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Electron mobility and localization efFects in high-density Ne gas
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We report on the measurements of electron as well as ion mobility in neon gas at low temperature
{close to the critical temperature) and up to very high density {N=180X10 cm '). We have
found evidence of localized electron states at densities larger than {90—100)X 10 cm '. The tran-
sition from the region of quasifree states to that of coexisting quasifree and localized states takes
place in a density range in fairly good agreement with the predictions of a simple bubble model.
The mobility data of the quasifree electron are in disagreement with the actual multiple-scattering
theory. The detailed calculation of the mean mobility in the high-density region where localization
takes place is still an unsolved problem.

I. INTRODUCTION

In this paper we report on the results of extra-electron
mobility measurements in high-density neon gas, up to
N = 180X 10 cm (critical density N, = 144 X 10
cm, critical temperature T, =44.4 K). To get such
high densities we worked at temperatures close to the
critical one ( T =45.0, 46.5, and 48.4 K).

Similar measurements in the range from 25 K to room
temperature have been made in the past in our laborato-
ry, but for densities not greater than 40X10 cm
The results of these measurements raised a problem on
the theoretical explanation of the electronic mobility
within the multiple-scattering theories. ' The density
dependence of mobility could be explained only by intro-
ducing the assumption that the momentum-transfer cross
section oMT(e) is to be evaluated at a shifted energy
c.

' = c, + co, where co is a density-dependent "potential" to
be determined. This effect, small when crMT is almost
constant, is rather strong for neon, where o.

MT depends
strongly on c., particularly at low energies. By using for
eo an iterated Wigner-Seitz potential, it is possible to get
a good fit to all data between 25 K and room temperature
without introducing any adjustable parameters. The sit-
uation lacks, however, a firm theoretical explanation.
Moreover, the higher-density region was still to be ex-
plored.

In those early experiments we never found evidence of
localized states, not even in the vapor. It is well known,
however, that such states exist not only in a variety of
liquids, but also in high-density He and Hz gas. The e-
Ne scattering length is very low, but theoretical calcula-
tions show that localization should be possible in the
liquid phase, and the experiments showed that the nega-
tive carriers have indeed a very low mobility, comparable
to that of an electron bubble. ' But it is also possible that
the slow carriers were 02 impurity ions, and so the prob-
lem remained essentially unsolved. In fact, the attach-
ment to 02 molecules, always present as "impurities, " is
very effective at high densities. To discriminate between
slow electrons and 02 ions, we measured the mobilities
of both species at the same time while following their be-

havior as a function of the neon-gas density, and found
evidence of localized states for densities greater than
N* =95)(10 cm

II. EXPERIMENT

A. General details
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FIG. 1. Schematics of the experimental setup for electron-
and ion-mobility measurements in neon gas: FL, xenon flash

lamp; PD, photodiode; CN, copper cell; e, emitter; c, collector;
g, guard ring; d, drift distance; Jk„collector radius; DV, digital
voltmeter; C, total integration capacitance; R, = 10" A,
R& = 10 0, rr, reed relay; SA, slow amplifier; FA, fast amplifier;
SA, selector switch; DS, digital scope; PC, personal computer;
CT, liquid-nitrogen-cooled activated charcoal trap; OX, oxisorb
trap, Ne, neon flask; DG, pressure gauge; IEEE-488, IEEE-488
interface bus.

The experimental apparatus is essentially the same as
that used in the previous experiment, ' and its schematic
is shown in Fig. 1, The only changes are the introduction
of a second preamplifier to integrate the ionic wave
forms, and an improved thermomechanical coupling of
the cell to the cryogenerator head in order to minimize
the mechanical noise while keeping a satisfactory thermal
contact. An important improvement has also been intro-
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B. Electronics

The collector can be connected via a reed switch to the
sloui amplifier SA, or to the fast amplifier FA (Fig. 1). It
can be shown that, for a good reproduction of the wave
forms, one gets the best signal-to-noise ratio and also the
highest possible signal if one integrates the current i (t)
induced by the charges moving in the drift space. ' The

cell
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Cantilever assembly

duced in the analysis of the signal wave form.
A inassive brass cell ( =1.5 kg weight) can withstand

pressures up to 10 MPa. It can be cooled down to 25 K
by a cryogenerator' and can be thermoregulated to
within 0.01 K by means of standard techniques. The
gold-plated emitter and collector electrodes are circular
with a radius %,=3 cm and are mounted inside the cell
separated by a gap d, the drift distance. We usually used
d =1 cm, while at the highest densities we reduced d to
=0.4 cm. The central area of the emitter is made by a
small fused-silica disk coated with 100 A Au, and it acts
as the active area of the emitter. The electrons are ex-
tracted from the Au film by a xenon flash-lamp light
pulse, which enters the cell through a thick fused-silica
window. '" The neon gas can be continuously circulated
at high pressure in the closed circuit composed by the
cell, the circulator, and the purifying traps. We used two
such traps: an activated charcoal trap at 77 K and an
Oxisorb one. ' The bellow circulator is driven by pres-
surized oil. ' More technical details on the whole experi-
mental apparatus can be found in published papers. ""

