _
. E 3y =C[&6f] . (52)
The solution to Eq. (52) reads as

e 9F,

E-
2mwv, ;(v) av

5f=— , (53)
where v, (v)=v,/v? is a collision frequency, and F,
stands for an isotropic part of the distribution function.
Taking F, to be a Maxwellian distribution function, we
can calculate the electric current, j=c¢E, where plasma
dc conductivity is given by

e’n,

o= , (54)
m Veﬂ-

and the effective collision frequency is given in the terms
of the electron thermal velocity, v =(T,/m )12, as
172

T v, (55)

2

1
Veff— _g

By solving the Maxwell equations with the appropriate
boundary conditions®® we obtain an electric-field ampli-
tude in the plasma:

E(z,t)=Eyexp[(i —1)z/1(1)],
(56)
0ol (1)
E,=(1~i)~""—E,

where [ =(c /0, N 2v 5/@g)'/? is the skin depth related to

the normal skin effect. Using the above expressions, we
obtain for the absorption coefficient the following:

wOIs

A=2 (57)
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The temperature distribution and heating rates are given
by the solutions to Eq. (38), for the thermal conduction
and boundary condition, as

q(z=0,t)=q,,,= A (), . (58)

Equation (58) simply expresses the energy balance, where
the flux at z =0 corresponds to the absorbed energy flux.
The difference between the normal skin effect [(38) and
(58)] and the anomalous skin effect [(38) and (40)] follows
from different boundary conditions, in particular, from a
different dependence of the absorption coefficient on tem-
perature.
We now introduce a set of dimensionless variables:

—% ——
t—tOX’ v_wv’ro Py

. (59)
z2=Dptel, T=md %=,

so that
o= _ _ dll _ _=5n0= _ —=—3/4
=M n=—z2E ne=o,y)=z3.
ax  a ag” ME=0X)

(60)

Again, as for Eqgs. (38) and (39), we require that
Vo /to= 334-(#/2)1/21/0; however, the boundary flux is now
given by Eq. (58) instead of Eq. (40), and therefore we
have a different normalization for vy, and hence for ¢,
namely,

4/9

1741279 [y 2/9 1/9
5= | LT c Ey n. Vo®@o
0 312 c no a);c3 ’
(61)
1/3 2/3 —23 [y 141
~ _ 64 |2 ne @o | Yoo Eoy
= | = Ze ~0 0
35w ng o) | ok’ ¢

The dimensionless temperature = and heat flux IT satisfy
equations very similar to Egs. (42) for the anomalous skin
effect, but with different boundary conditions.

Equations (60) admit self-similar transformation,
d=Cx /24, 2=x1""W(4), leading to the following set of
ordinary differential equations:

24 d s5,d¥Y AV 4
2.4 gysnldZ
17 d¢\p d¢ " do 17

dv
13482 =1,
dé |s=0

The numerical solution to Egs. (62) is shown in Fig. 2. It
corresponds to W(0)=1.46, and ¢,=1.27, which were
found following the same procedure as for the Fig. 1.
The shape of the heat wave in Fig. 2 is very similar to the
solution found for the anomalous skin effect, Fig. 1. The
small differences follow from the different boundary con-
ditions.

From the solution of Egs. (62) and the self-similar
transformation, we derive scaling laws for important
physical parameters: The temperature for the constant
laser intensity grows with time as ~¢!/%, which is a
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FIG. 2. Self-similar solution to the heat-transport equations
(62) for the normal skin effect. Function ¥ is proportional to di-
mensional temperature, and ¢=_,x ~'"/?* is the self-similar vari-
able.

slower rate as compared with the anomalous skin effect;
the absorption and the skin-layer thickness decrease with
the same rate of ~¢ ~'/% (while, in the case of the anoma-
lous skin effect, these values were slowly increasing with
time); finally, the mean-free path for electron-ion col-
lisions and the position of the heat front increase with
time as ~¢'/? and ~¢'7/%, respectively. Our theoretical
model of the normal-skin-effect heating is valid for

L <l (63)
2> 1, (64)

Condition (63) defines the separation between the anoma-
lous and normal skin effect. Equation (64) lets us de-
scribe the absorption process as a boundary condition for
the heat wave. However, in the cases of shorter laser
pulses and/or smaller intensities, Eq. (64) may not be
satisfied, and the heat front will not penetrate the cold
material beyond the skin-layer depth. In such cases the
heat-conduction losses are negligible, and we obtain from
the energy balance equation,

the linear growth in time of temperature in the absorp-
tion region:

Ej

6mn,

T=~wyt (65)

This result was obtained from our simple model, which
neglects the energy losses related to ionization, and also
nonideal plasma effects that can increase specific heat
and, therefore, decrease temperature. In Sec. V we will
discuss the conditions of the applicability of various
theoretical models.

