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A kinetic analysis of the nonlinear evolution of the free-electron-laser (FEL) instability is present-
ed. The governing equations are the coupled Vlasov-Maxwell equations, which are investigated for
a system consisting of a relativistic electron beam propagating through a helical wiggler magnetic
field. Assuming that a single cavity mode of the electromagnetic field takes part in the lasing, a gen-
eral nonlinear solution of the Vlasov equation is obtained in the resolvent formalism. Use of this
solution in the wave equation provides a nonlinear description of the FEL. The saturation proper-
ties of the FEL are discussed by numerical and analytical solutions of this equation.

I. INTRODUCTION

The nonlinear evolution of the free-electron-laser
(FEL) instability is a subject of considerable interest, par-
ticularly the study of saturation properties. ' ' While
linear theory is adequate to describe the exponential gain
regime, the saturation regime is difficult to model analyti-
cally, and it is customary to rely on the help of computer
simulations. In this paper we develop an analytical mod-
el for the nonlinear regime, which is based on the resol-
vent formalism developed by Prigogine and his co-
workers' within the framework of general statistical
mechanics of nonequilibrium processes. The principal
advantage of the method lies in its being a nonperturba-
tive approach and in that it permits a general formulation
of the nonlinear evolution problem in the strong-signal
regime. For the example studied by us, that of a low-
density relativistic electron beam propagating through a
helical wiggler magnetic field to amplify a single cavity
mode, the nonlinear evolution equation is quite compact
and can be solved either numerically or by analytical
techniques in some limiting situations. Another unique
feature of the method, for the problem at hand, is that it
allows an exact solution of the Vlasov equation for an ar-
bitrary amplitude of the signal strength. Basically this is
achieved by formally writing the solution of the Vlasov
equation as an inhomogeneous Volterra equation and em-
ploying an iterative method to obtain an infinite-series
solution. This series can be closely approximated by a
geometric series and summed exactly. This solution is
used in the wave equation to obtain a nonlinear evolution
equation for the FEL. This equation can be further gen-
eralized to include dielectric effects (for Cerenkov radia-
tion problems), self-fields, and other wiggler geometries.
For the small-signal limit it easily reduces to the standard
evolution equation discussed in the literature. We dis-
cuss the saturation properties of the FEL by analyzing
the evolution equation for a simple Gaussian form of the
initial beam distribution function.

The paper is organized as follows. Section II describes
the basic equations and the physical model. The coupled
Vlasov-Maxwell equations are reduced to one-

dimensional forms under some standard approximations.
In Sec. III we obtain a nonlinear solution to the Vlasov
equation in the resolvent formulation. This solution is
used in Sec. IV to obtain the final nonlinear evolution
equation for the laser wave amplitude, and this equation
is solved both numerically and analytically. Saturation
properties are discussed. Conclusions and summary dis-
cussions are given in Sec. V.

II. BASIC EQUATIONS

The dynamical system consists of a beam of relativistic
electrons traveling through a spatially periodic static
magnetic field. We assume that the electron density is
sufficiently low that self-fields as well electrostatic efFects
(representative of collective effects) can be neglected. The
relativistic Vlasov equation governing the dynamics of
the system is given by

aa af aa af
at ap ax ax ap

where the Hamiltonian for the single electron is given by
2 1/2

mc+c P—eA
(2

C

m and e being the mass and charge of the electron, P the
canonical momentum, and A the vector potential. A
can be written in terms of a sum of plane waves
representing the laser field and the static wiggler magnet-
ic field. We shall assume that only one mode takes part
in the lasing. Further, choosing a helical wiggler field
(right circularly polarized), the total field in the cavity
can be written as

A=&2e„[A;cos(k, z+co, t)+ A, cos(k, z co,t)]—
+&2e [—A;sin(k;z+co; t)+ A, sin(k, z co, t )], —

(3)

where e, e are unit polarization vectors. This form is
known in the literature as the Williams-Weizsacker ap-
proximation, ' in which the static magnetic field is re-
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placed by a traveling wave propagating in the opposite
direction to the electron beam. In the above, A, is the
amplitude of the wiggler field and A, is the amplitude of
the laser mode which is assumed to be a slowly varying
function of time. The Hamiltonian & leads to the equa-
tions of motion

a2

az2
1 a 4m.