In the previous experiment the cell was directly fixed
on the cold cryogenerator post to assure a good thermal
contact. In such a way the reciprocating displacer of the
cryogenerator head induces vibrations in the electrodes
assembly, causing an output electrical noise proportional
to the potential difference applied to the electrodes. In
the present experiment it was necessary to use also high
voltages (up to 2500 V), and the noise voltage induced by
the displacer was so high as to prevent any measure-
ments. To remove this trouble, the cell was coupled in a
softer way to the cold post, through a kind of spring
made by four copper strips, mounted as shown in Fig. 2.
Because the cell is massive, we get a very low resonant
frequency even with rather thick strips, allowing for a
good mechanical filtering of the vibrations with still a sa-
tisfactory thermal contact.

integration is performed by the group R1C or R2C at the
input of the amplifiers. These are placed close to the cell
in order to minimize the total capacitance C (C =50 pF).
The fast ainplifier has an input resistance R 2= 10 0 (R 2 C = 50 X 10 s), and is used to integrate and
amplify the signals induced by the fast electrons. To in-
tegrate the ionic signals, which may last some tenths of a
second or more, we need a much larger time constant.
Using the operational amplifier OPA 128, ' which shows
a very low input bias current (100X 10 ' A, typically) it
is possible to use a larger input resistance R,
=10"Q (R&C=5 s). We can therefore record both the
electronic and the ionic parts of the signal wave form.
The output signals are recorded by a digital storage oscil-
loscope (Hitachi VC-6041) and are fetched and stored by
a personal computer (Macintosh II) to allow off-line data
processing.

III. SIGNAL WAVE FORMS

The signal wave forms may look rather different from
each other, depending on the physical situation. A de-
tailed wave-form analysis and the description of the nu-
merical methods exploited to extract the information of
interest can be found elsewhere. ' We summarize here
only the main results.

A. Fast wave forms

The general wave form has a fast initial part, followed
by a slower one. We begin first with the fast part. Let
Up be the potential of the emitter with respect to the col-
lector and Eo = Uo/d the electric field applied to the drift
region. The time of flight for electrons and 02 ions will
be respectively r, =dliJ, ,EO and r;=dip;Eo, where p,
and p, are the respective mobilities for that field. If n, (t)
is the number of electrons at time t, then the induced
electric current is i, (t) = en, (t) lr, —If a short .bunch of
np electrons is injected into the drift space, the current
will be

enp
i, (t)= — e

where e is the elementary charge, x= 1 jv„is the mean
lifetime of quasifree electrons, and v„is the attachment
frequency. The relation (1) holds under the following
conditions:

(i) For electrode radius %, »d. A detailed analysis
shows that %, & 2. 5d can be satisfactory. '

(ii) Space charge effects are absent. This means
E =Ep, constant along the whole drift space.

(iii) r, »r, . This last condition is usually well fulfilled,
except at the highest neon densities, where p, becomes
very low. In this case we cannot neglect the contribution
of the ionic current to the first "fast" part of the wave
form, and the relation (1) should be modified (see Appen-
dix A).

The integrated wave form (for RC »~, ) is given by

FIG. 2. Mechanical coupling of the cell to the cryogenerator
head by means of four copper cantilevers.

U, (t)= — (1—e " ), (2)
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where UT=eno/C is the maximum available voltage, i.e.,
vT=u, (r, ) for A =0. The attaching efficiency
A =~, /~=vz~, gives a measure of the efficiency of the
electron attachment to 02 molecules. For t =T„
v, (r, )=us= —(uT/A)[l —exp( —A)]. When A )&1
(strong attachment) the wave form is practically an ex-
ponential decay towards Uz. In this case one can measure
only the attachment frequency vz. To measure ~, one
needs a better purification, or a stronger field I (in order
to reduce r, ). When A ((1, the wave form (2) becomes a
straight line and ~, can be measured very well. At high
densities one has usually an intermediate situation, and it
is possible to get both ~, and v„from a proper analysis
of the wave form. ' To examples of fast wave forms are
shown in Fig. 3.

B. Slow wave forms

Once the fast electrons have been collected, very slow
ions are still left in the drift space. This ionic distribution
can be easily calculated. It moves slowly towards the col-
lector. If n, (t) is the total number of ions still present at
the time t, then i;(t)= en;(t)—/r; Assum. ing r, =0, be-
cause v; »~„the ionic current can be found to be'

(3)

The relation (3) holds under the same conditions imposed

to relation (2). The condition r; &)r, can be unvalid at
high densities, and the relation (3) must be modified (see
Appendix A).

If RC »~„the integrated wave form for ~, ~ t ~ ~; is
found to be

At/,
u, (t)= —

uT —+—— e
A ~; A

(4)

Because r, ((r;, u, (r, )= —(vT/A)(1 —e "), which is
exactly equal to u, (r, ) =us. For t =r, , u;(r, ) = —uT, and
so u;(r, )/u;(r;)=(1 —e "}/A. From this relation one
easily gets the attachment efficiency A =v„~„andif ~,
is measured from the fast wave form, v~ can be easily
determined.

