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We have studied cellular shapes in directionally solidified CBr4-Brz and have shown that they fol-

low a scaling law from the planar-cellular threshold V, up to about (8—9) V,. : the shapes depend on

the relative velocity e={V —V, )/V„and not separately on the absolute velocity V or the tempera-

ture gradient G. A comparison with Saffman-Taylor profiles is found to be unsatisfactory. We then

examined cellular widths and their variation along a given solidification front from threshold up to

the appearance of dendrites. Again up to about {8—9)V„the dispersion is comparable to experi-

mental uncertainties but beyond that point the width of some cells begins to increase spectacularly.

These abnormally wide cells change shape, and the widest ones become dendrites once the Peclet

number reaches 2-3.

I. INTRODUCTION

The growth forms of crystals are often spectacularly
regular. They are the result of a dynamical balance be-
tween the production of latent heat —and of solute in the
case of alloyed materials —and their evacuation away
from the solid-liquid interface. Here, we shall examine
the patterns exhibited by the interface between solid and
liquid during directional solidification. In this experi-
ment, the sample (a thin sample of a transparent organic
containing a small solute concentration Co), initially
liquid, is pulled at a given speed V in an imposed temper-
ature gradient G set up around its melting temperature.
Below a critical pulling velocity V, (for a given concen-
tration and temperature gradient), the solid-liquid inter-
face is planar. Above, it presents a quasiperiodic cellular
deformation (on a scale of the order of 50 pm) the ampli-
tude of which increases with increasing pulling speed.
The cells eventually develop sidebranches, (at V of the or-
der of 10V, in the material under investigation here) and
are then called dendrites. These patterns are related to
solute segregation in the solid.

Mullins and Sekerka analyzed the physical mechanism
of the instability that results from the competition be-
tween the destabilizing, effects of the solute diffusion and
the stabilizing effects of the temperature gradient and of
the interfacial tension. In the limit of low velocities and
for materials with equal heat conductivities in the solid
and in the liquid, the bifurcation from a planar to a cellu-
lar front takes place at a critical velocity

DGK
m (K —1)CO

where D is the solute diffusion constant in the liquid, I is

the liquidus slope, and I( is the partition coe%cient of the
alloy.

Since then, interest in solidification has grown among
physicists in the perspective of the study of systems far
from equilibrium in which a periodic pattern develops,
such as in Rayleigh-Benard convection or Taylor-

Couette fiow. The same type of general questions ap-
pear: is the period well defined? how is it selected? does
a unique and reproducible value appear, or does it de-

pend on the history of the system?
In the present paper we first examine cellular shapes in

CBr4-Br~ and show that they follow a scaling law from V,
up to about (8—9)V, : the shapes depend on the relative
velocity e =( V —V, )/V„and not separately on absolute
velocity V or temperature gradient G. We then consider
widths of individual cells along a given interface and
their dispersion from threshold up to the appearance of
dendrites. Again up to about 8V„the cellular width is
well defined, the dispersion being comparable to experi-
mental uncertainties but beyond that point the width of
some cells begins to increase spectacularly. These abnor-
mally wide cells change shape; the widest ones become
dendrites once the Peclet number reaches 2—3.

II. EXPERIMENT

The experimental setup is essentially similar to that
suggested by Jackson and Hunt and has been described
elsewhere. The alloy studied is CBr4 with 0.12% impur-
ities, essentially Br&. The material is chosen because it is a
plastic crystal that, like most metals, presents a solid-
liquid interface that is rough on the atomic scale. The
solidification kinetics are expected to be rapid, the inter-
face to be locally at a thermodynamic equilibrium, and
indeed the solid does not facet. Physico-chemical con-
stants for the alloy are to be found in Ref. 6. The samples
are approximately 50 pm thick which excludes convec-
tion in the liquid phase. The experiments take place un-
der the microscope and are video-taped. Selected frames
are digitalized (512X760 pixelsX256 gray levels) on a
MacIntosh II microcomputer and cell contours are ex-
tracted and ana1yzed.

In these experiments only cells or dendrites oriented
perpendicular to the solid-liquid interface were retained.
All the states were stationary on the time scale of our ex-
periments, which decreased from several hours to several
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minutes as pulling velocity is increased over the range
studied here (2—70 pm/s). These times are well above the
characteristic solute diffusion times [D /K V~ in
(s) —10 /V (in pm/s)].

During an experiment, the pulling speed is increased
by small steps (= 10% of the final speed).