c2 at2 c
(13)

ponderomotive force that provides the basic mechanism
for electron bunching and "stimulated" emission. The
evolution of A is given by the wave equation

dX Nf
dt ap (14)JT=e d I' VT X,P, t

dP RV
dt ax (5) Integrating (13) over the transverse dimensions and using

the relation for VT, we obtain
Since there is no dependence on the transverse coordi-
nates, Eq. (5) gives a2

az2

1 8 4m.e PAf d
h

c at mc
(15)

dPT =0.
dt where F, the filling factor, is the ratio of the electron-

beam area to the laser-mode area. Equation (15) can be
further simplified by substituting the form of A from (3)
and using the standard approximations of treating A, to
be slowly varying and projecting A onto the lasing mode.
The evolution equation for the mode amplitude can then
be reduced to

We choose the transverse canonical momentum PT=O,
so that the kinetic momentum p T is given by

eA
PT= (6)

Likewise p, =P, (since A, =0), and from (5) we have

where JT, the transverse current density, is defined by
4)

dp

dt az

e BA

2m yc2 az
(7)

BA,

at

2me FA, hf dz sin(Kz+Qt) f dp,
mc co& L 'y (16)

where

2 2 2
1/2

Pz eA
m'c' m 2c4

is the relativistic factor. From (4) we also obtain

Pz eA
V = VT=-

my mcy

Substituting these into the Vlasov equation we get

df e A P. df
dt mcy my Bz

2 BA~ Bf
2m yc2 az ap,

(9)

We derive a one-dimensional equation from (9) by in-

tegrating over the transverse positions and momenta and
noting that f vanishes at infinity. Defining the one-
dimensional distribution function h by

In this section we will obtain an analytic solution of the
one-dimensional nonlinear Vlasov equation (11). Before
proceeding to do so we note that the ponderomotive-
force term is of a sinusoidal form. This can be seen by
writing A in detail, using expression (3) and noting that
the z dependence only exists in the cross terms propor-
tional to A, A, . Specifically we get

BA
I 5

KA'A sin(Kz—+At) . (17)

where K =k, +k, and A=co; —co, . Equations (11) and
(16) are the basic classical equations for the free-electron
laser and the starting point of several investigations in the
past. Further details of the derivation sketched in this
section can be found in many past works —that of Hopf
et al. ' is one such good reference.

III. NONLINEAR SOLUTION
OF THE VLASOV EQUATION

h(p„z, t) = f dx dy dP„dP~f,1

a0
(10)

We substitute this in (11) and rewrite the equation in the
following dimensionless form as

where ao is the electron-beam area, we obtain from (9)
the following one-dimensional form:

ah ah+g +a sinai =0,
at az

(18)

ah ah e a A ah
az 2m y ~z ap,

h is normalized as follows:

f dz f dp, h (z,p„t)=
0 —oo ap

(12)

where t =At, z=kz; g=kV, /0, a=e A;*A, K /
2m y 0 c, and +=Kz +At. In order to obtain a solu-
tion of (18) in the strong-signal regime, we adopt the
slowly varying amplitude ansatz similar to the quasi-
Bloch approach in high-energy-laser theory. Thus we
represent h by a harmonic expansion,

where L is the cavity length. The longitudinal force act-
ing on the electrons is seen to be proportional to the gra-
dient of A in the Vlasov equation. This is the so-called

h =h' I(g)+a g [C„(g,z)cosn++S„(g, z)sinn'] .
n=0

(19)
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h' '(g) is the equilibrium distribution function and C„,S„
are assumed to be independent of t and slowly varying in
z compared to K '. Our aim is to solve for S, (which
drives the lasing mode) to all orders of a, and not arbi-
trarily truncate the series (19). We note that S, is cou-
pled to S2 and So through the nonlinear term and like-
wise So and S2 are themselves further coupled to the oth-
er neighboring harmonics, and so on, ad infinitum

Substituting (19) in (18) we get an infinite set of coupled
equations, which can be expressed compactly in a matrix
form as

and 5„) is the Kronecker delta function. A formal solu-
tion of Eq. (20) can be written in the form of an inhomo-
geneous Volterra equation,

H„=e 'H„(0)+25„)f dz, e ' (5L )h ' '

a—f dz, e ' (5L)[H„~)(z)) H„—, (z, )] .
0

(22)

+EH„= a(5L—)(H„+, H„—) )+25„)(5L)h ' ' .