When one needs to work at low electric fields, ~; can
increase up to 1 s or more, and, therefore, the condition
RC »~; is no longer satisfied. In such a situation, for
~, ~ t & ~; we have

u (t) = vr(I —P ~ Qe }

where I =RC/r;, P =[e "+(AI)2 1]/[A(—1+AI)],
and g = [Ie "/(1+ AI)]. For
v(t)=v(r;)exp[ —(t r; }/R—C]. If AI & 1, the wave form
has a minimum for tM & v, Two examples of slow wave
forms are shown in Fig. 4. The methods for calculating
~; and A from the slow wave forms are described in de-
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FIG. 3. Typical electronic (fast) wave forms. The experimen-
tal conditions under which the signals were recorded are the fol-
lowing: (a) T= 150 K, N=27. 3X10 cm, ED=15 V/cm,
Eo/N =54 9X10 Vcm vA =14 7 kHz ~, =97 0 ps
A=1.43. (b) T=150 K, N=22. 5X10 cm, ED=3.0 V/crn,
Eo/N =13.3X10 V cm, v„=1 1.3 kHz, v., =172 ps,
A = 1.94.

FIG. 4. Typical ionic (slow) wave forms. The experimental
conditions under which the signals were recorded are the fol-
lowing: (a) T=89.8 K, N=41.4X10 cm ', ED=40.6 V/crn,
Eo/N=98. 1 X 10 Vcm, A =1.98, AI =7.8, ~, =1.260 s.
(b) T= 89.8 K, N =64. 1 X 10 cm, Eo = 140.0 V/cm,
Eo/N=218. 4X10 Vcm, A=6.93, AI =70.7, ~, =0.488 s.
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FIG. 6. Experimental results for the electron and ion mobili-

ties as a function of the neon-gas density. Crossed squares,
T=47.9 K; crossed circles, T=45.0 K; solid circles, T=48.4 K;
open circles, T =46.5 K; solid diamonds, 0& -ion mobilities at
45.0—48.4 K. Curve l, classical mobility [Eq. (6)]; curve 2,
O' Malley formula, which takes into account multiple-scattering
effects (see text); curve 3; Lorentz-Lekner formula [Eq. (7)];
curve 4; mobility calculated according to formula (7) with the

o MT evaluated at the shifted energy c,'=c+cs, with cs given

by relation (18).
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FIG. 5. (a) 02 mobility p, vs electric-field strength in Ne

gas at T=48.4 K and N =52.2X10 cm '. (b) Attachment fre-

quency v~ vs electric-field strength at T=170.3 K and Ne-gas

density N =27. 7 X 10 cm '. Error bars represent + 1 standard
deviation.

electronic one increases.
We see from the figure that at a density N' between

90X10 and 100X10 cm there begins a gradual in-
crease of the slope of the plot of lnp, versus N, with a
change of curvature. We believe that for N &N* only
extended states exist (quasifree electrons), while for
N & N* we have the coexistence of both extended and lo-
calized states (bubbles), with a gradual disappearing of
quasifree electrons as the density increases. This explana-
tion is confirmed by the dependence of p, on E at the
various densities shown in Fig. 7. When N &N*, p, de-

1/2creases with E and gradually recovers the classical E
dependence at high E, as in our previous work. ' When

tail in our paper. ' In Fig. 5 we report two examples of
results for v~ and p, obtained by these methods.

IV. EXPERIMENTAL RESULTS
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FIG. 7. Electric field dependence of the electronic mobility at
T=46.5 K for several densities. From top to bottom: %=83.4,
90.2, 95.6, 102.1, 110.8, 116.1, 126.3, and 135.9 ( X 10 cm ).

Once the cell has been cooled at the selected tempera-
ture, it is filled with neon gas at the working pressure.
The gas is forced to circulate through the Oxisorb trap
and through the activated charcoal cold trap to remove
oxygen and nitrogen impurities. The purity degree can
be estimated from the signal wave form. At high densi-
ties a very low impurity concentration must be reached,
and the circulation has to last a few hours. As a result
the typical attachment frequency is in the range 0.5 —10
kHz.

We worked at three temperatures, 45.0, 46.5, and 48.4
K. At each temperature and at a fixed density N we mea-
sured the mobility as a function of the electric field E
down to the lowest attainable values of E, in order to
determine the "zero-field mobility" po. The results for po
versus N are shown in Fig. 6. The numerical density N
has been calculated by means of the equation of state
given by McCarty and Stewart. ' At the same time we
have plotted also the values obtained for the ionic rnobili-

ty p;. These slow carriers are oxygen ions 02 . In fact,
when the gas is circulated for an extended period of time
through the oxygen adsorber Oxisorb, the slow com-
ponent of the wave form becomes smaller, while the fast
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V. DISCUSSION

A. Qnasifree electrons

At very low densities the zero-field electronic mobility
Po is given by the well-known classical relation
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FIG. 8. Expanded view of the electric-field dependence of the
electron mobilities at T=46.5 K for the three density values
N =95.6, 102.1, and 110.8X10 cm . From this figure we can
see that for %~95X10 cm there is a value of the field
strength E for each density at which the mobility increases
over its low-field value before reaching the E' behavior.