V. SUMMARY AND CONCLUSIONS

We studied absorption and heat-conduction processes
during the interaction of subpicosecond laser pulses with
metal targets. In particular, we discussed theories of
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anomalous and collisional skin effects. In order to sum-
marize our results, we will first describe the scaling laws
of various physical parameters obtained from self-similar
solutions to the heat-transport equations (44) and (62).
We will use the following set of units: laser intensity,
I=1,/10'"® W/cm?; laser wavelength, A=21,/1 um; plas-
ma temperature will be given in kilo-electron-volts; dis-
tances will be expressed in nanometers; time duration will
be given in femtoseconds.

For the anomalous skin effect, the characteristic veloci-
ty and time (43) have the following form:

vro=(1.5X10)**A 142712 emys

(66)
1o=(4.9X10)Z 72180734 fs

where we took for the ion density, n;, =6 X 10*2 cm 3, and
no=2Zn;. In estimates for the anomalous skin effect, the
Coulomb logarithm is approximately A=5. Using Egs.
(66), we can write the scaling laws for the important
physical parameters (47) and (48) as

T=0.4Z ‘4/25112/25)\’A8/25t6/25 ,

A=(5.5X 10*2)2 *9/2512/25}\— lS/ZSt 1725

1 =11_42_9/25I2/25)\’7/25t1/25 (67)

Zf:56. 7Z —6/513/5}\‘~2/5t4/5 .

In Sec. IV we presented a theory of the normal skin
effect, which was based on the idea of introducing special
boundary conditions into the heat-transport equations, in
order to describe absorption in a manner similar to the
anomalous skin effect. From the self-similar transforma-
tion, we obtained for the characteristic velocity and time
(61) the following:

vpo=(1.3X10)I*°A71°Z 71 em/s
(68)
to=(5.3X10)*"A713Z 77 fs

where the Coulomb logarithm was taken as A=3. From
Egs. (68) we can derive scaling laws for

T=0'53zl/611/3}\'~1/6t1/6 ,
A =(2‘2x10—2)23/81—1/4)\’-3/8t*1/8 ,
[[=1.75Z>731 71408 ~178 (69)

z; — 1022 - 19/2415/12}\_5/241 17/24
le-i =(3.2X 102)2 -5/312/3)\,_1/311/3 ,

where the collision mean-free path is given by
L =vr/Veg=2vpoto(t /1) /2. Our results [(68) and (69)]
for the normal skin effect are valid only when the
penetration depth of the heating wave, given by the posi-
tion of the heat front edge z,, is larger than the skin
depth [, i.e., when

I>(5X1073)Z3/4)374 =574 (70)

For low laser intensities, when Eq. (70) cannot be
satisfied, the heat losses by conduction from the skin-
layer region are negligible. For such bulk heating of plas-
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ma, within skin-layer depth, the temperature (65) changes
linearly with time:

T(0,1)=2.6ItA" 'z~ 1. (71)

For small temperatures, the plasma parameter becomes
of order unity, and the nonideal effects become impor-
tant. By requiring that the Coulomb logarithm A=2, we
can write using (71) an additional restriction for the laser
intensity:

I>(5X1073)Z%3 1. (72)

For intensities lower than predicted by Eq. (72), one has
to deal with strongly coupled plasma physics'® in order to
properly describe collisional absorption and transport.
Interesting measurements by Milchberg et al.’ are partly
obtained in this regime of parameters. Note, also, that
the low-temperature nonideal effects will play an impor-
tant role near the heat front for the wide range of intensi-
ties.