III. CELL SHAPES

As the pulling velocity is increased above threshold
(for given concentration and temperature gradient) the

cells become deeper and more pointed (Fig. 1) and their
width decreases as V +—'. They neveretheless retain
a more or less rounded shape, as opposed to more point-
ed forms which we shall discuss below. These cells,
which exist up to about ten times threshold, have a num-
ber of common characteristics.

The most obvious parameters with which to character-
ize cell shapes are the cell width A, and the tip radius p.
The ratio of the two, the reduced tip curvature k!p, mea-
sures the "pointedness" of the cell. %'e measure the cell
width directly, taking the distance between midpoints be-

FIG. 1. Cell shapes for different relative velocities: (a) @=0.3 (V=7.4 pm/s, V, =6 pm/s, G =110K/cm, A, =55 pm, P =0.35);
(b) @=1.6 (V=14 pm/s, V, =5.4 pm/s, G =110K/cm, A, =45 pm, P =0.5); (c) a=2 (V=16.6 pm/s, V, =5.4 pm/s, G =107 K/cm,
A, =40 pm, P =0.6); (d) a=4 (V=25 pm/s, V, =5 pm/s, G =106 K/cm, A, =30 pm, P =0.6); (e) a=7.5 (V=31 pm/s, V, =4. 1 pm/s,
G = 100 K/cm, A, =30 pm, P =0.8); (f) e-8.5 ( V =49.3 pm/s, V, =5.3 pm/s, G = 110 K/cm, A, =45 pm, P = 1.9).
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tween adjacent cells (precision 2 —3%) and the tip radius
is obtained by fitting the tip to a parabola (Fig. 2, pre-
cision 5%). The height h at which the tip deviates from
the parabola is smaller or of the order of the tip radius:
h/p varies from about 0.25 near threshold to about 2 at
10V, . Surprisingly, whatever the shape of the cell, the
width w over which the fit is good is approximately two-
thirds of the cell width.

Along a given front, one can observe some dispersion
in cell widths (this dispersion is discussed below). The tip
radii are also different, yet the ratio A, /p is constant to
within less than 10% (Figs. 3 and 4). What is more, the
cells are homothetic, i.e., they are superposable when re-
duced to unit width (Fig. 5). The cell shape is given un-
der a given set of values of the control parameters. Yet
when one compares experiments with different thresholds
(due here to the use of different temperature gradients)
shapes are very different for equal velocities. On the oth-
er hand, they are identical for equal relatiUe velocities
e=(V —V, )/V, . Figure 6 shows the superposition of
two such cells. Figure 7 shows that the ratio A, /p (aver-
aged along a given front) increases as e increases: the
cells become more pointed. We thus find the following
scaling law: in the range of parameters explored, cell
shapes depend only on the parameter e and not on V or G
separately.

No exact analytic predictions of cell shapes exist up to
now: the system under study is highly nonlinear since we
are working well above the planar-cellular bifurcation
(which is subcritical in CBr4-Br2), so amplitude equation
methods are not applicable. In the small-Peclet-number
approximation, i.e., when the diffusion length lD =D/V
(D is the solute diffusion coefficient in the liquid) is much
greater than the cell width A, (P =A, /lD « 1), an approxi-
mate analytic treatment of the directional solidification
(DS) problem can be carried out because it becomes for-
mally analogous to the Saffman-Taylor (ST) prob-

10—13

When this analogy is made between the two problems,
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FIG. 3. Tip radius p (squares) and reduced curvature A. /p (di-
amonds) vs cell width (G =104 K/cm, V=30 pm/s, a=5.5).
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FIG. 2. Fit of the cell tip (overlapping squares) to a parabola
(solid line). The base of the cell is in fine dots.

FIG. 5. Superposition of two cells of different widths taken
from the same front and reduced to unit width (6 =110K/cm,
V=49 pm/s, @=8.3). Squares, A, =41 pm; crosses, A. =46 pm.
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an effective surface tension coefficient o,tr appears. [The
equivalent parameter in the ST problem is
rrsT=b T/(48pUa ) where b is the Hele-Shaw plate
spacing, a its half width, p the viscosity of the driven
fIuid, U the velocity of the interface, and T the surface
tension. ] In directional solidification it has been shown
by Mashaal et al. ' to be

FIG. 6. Superposition of two cells taken from different exper-
iments carried out at the same relative velocity e, and reduced
to unit width. Squares: G =100 K/cm, V=30 pm/s, A, =29
pm, a=5.5, A, /p=3. 6; crosses: G =46 K/cm, V=21 pm/s,
A, =36 pm, a=5.5, k/p=3. 6.

scales on which capillarity stabilizes the solid-liquid in-
terface: do= TMyK/[Co(K —1)mL] where TM is the
melting temperature of the pure material and y is the
surface tension; I, is the thermal length, characterizing
the length scale on which the temperature gradient 6 sta-
bilizes the interface: I, =Co(K —1)m/(KG).