N & N*, P, first increases with E, it goes through a max-

imum and then meets the classical high-E dependence.
We can see in Fig. 8 that the behavior changes at a densi-

ty N* between 90X 10 and 100X 10 cm . The quali-
tative explanation is that for N )N* and at low electric
fields there is coexistence of quasifree and localized elec-
tron states, in the sense that the electrons are quasifree
for a mean time ~F, and they are localized for a mean
time ~z. The average mobility should be given by

P =(rF/rs )PF+(ra/rs )Pa, Where PF and Pa are the
mobilities of the quasifree and localized states, respective-
ly, and ~, =~F+~z. The electric field can inhibit the ini-

tial trapping of the electrons in a density Auctuation, or
enhance their escape from stable localized states, or both.
In any way, the ratio rF/rs can be increased with in-
creasing E. At densities close to N' the binding energy
of the localized state is low and a detectable effect on
rF/rs can be achieved with rather small fields. At
higher densities the localized states are more stable and
therefore we see an effect only at higher fields. In order
to summarize the experimental results we may pick out,
from the plots like those in Fig. 8, the value E' of the
electric field at which the mobility begins to increase over
its low-field value. The E' values are plotted in Fig. 9 as
a function of ¹ Because this method is a very rough
one, E* can be identified only with rather large uncer-
tainty. Nonetheless, we clearly see that E' increases rap-
idly with N. A qualitative fit of this data shows that E'
goes to zero for N* =95 X 10 cm . In Sec. V B we will
see that a simple bubble model indicates that localized
states are possible only for densities greater than N* in
agreement with the mobility results.
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FIG. 9. Plot of the E* values as a function of the neon-gas
density.

g ( T) „«xp( elks T—)
Pci

N(ks T) «MT(&) d E',

with 8 (T)= 4, e(2nmkz T) '~, where e is the elementary
charge, m is the electron mass, kz is the Boltzmann con-
stant, and crMT(e) is the energy-dependent electron-atom
momentum-transfer cross section. We use as in our pre-
vious work the cross section given by O' Malley and
Crompton. Values calculated from (6) are plotted in Fig.
6 for T =46.5 K (curve I). It is well known that the clas-
sical relation is inadequate at high densities. In our case,
as an example, for N =90X10 cm the classical rela-
tion gives a value about 160 times larger than the mea-
sured one. At this density, however, the isothermal
compressibility yT calculated from the state equation'
turns out to be 5.8 times larger than that of the ideal gas,
and therefore the correlations between scatterers cannot
be ignored. To take them into account we may use the
result of Lekner, ' and we can divide the classical relation
(6) by S(0)=(Nk~ T)yT, the long-wavelength part of the
structure factor S(k), in order to get the so-called
Lorentz-Lekner formula

(6)

Pci

(Nks T)yr(N, T)
7

where gT(N, T) is the density and temperature-dependent
isotherma1 compressibility. The values of PLL for
T=46.5 K are shown in Fig. 6, curved 3, and are still
higher than the experimental data.

It is also well known that at high densities, multiple-
scattering effects must be taken into account. Many
theoretical attempts have been made in order to explain
the experimental results obtained in severa1 gases. ' For
densities not too high, as an example, the result of
O*Malley for gases with positive scattering length is
essentially a final relation like the classical relation (6),
where the exponential inside the integral is modified as
exp[ —[E+I (e)]/(ks T) I, with

r(e)=[sr/(2m)'~ P ~

where o.T(c) is the total electron-atom cross section. By
using an entirely different approach, Braglia and Dallaca-
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FIG. 10. Experimental results for the electron mobility along
with several theoretical formulas. Curve 1; Braglia and Dalla-
casa (Ref. 2) results obtained by neglecting correlations among
the scatterers. Curve 2; same as curve 1 but divided by the stat-
ic structure factor S(0), in order to account for such correla-
tions. Curve 3: Lorentz-Lekner results [relation (7)] but taking
into account the energy shift calculated according to the
corrected Fermi model [Eq. (12)].