In addition, we have to make sure that the oscillatory
velocity of the electrons is smaller than the thermal ve-
locity (19). It is one of the required assumptions for the
quasilinear approach to the solution of the kinetic equa-
tion for the anomalous skin effect. It results in the fol-
lowing relation for the laser flux:

I<O.lSZl4/‘7A722/”t4/l7 . (73)

As we will see, condition (73) is easily satisfied for realis-
tic plasma parameters. Finally, we neglected in our
theory all effects related to hydrodynamical expansion
(51). For the anomalous skin effect, this restriction, to-
gether with scaling laws (67), leads to

I<‘)425/SZ739/8}\1]/4(t/40)—27/4 . (74)

Similarly, for the normal skin effect, Eqs. (51) and (69)
imply that

I<‘)46/SZ-1/2}\,1'7(t/7)_2'9 , (75)

where A is the atomic mass number. Our results (67) can
be applied to the situation of anomalous skin effect,
defined by the Eq. (50), and to the opposite case of nor-
mal skin effect (69), which corresponds to condition (64).
Using results (69) for the normal skin effect, we can define
a separation line between these two regimes:

I=(3.2X1073)Z%/22)23/2; =172 (76)

In order to illustrate our results, we will first plot the
curves defining different regimes of laser plasma interac-
tion for the two representative cases of aluminum
(A =27, Z=6-10) and gold (A =200, Z =10). In Fig.
3, for the case of heavy metal and for the laser wave-
length A=0.25 um, we plot logarithms of intensity with
respect to pulse duration: curve 1 separates the regions of
the anomalous and normal skin effects (76); curve 2 dis-
tinguishes between the normal skin effect, with heat con-
ductivity, and the case of bulk heating, without thermal-
conduction losses (70); below line 3 [Eq. (72)], plasma be-
comes strongly coupled; dotted line 4 [Eq. (73)] bounds
the region where oscillatory velocity of electrons is small-
er than thermal velocity; the dashed curve 5 [Eq. (74)]
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FIG. 3. Logarithm of laser-pulse intensity as a function of
pulse duration for the gold target A =200, Z =10, and laser
wavelength A=0.25 um. Curve 1 separates the regions of
anomalous and normal skin effects (76); curve 2 distinguishes
between the normal skin effect with heat conductivity and the
case of bulk heating without thermal conduction losses (70);
below line 3 (72), the plasma becomes strongly coupled; dotted
line 4 (73) bounds the region, where the oscillatory velocity of
the electrons is smaller than the thermal velocity; dashed curve
5 (74) defines the lower boundary of the regime, where hydro-
dynamic expansion creates plasma corona and the anomalous
skin effect does not occur; dot-dashed curve 6 (75) gives a simi-
lar restriction, related to hydrodynamical expansion, for the
normal skin effect.

defines the lower boundary of the regime, where hydro-
dynamic expansion creates the plasma corona, and the
anomalous skin effect does not occur; the dot-dashed
curve 6 [Eq. (75)] gives a similar restriction, related to hy-
drodynamical expansion, for the normal skin effect. One
can see from Fig. 3 that the anomalous skin effect can
dominate the absorption for intensities I>2X10'¢
W/cm?, and pulse duration t, <100 fs. Normal skin
effect can take place in a much larger region of parame-
ters. The region of bulk heating, between curves 2 and 3,
is narrow, which is a general result for all cases con-
sidered here.

Figure 4 presents the same information as Fig. 3 for
the light-metal case. The anomalous skin effect cannot
happen in this regime of parameters, and its occurrence is
prevented by hydrodynamical expansion. The plasma ex-
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FIG. 4. Logarithm of laser-pulse intensity as a function of
pulse duration for the aluminum target A =27, Z=6. The
curves on the plot have the same meaning as on Fig. 3.
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FIG. 5. Logarithm of laser-pulse intensities as a function of
laser wavelength for the parameters of Fig. 3 and for the pulse
duration ¢, =80 fs.

pansion also limits the normal skin effect to intensities
below I < 10" W/cm?.

Figures 5 and 6 illustrate various physical regimes, in
terms of wavelength dependence, for the pulse duration
t,=80 fs. One can see from Fig. 5 that the region of ap-
plicability of the anomalous skin effect increases with the
laser wavelength; also, for light targets (Fig. 6), the anom-
alous skin effect can occur for A > 0.8 um.

Figure 7 illustrates the time dependence of the plasma
temperature for the set parameters as in Fig. 3. The
curves 1 and 2 correspond to the anomalous skin effect
(67) for intensities I =10'® and 2X 10" W/cm?, respec-
tively. Curve 3 is defined by the normal skin effect for
I =10"* W/cm?. For the high-intensity case, the temper-
ature can reach values above 1 keV, which, in reality can
be even further increased because of thermal-inhibition.