(20)

Equation (22) can be iterated by expanding H„ formally
as

Here H (z)=H„ (23)

H„=

0 1
I (o)——1 0

1
p (0)

0

n =- 8
S„ X =In 1+—,5L =I

(21)
and substituting in Eq. (22). Comparing coefficients of a
gives us an infinite sequence of relations between the
H„'". Choosing H„(0)—:0 (i.e., the beam is smooth at the
entrance of the wiggler), we get

H„' '=+25„)f dz, e ' (5L)h ' ',
0

z
H„"'=—2(5„+i i

—5„)))f dz)e ' (5L)f dz2e ' ' (5L)h '

0 0

(24)

The integrals in the above relation are in convolution
form and hence can be conveniently carried out in terms
of the Laplace transform, which for a function f (z) is
defined as

a=a (5L )
1$

where a is the operator

(27)

f(s)= f dz e "f(z) . (25)
0

For n = 1 only the even terms (H„' ', H„' ', H„' '
) con-

tribute to the series (23). Taking the Laplace transform
for this case, we get g (0)

1+2a
(28)

and C„ is the combinatorial factor. This infinite series is
absolutely convergent for ~a

~
(—,'. The series can be

closely approximated by

tzH((s)= 20+ g ( 1)mC2m+2(22m+3 ii (0)

m=0
(26)

Taking the inverse Laplace transform of (28) we get

z —J(z —z) ) 2aSL(z —z) )
— 2aSL(z —z()

(29)

In carrying out the inverse Laplace transform we have
made use of the commutation relation 5L.
(X—is) =(X is )5L +I(1/2g ) and —neglected the
I(1/2g ) term. This is valid for a »g, ),/g, where gth is
the typical thermal spread in the equilibrium distribution
function. The above integration can be carried out for a

simple beam equilibrium distribution function h ' ',

i (0) (p/ )1/2e 0
—P(j —

g )'
(30)

where $0 is the mean axial inomentum and p ' is the
thermal spread.
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Using (30) in Eq. (2) we obtain an analytic expression
for S, as

S,(z)=— sin(l +&2aP)z sin(I —&2aP) dh+
(I +&ZaP) (I —&2aP) dg

(31)

where 1=1+I/g. It may be realized that S, is the
coefficient of sin% in the expansion (19), and we shall now
substitute S,sin+ in Eq. (16) and reduce this equation to

a phase-independent one defining the nonlinear evolution
equation for A, . For a~O, S, (z) reduces to the linear
distribution function used in calculating gain functions in
the small-signal regime.

IV. NONLINEAR EVOLUTION EQUATION

Substituting h =aS, (z)sinai in Eq. (16), averaging over
the fast phase 4', and carrying out the z integration we
get

dA, 2me Fl A;I K L gp'o' 2(1+2a 13 /I2) 1 co—sIKL cosv 2ai3KL
A, dgdt m yQc '

Qg (1—2aP/l ) I KL

4&2aPKL sinlKL sin(&2aPKL )

( 1 —2azP2/I )
(32)

1 cospL c—os( &2aPKL )

p2L 2

The above equation can be cast in a more convenient form by converting to the detuning variable
p= —Q(K/Q —I/V, )= —Kl, and integrating the right-hand side (rhs) of (32) by parts. This yields

d (I+2a13KL / L )

m 2y202e' dp, h(0)
d(pL) ( 1 2a2P2K2L 2/p2L 2)2

2&2aPKL sinpL sin( &2aPKL )

( 1 —2a2P2K2L 2/p 2L 2)2 p2L 2 (33)

(1 2a P K L /—poL ) 1 cospoLcos(—&2aPKL)

d(}ug) (1+2a2132K2L2/p2~2)2 ~2+ 2

(Note that t =Qt in the above equation. )

The rhs of (33) can be viewed as the nonlinear gain function for the FEL, valid in the strong-signal regime. It in-
volves a product of two terms within the integrand —h' '(p) the initial distribution and a nonlinear function of the
wave amplitude. For the "small cavity" or "cold beam" limit (i.e., for the P))width of the nonlinear function) Eq. (33)
can be simplified to

dA, 2rre F~ A;~ K L

m yQe

2v'2apKL sinpoL sin( &2aPKL )

( 1 2aZP2K2L 2/A+2 2)2 A+3
3

(34}

where po is the value of p where h' ' is centered. The fa-
miliar small-signal result can be easily recovered from
(34} in the limit of a~O (i.e., neglecting a terms}. We
get

x =}MOL,

y =&2aPKL,

and the constant
d A, 2neF

~ A; ~
K L.