sa obtained essentially the same result for densities not
too high. Values calculated by this way are given by
curve 2 in Fig. 6. We see that these theories, at least for
the case of neon, introduce only a small correction to the
classica1 theory, because the electron-neon scattering
cross section is low. This fact was clearly shown in our
previous paper at lower densities and is confirmed also by
our new results at high densities. If we divide the results
by S(0) as explained before, we get values slightly smaller
than those of curve 3, but still higher than the experimen-
tal values. For higher densities the result of Braglia and
Dallacasa is similar to the Legler relation, but corrected
for the localized states [formula (5.6), Ref. 2]. Values cal-
culated in this way are shown in Fig. 10, by neglecting
the scatterers correlations (curve 1) as well as by taking
them into account through the structure factor S (0)
(curve 2). We believe that this disagreement is peculiar to
neon because the cross section is so small and strongly
energy dependent, particularly at low energies. The
multiple-scattering result was obtained for essentially
constant cross sections, and therefore they neglect a pos-
sible effect arising from both the quantum shift of the
electron energy and the energy dependence of the cross
section. From an accurate analysis of the data we ar-
rived, in the previous work, at the conclusion that it
seems reasonable to assume that the scattering cross sec-
tion 0 MT(s) which appears in the relation (6) should be
calculated at some shifted energy c'= c+co, where co de-
pends only on the scatterer density N. In that paper' we
calculated co with the Wigner-Seitz model, using for the
effective radius a a kind of "self-consistent" radius given
by ~ [OT=(so)/4n]', using the total-scattering cross
section of O' Malley and Crompton. This energy shift
sws (iterated Wigner-Seitz energy shift) is shown in Fig.
11 as a function of N. It can be well interpolated by the

2'FA o
o N —fa(so) (9)

where fk is the real part of the forward-scattering ampli-
fude

(2l + 1)sin[2q&(E)]

2Ic( )
(10)

where k(e) is the electron wave vector. For low N (and
small so) the relation (9) gives the well-known Fermi shift

sF =(2m' /m)Na, which for positive scattering length
can be written as

1/2g 2

sF= [crr(0)]'~ N .

The calculation of eo through (9) and (10), using the
phases go through g5 given by O' Malley and Crompton,
shows that eo given by (9) is very close to the Fermi shift

eF. For N=100X10 cm, for instance, it is only 12%
larger than c~. If we approximate co with cF, and try to
take the correlations into account by using an effective
cross section O' =S(0)crT(0) in Eq. (11),we get a kind of
"corrected Fermi shift" EFc=eF[S(0)]'

e„c=0.540N [S(0)]' (12)

with sFc in meV and N in units of 10 cm (see Fig. 11).
If we use now this shift for crMT(e) in the Lorentz-Lekner
relation (7), we get curve 3 in Fig. 10. The goodness of
this fit is comparable (or even better) to that given by
curve 4 in Fig. 6, obtained with the use of the iterated
Wigner-Seitz shift cps.

To conclude, our new data confirm the qualitative idea
that the momentum-transfer cross section crMT(c. ) has to
be calculated at a shifted energy c.'=c, +co. How to cal-
culate this shift in a theoretically sound way remains an

open question.

B. Localized states

In this section we show that the simple bubble model
indicates that stable localized states are possible, at the

following relation:

~ws =P.540N +4.88 X 1P-2N'/'2+2. 46 ~ 1P
—3N2

where c~s is measured in meV and N in units of 10
cm . The mobility calculated by this way reproduced
well the data up to N =40 X 10 cm in a wide tempera-
ture range.

If we use the same procedure for the present experi-
ment, while using the Lorentz-Lekner relation (7), we get
curve 4 in Fig. 6, which fits rather well our data up to
N'.

It has to be said, however, that such a calculation for
co is quite arbitrary and not theoretically justified. We
want to show here that the choice of a particular co is not
unique and that a different model can be constructed
which moreover gives even a better fit to the experimen-
tal data.

Indeed, in the multiple-scattering theory the energy
shift is given by the equation '
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FIG. 11. Energy shift sQ calculated according to Eq. (11)
(curve F), to Eq. (12) (curve FC at T=46.5 K), or to the iterated
Wigner-Seitz model.

k; = (8(—V), (13)

(14)

From the boundary conditions imposed on the radial
wave functions u;(r) and uQ(r), at r =%, one gets the
equation

temperatures of our experiment, for densities greater
than N*=95X 10 cm, in agreement with the experi-
mental results.

Suppose that electrons are subjected to a spherical po-
tential with V= V; for r &R and V= VQ for r )R
( V, & VQ). If the lowest bounded state exists (with quan-
tum numbers n =1, I =0) with energy 6', and wave func-
tion u (r), it is well known that the function f (r)=ru(r)
must fulfill the radial equation

f"+k; f=0 for r &%,
f" kof =0 for r —)%,

where f"=d'f /dr, and

state, it should be H )n. /2, or from (17),
2 22mB

( V V )
7T

0 i 4
(19)

1. The empty bubble

In this model the electron is trapped in an empty
spherical cavity of radius A. Let T be the absolute tem-
perature, N the number density of the host gas, and
P =P(N, T) the gas pressure given by the state equation.
The potential for r)8 is the density-dependent self-
energy VQ(N). For r &A we must account for the polar-
ization energy Vp(r), which depends slightly on r. As a
first approximation we may take Vs=const, and calcu-
late it for r =0. In this case Vr = —(ae I
2)Jg (4mr Nlr )dr= —CpN/R, with Cp=2nae,
where a =0.392 X 10 cm is the atomic polarizability
of neon. If the density N is fixed we have therefore

@pN
V;=—,VQ= VQ(N) . (20)

n, /2
X

FIG. 12. Sketch of the rhs and lhs of Eq. (15) for the electron
in the spherical well. It can be seen that there are solutions only
if the potential well strength H=P satisfies the condition
H + m/2.

where

and

X =k,%

X
(H —X )

(15) The radius AQ, below which there are no bound states, is
given by Eq. (19), which together with (20) becomes

2

VA+ 8 N% — =0,
4

with the solution

H = (VQ —V)A (17) ' 1/2

If X, =(k; ),A is the solution of (15), then the energy 6,
of the s state will be, from (13),

1

2VQ
~2@2 + V ~2

g 2
(21)

$2
,X', + V, .