We will compare our predictions with the results of
some recent experimental studies.">’ Figure 8 shows our
results for the aluminum target (A =27, Z =6) and the
laser wavelength A=0.31 pm. All the curves have the
same meaning as those in Figs. 3 and 4. For intensity
I=10" W/cm?, we obtain from Fig. 8 an expansion time
of 110 fs in the regime of the normal skin effect. At this
moment in time, Fig. 9 shows the plasma temperature
T max =190 eV. This is the maximum temperature that
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FIG. 6. Logarithm of laser-pulse intensities as a function of
laser wavelength for the parameters of Fig. 4 and for the pulse
duration 7, =80 fs.
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FIG. 7. Temperature as a function of pulse durations for the
parameters of Fig. 1. Curves 1 and 2 correspond to the anoma-
lous skin effect (67) for laser-pulse intensities I=10'® and
2X 10" W/cm?, respectively. Curve 3 is defined by the normal
skin effect (69) and the laser intensity of 10'®* W/cm?.

can be achieved in the solid density region during the in-
teraction, because, for longer times, plasma corona
prevents the effective laser absorption in the dense plas-
ma. For the same parameters, Milchberg et al.’ reported
a temperature of T~ 105 eV. The discrepancy of a factor
of 2 could be attributed to the effect of hydrodynamical
expansion, which occurs during the pulse duration of 400
fs. Only for intensities 10'* W/cm? does the expansion
time become comparable to the laser-pulse duration.
Therefore, the effective laser-plasma coupling takes place
for intensities lower than 10'* W/cm?, which can explain
the change in the slopes of reflectivities and resistivity
curves in Ref. 5.

For the parameters of the experiment by Fedosejevs
et al.” (A =27, Z=6 A=0.25 pm, I =3X 10" W/cm?),
we obtain from (75) the expansion time of 75 fs and the
maximum temperature (69) of 260 eV, in reasonable
agreement with the reported temperature of 300 eV.
Similarly, for the data of Murnane et al.,' the calculated
temperature is in reasonable agreement with the observa-
tions.
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FIG. 8. Logarithm of laser-pulse intensities as a function of
pulse duration for the case of aluminum target A =27, Z =6,
and laser wavelength A=0.31 um. All the curves are defined as
in Fig. 3.
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FIG. 9. Temperature as a function of pulse duration for the
parameters of Fig. 8 and laser intensity I =10'° W/cm?.

At last, we would like to comment on the predictions
of our model for the absorption coefficient 4. For both
cases of anomalous (67) and normal (69) skin effects, ab-
sorption coefficients depend very weakly on pulse dura-
tion ¢ and ionic charge Z. Figure 10 shows two absorp-
tion curves as functions of laser intensity given for the
times of expansion, which are found by taking equalities
in Egs. (74) and (75), and for A=0.25 um. Our theory
predicts an absorption of 35%-40% for the normal skin
effect at 10'* W/cm?, which drops with intensity until the
anomalous skin effect takes over, given a 10% absorption
at 10'° W/cm?. In both cases, our results describe the ab-
sorption process in the solid density region.

In summary, we have presented the analytical model of
the subpicosecond laser-pulse interaction with plasmas.
Our analysis is based on the classical, Spitzer-type ap-
proach to the thermal transport and electron collisions.
It is shown that the heat-conduction losses become im-
portant for laser intensities above 10> W/cm?, and the
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FIG. 10. Absorption as a function of laser-pulse intensity.
Curve 1 corresponds to the normal skin effect (69), curve 2 is re-
lated to the anomalous skin effect (67). For both curves, times
of interaction are evaluated from the conditions (74) and (75),
and they correspond to the moment when hydrodynamical ex-
pansion becomes important. Additional parameters are A =27,
Z =10, and A=0.25 um.
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regime of the anomalous skin effects can be achieved for
heavy target materials and pulse durations #, <100 fs.
Our results predict heat-flux values, which are compara-
ble to the free-streaming limit. This may indicate the im-
portance of thermal-flux inhibition for the proper
description of interaction processes at high intensities,
which may lead to higher plasma temperatures.
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