A, dt m y2Q2e d(poL )

sinpoL /2

VOL

(35}

2me'F
I A; I'K'L'

R=
m 2y2Q2~ 2

This has the characteristic antisymmetric form of stimu-
lated scattering and shows maximum gain to occur at
poL= n. Retaining the —nonlinear terms modifies the
linear gain function and leads to a shift in the phase for
the maximum gain as well as saturation effects. To dis-
cuss these properties we rewrite (34} in a more useful
form by introducing the variables

We then get

1 dy d (x+y )=G (x,y}=R (1—cosx cosy )
dt dx (x —y )

2xy
sinx siny

(x 2
y 2)2

(36)
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Equation (36) off'ers a simple model nonlinear evolution
equation for the single-cavity mode FEL. The nonlinear
gain function G(x,y) is expressed in a simple analytic
form in terms of the detuning parameter and the laser-
mode amplitude. In the low-gain regime (away from res-
onance, i.e., for x « —m) the nonlinear gain function de-
creases as a function of y, leading to saturation of the
mode. An approximate expression for the saturation am-
plitude can be obtained by expanding (36) for small y (re-
taining y terms). This yields

4.00 --- --X = -4.0
X = -3.0

2.00

1
=R[A&(x)+A&(x)y ],

y dt

where

A. , (x}= — (1—cosx )+2 slnx

X X

(37)

(38)

12
(1 )+ 9 sinx 3 cosx sinx

(39)2 x5 x4 x3 2x2

Equation (37) can be integrated to give

0.00
0.00 60.00 120.00

2
2A, )Rt0'o

~i+~9'o 1 —[)(,zoo/(A, , +A, zyo )]e
(40) FIG. 2. Time evolution of lasing mode for x = —4.0 and

—3.0 (R =1j.

The saturation amplitude is then obtained as

~1
ysat

A2
(41)

O. i5 ——x =-4.0
X =-3.0

G(X,Y)

o.oe

For x closer to the resonance region, the gain function
can be evaluated numerically and we show two typical
plots of G(x,y) versus y for x = —4.0, —3.0 in Fig. 1.
The corresponding numerical solution of Eq. (36}for the
mode amplitude y is displayed in Fig. 2 (R has been taken
to be unity).

V. CONCLUSIONS AND SUMMARY

We have carried out a nonlinear analysis of the free-
electron-laser instability based on a nonperturbative solu-
tion of the coupled Vlasov-Maxwell equations. The ap-
proach is based on the resolvent formalism developed by
Prigogine and co-workers and yields an infinite-series
solution to an integral equation formulation of the Vlasov
equation. Using this solution, we obtain a model non-
linear evolution equation for the amplification of a
single-cavity mode driven by a low-density electron beam
propagating through a helical wiggler magnetic field.
This equation, Eq. (36), is the principal result of our cal-
culation. It offers a simple analytic model for the satura-
tion regime properties of the FEL and can be solved quite
easily either numerically or analytically in limiting situa-
tions. The nonlinear saturation is due to the self-
interaction of the mode and this effect has been incor-
porated by a nonperturbative solution of the Vlasov equa-
tion. Equation (36) also correctly describes the exponen-
tial gain behavior in the small-amplitude regime. Our ap-
proach has similarities with the quasi-Bloch approach,
adopted in high-energy laser physics, but our iterative
solution goes beyond the usual truncation of the harmon-
ic expansion. The model can be further refined to include
self-fields, different wiggler geometries, electrostatic
effects, etc. , and we are currently investigating these as-
pects.

0 00
0.00 2.00 4.00

FIG. 1. Behavior of gain function at x = —4.0 and —3.0
(R =1).
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