2mB
(18)

The right-hand side (rhs) of (15) is always positive and ap-
proaches 00 for X~H, and therefore there are no solu-
tions if H & n/2 (see Fig. 12). In order to have a bound

For each A )Az, and with H given by (17), we find out
the solution X, =X, (A) of Eq. (15). The total energy Cr
is given by (18) plus the volume energy 6'v given by the
work done (at constant temperature) against the pressure
P to create the spherical cavity



7384 A. F. BORGHESANI AND M. SANTINI 42

fi X, (A)

2m%

6'pN
+@v (22)

where for the empty bubble 6't, +(4n/3. )PA'. If 6r(A)
shows a minimum 6M for %=AM, the localized state
be stable, otherwise both Nr(R ) and R decrease until, for
% =Ao, the electron leaves the bubble.

However, the bubble can be unstable even if br(%)
shows a minimum. In fact, if 6M ) Vo the quasifree state
is certainly favored. On the contrary, only if
Vo

—N~ ))kii T is the bubble state certainly stable. As a

rough approximation, the number of localized electrons
nz and of quasifree electrons nF are given by the ratio
n~/nF=exp[ —(6M —Vo)/kiiT] Ad. etailed calculation
shows that empty bubbles are very unlikely in neon. As
an example, if we use for Vo(N) the Wigner-Seitz poten-
tial (8), at T =46. 5 K the empty bubble is stable only for
densities N ) 137X10 cm, and @M= VO (n~/nF= 1)
only for N ) 175X10 cm . This is due to the fact that
the gas pressure is high in our case (P =3.41 MPa for
T=46.5 K, N=137X10 cm ), and the volume energy
gi, is so large that it prevents the formation of stable
bubbles.

V; = Vi+ Vp = Vo(N) )— pN
(1 F), — (23)

where the polarization energy has been roughly corrected
in such a way that Vp ~0 for F~1 and Vp =e pN/R for
F =0. At N, F, and % fixed, we have Vo and V;, and so
H =(2m/h' )[Vo —(Vi+Vz)]. The condition H &n /
4 allows us to calculate the minimum radius %0 as

2. Partially empty bubble

The density profile of the empty bubble is certainly un-
realistic for a gas, and self-consistent methods can be
used to calculate a softer profile which minimizes the to-
tal bubble energy. Here we want to show with a very
simple model that stable bubbles are possible even at high
pressures if they are only partially empty.

As shown in Appendix B, the volume energy can be
much smaller than PV in this situation. Let us therefore
consider a model in which inside a spherical cavity of ra-
dius A there is a density N, =NF, where F is the filling
fraction of the cavity. The electron self-energy will be
Vo = Vo(N) for r ) Band Vi.= Vo(Ni) for r &R.

For the potential for r &% we take

N(1 F)—6"p+[N—(1 F) Bp+—(2m /iii )( Vo —V&)n ]'~

2( Vo —Vi )
(24)

For each A )Ao we can calculate H, and we can find out numerically the solution X, =X,(R) of Eq. (15). The total
energy is still given by (22), where now the volume energy @i is given by relation (Bl) of Appendix B. It can be easily
calculated if we know the equation of state P =P(N, T) at the chosen temperature T. At each temperature T, however,
the data calculated from the state equation can be well fitted to the cubic equation P = AN +BN +CN, at least in the
density range of our interest. In this case 6 i can be calculated directly from (Bl) and it turns out to be

P (1 F) [BN—(1 —F)+0.5CN —(1 F)—A lnF—]
4m. FN 2 2

V P
(25)

We now change % to find, if it exists, the minimum 8~
of the total energy 8r(A ). The dependence of
6 =(CM —Vo)/kz T as a function of the filling factor F is
shown in Figs. 13 for several densities at T=46.5 K.
The calculations were done by using the Wigner-Seitz po-
tential (8) as Vo(N), and the equation of state of McCarty
and Stewart. ' The results of the model show that at low
densities the bubble tends to get more and more filled to

minimize its total energy, until no minimum exists for 8r
as a function of J7. Electron bubbles at these densities,
even if created by thermal fluctuations, cannot be stable.
As the density is increased, the total energy CM shows a
minimum 8z for defined values Aii and F~ of bubble ra-
dius and filling factor. This minimum becomes more and
more pronounced as the density is increased. In this situ-

ation the bubble can be stable against fluctuations of the

0
TABLE I. V„Vp,D„Nv, and D~ in meV, %~ in A. The symbols are defined in the text.

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Vl

8.9
20. 1

33.2
47.9
64.0
81.5

100.3
120.4
141.8

Vp

—38.0
—28,9
—22.3
—16.8
—12.4
—8.7
—5.56
—3.04
—1.14

125.6
115.5
112.7
113.5
117.9
124.4
133.1
143.2
154.6

43.8
41.1

36.0
30.9
25.5
20.5
15.6
10.9
5.76

169.3
156.5
148.6
144.5
143.4
144.9
148.7
154, 1

160.4

1.25
—1.94
—3.91
—4.96
—5.23
—4.84
—3.91
—2.55
—0.98

10.1
11.8
13.4
15.2
17.2
19.7
23.0
28.0
37.4
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FIG. 13. The dependence of 5 as a function of the filling fac-
tor for neon gas at T=46.5 K and at several densities. From
top to bottom: N=95.0, 95.5, 96.0, 97.0, and 98.0 (X10
cm ').
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P =ps(ngln)+pF(nF/n )= =ps+(nF/n)pF, (&6)

because ps «pF. We may estimate pz as (Mz =e/6m. rI%',
where g is the gas viscosity. By neglecting the density
dependence of % and r), we get, with %=18 A and
r1=21.0X10 Pas, p~=2X10 cm /V s. Extrapo-
lating for pF the density dependence of the experimental
data for N (90X10 cm, we get the values shown in
Fig. (15).

The disagreement is not surprising, because our system
of coexisting quasifree and localized electron states is far
from being a simple two-level system. The localization

radius or of the filling factor. We see from Fig. 13 that a
weakly stable bubble can be formed for N' ~ 95X10
cm, in fairly good agreement with the experimental re-
sults. To give an idea of the various contributions to the
total energy CM, we show them in Table I for T=46.5

K, N = 120X 10 cm, and Vo = 164.3 meV.
It has to be said that the results of the model depends

on the self-energy Vo(N), for which we do not have at
present an unambiguous choice. In spite of its crudeness,
however, our model shows that bubble states are possible
at the right densities, where we found an enhancement of
the decrease of the electron mobility and a peculiar
dependence of the mobility on the electric fields. In Fig.
14 we show our results obtained at several densities at
T=46.5 K with the use of the Wigner-Seitz potential (8).

As said before, we have, at high densities, the coex-
istence of quasifree and localized states (coexistence re-
gion). If h~ =(C~ —

V)/oker T, we have as a rough esti-
mate for the number of quasifree and localized electrons,
nF and nB nF/nB exp(~a) and wtth nF+na =n
(nF/n)=exp(hz)/[I+exp(hz)], where n is the total
number of electrons. For the average mobility it should
be

FIG. 14. Bubble radius (%' in A), 6&, and filling factor F
plotted vs density at T=46.5 K.

process is, rather, a kind of two-step process. In the first
one the electron is trapped in a suitable density fluctua-
tion (incipient bubble). It may then produce a stable
bubble in a second step by adjusting the radius and filling
density to reach the minimum energy 8~. To calculate
the mean mobility p, we need therefore both the mean
lifetime of the quasifree electron and the mean stabiliza-
tion time. No such theory has been produced until now,
and the behavior of the electron mobility in the coex-
istence region is still an open problem.

10

10
N

102

10
I

io' [
I

10 ~~l~~
~ ~

10
0 40 80 120

I

160

N(10 cm )

FIG. 15. Experimental mobility results plotted along with
the mobility calculated according to Eq. (7), taking into account
the energy shift given by Eq. (12) (curve 1). Curve 2 is the aver-
age mobility calculated as explained in the text [relation (26)].
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APPENDIX A

C. Integrated wave form

Because p, is rather low, we can use quite large fields
without heating the electronic distribution. In this situa-
tion ~; is small enough to fulfill the condition RC&&~;
(RC =5 s). In this case it is easy to obtain the integrated
wave form, v (t) =(1/C) foi(t')dt'. By using the relation
(A 1), one gets

We want to calculate the wave form when the condi-
tion r, ))r, is not satisfied. Let y =w, /w, =r, /r„and
i0= —enp/~, . Let alsoy &1.

A. O~t +w,

t y —1 —~ytl~,
u, (t) =uo —+ (1—e ')

Ay

with U0
= —en 0/C. For t = 7

„

(A6)

The number of electrons present at the time t is

n, (t)=noexp( —vA t) T. he number of ions is
n, (t) =no n, (t—) .The total current is
i (t) =en, (t)/r, en; (t)/—r„which results to be

u((r, ) =uo —+ (1—e )I e 0

For r, &t &r;, uz(t)=v((r, )+(I/O) I', 1(t')dt', where
e

t (t) is now given by (A5). The result is

i (r) =—[1+(y —1)e '],
valid for 0 & t & r, . For y ))1, the relation (Al) becomes
relation (1), Sec. III A.

B. ~, ~t~w;

We have only ions, and we need the ionic distribution
n;(x). The number of ions created within
(r', r'+dr')(0&r'&r, ) is

t y
—1 —[Ay/(y —1)](1—t/~ )

u2(t =uo —+ 1 —e
Ay

For t =r„vz(r;)=uv For t .~r;, u3=u()exp[ (t r—;)/—
RC]. Two examples of such wave forms are shown in Fig.
16.

I

dn; =v„noe " dt'=n;(t')dt' . (A2)

They are created at the location (x ', x '+ dx '), with
x'=m, t', dx'=m, dt'. At t =~, these ions are at a new
location (x,x +dx), with

X =X +(7 r )W;=W r+e(re t )W;

dx =(w, —w;)dt' .

(A3A)

(A3B) 0.5 t(ms )

The ionic distribution for t =r, will be dn, = n, (x )dx
=n;(t')dt'. Inserting t', and dt' from (A3A) and (A38)
one has

P

0 ~ - ~cHL

y A /(y —1) —Axy/d(y —1)

(y —1)d
(A4)

lp —[&yl(y —I)](I—t/~ )i(t}=—(1 —e (A5)

which holds for ~, t

which holds for x I
~ x d, with x, =m;~, . For x & x I,

n, (x)=0. The ionic distribution drifts towards the col-
lector at a velocity w;. At the time t (r, & t & r, ), a layer
of thickness do=(t r, )w; in the fro—nt of the distribu-
tion has just been collected. The ions in the drift space
are therefore

(1—do)
n(t)= J n( )xdx,

l

and they induce a current i (t)= en, (t)/r, .—The calcula-
tions give us

04 t(ms )

FIG. 16. Two typical wave forms where the electron- to-ion-
mobility ratio is small. In the upper signal, obtained with an
electric field E =5230 &/cm, ~, =660 ps, p, /p, =15. For this
wave form the attachment efficiency is A =2.4. This value is
small enough to detect the kink where the electronic part of the
signal ends. In the lower signal, obtained with a field E=3150
V/cm, ~, =410 ps, p, /p; =4, the attachment efficiency is
A =25, so that the discontinuity in the slope at t =~, cannot be
detected.
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APPENDIX B

P
nn'

or

We consider a small sphere inside a gas of average den-
sity N, enclosed in a volume 0 at a pressure P. Let 0; be
the initial volume of the small sphere and N] 0;N the
number of atoms inside it (Q, «Q). Let us force the
sphere to expand at N& =const up to a final volume

Qf « Q. The mechanical work will be L = f nf [P
I—p(Q')]d Q', where P and p(Q') are the pressure outside

and inside the sphere, respectively. The equation of state
at T=const is usually given as p =P(n), where n is the
number density. It is therefore convenient to use
n'=NQ;/Q' as a new integration variable. if
nf =NQ; /Qf is the final density inside the dilated
sphere, we may define a filling factor F as nf =FN
=(Q;/Qf )N, and the work can be written as

L=NQ, .
'" P n

N n 2

0.8

0.6

CL

0.4

0.2

0.2 0.4 0.6 0.8

FIG. 17. Ratio of the work spent to create a partially filled
spherical cavity of volume Qf against the external pressure P as
a function of the filling factor F to that done for an empty cavi-
ty. Dashed-dotted line, ideal-gas case; solid line, neon gas at
N=122X10 cm 'at T=46.5 K and at P=3.30MPa.

(Bl)

The relation (Bl) is finally the work needed to create a
small spherical bubble of volume Qf and density N'=FN
inside a gas of density N at the pressure P. In the ideal-
gas approximation, p(n)=nk~T, P =Nk~T, and (Bl) be-
comes

L =PQf(1 F+F lnF—) . (B2)

The ratio L /PQf is plotted in Fig. 17 as a function of
F. One can see that the work done for a partially empty
bubble can be considerably smaller than PQI. For
F =0.5, as an example, the work is only 15% of PQf .
The situation is even better for a real gas, as one can see
from the results obtained from relation (Bl) for neon
(T=46.5 K, N=122X10 cm, P=3.30 MPa).

As a check of the correctness of our calculations, we
first note that relation (Bl) obviously gives L =PQI for
F =0. In the second place, we stress the fact that it gives

the usual result of the density fluctuations for F=1 and

( ~
n N~ /N) —&& 1. In this case, in fact,

p (n) =P+y(n N), with y—=(dPIBn )„z=(1/ngT),
where gT is the isothermal compressibility. In this ap-
proximation it is easy to obtain from (Bl) that
L =QfyN[1 F F ln(1—!F)]—. Expanding ln(1/F} up to

second order, one gets

L =QIyN[1 F F(1/—F —1)—+0.5F(1/F —1)2]

(1 F)—=0.50fyN F (B3)

Inserting F = n /N and y = 1/Ngr, L = (Qf /2yr )(N
n) InN, w—e obtain the usual result for the probability

of a thermal density fluctuation n —N inside a volume
Qf as P ~ exp[ QI( n —N) /2nNy r kz—T].
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