Our experiments could eventually satisfy the low-
Peclet-number condition (our minimum P=0.4), so we
have carried out the comparison. For CBr4-Br2,

do =4 X 10 cm, 1, (cm) = 1.8/[G(K/cm)], so
o =730/[[G(K/cm)][A, (pm )]I.' A typical order of
magnitude for cr will be therefore 10 —10 while o.,~
will vary in the range 10 —10 (since A,sT=0. 5 —1).
These are small values: the corresponding ST fingers
with such surface tension coefficients have relative widths
between 0.5 and 0.6 and relative tip curvatures greater
than 4.5 (except in presence of anisotropy' where the rel-
ative widths are even smaller and the curvatures larger).
This does not correspond to the range observed in DS ex-
periments (Fig. 7).

DS cells should be compared to the ST profiles in the
presence of interfacial tension that have been calculated
numerically by MacLean and Saffman. ' Their relative
width A,sT is determined by requiring the relative tip cur-
vature of the finger profile to be equal to that of the mea-
sured cell. The shapes closest to threshold [Figs. 1(a) and
1(b)] are squarer than any shape observed in the ST ex-
periment, perhaps due to the influence of the cell cusps
that are very shallow. Figure 8 shows a DS cell (@=5.5,
P =0.7) and the ST shape (AsT=O. 79) of same relative tip
curvature. (Note that the shapes coincide over a height
much smaller than the cellular width. ) For this cell
cT ff 3.4 X 10 whereas the surface tension coefficient
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where K is the solute partition coefficient, A.sT the relative

width of the Saffman-Taylor finger that fits the tip of the
cell, and o is the capillary constant o =dol, /A. . Here do

is the capillary length, which characterizes the length
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FIG. 7. Average value of the reduced curvature k/p along a
given front vs relative velocity e (squares, G =50 K/cm; dia-
monds, G =100 K/cm).

FIG. 8. Superposition of a Saffman-Taylor profile (squares,
A,sT=0, 79} and a solification cell (dots, G =100 K/cm, V=30
pm/s, A, =29 pm, @=5.5, A. /p=3. 3, P =0.7).
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TABLE I. Relative velocity e, Peclet number P, width ksT of
tke Saffman- Taylor finger of equal relative tip curvature,
effective surface tension parameter o.,z, and expected ST surface
tension parameter o.sT for different cells.

10.5
4.8
5 ' 5

5 ' 5

4

1.1

0.6
0.7
0.9
0.6

0.6
0.68
0.78
0.85
0.94

3.3XIO '
3.4X10 -'

3.4X10 '
1.8X 10
2.6 X 10--'

7.4X10-'
2.2X10 '
5.4X 10
8.6X10 '
1.7X10 '

for a ST finger of relative width 0.79 is o =6 X 10 . The
same process with a more pointed DS cell (@=8.5,
P =1.1) gives a ST finger of A.sT=0.6, o,a=3.3X10
and o =5X10 . Table I is the result of a number of
such comparisons. Clearly, the surface tension parame-
ters are not equivalent.

It would seem, therefore, that at the values of the
Peclet number at which our experiments are carried out,
the formal analogy between ST and DS equations no
longer holds. Numerical calculations by Mashaal and
Ben Amar' clearly illustrate this point. At P =0.6 they
attain a regime where the relative curvature is practically
independent of A,sT (which they calculate by fitting the
sides of the cells, not the tip) and is close to the value
(A. /p=2) which we observe at the same relative velocity
@=2. Experimentally, it will not be easy to go to a
lower-Peclet-number regime since P varies roughly asV: dividing P by 10 implies dividing pulling speeds by
100.

A number of authors have performed numerical calcu-
lations of cellular shapes. ' Saito et al. have per-
formed dynamical calculations of cell shapes for our ma-
terial, under the same conditions of velocity, tempera-
ture, gradient, and wavelength. A superposition of the
experimental and predicted numerical profiles is shown in
Fig. 9. The agreement is good (consider the variety of
shapes observed experimentally, Fig. 1), although a sys-
tematic discrepancy is observed: the tip radii of the cal-
culated profiles (in Fig. 9, p„„=4.5 pm and p,„,=6.5

pm) are smaller than the experimental ones. We attribute
this to the fact that the calculations are carried out in
two dimensions whereas the experiments are three dimen-
sional. (We have previously proved the importance of the
third dimension both in displacing the threshold due to
the curvature of the solid-liquid meniscus, and in the
capillary instability of cell cusps. Effects of the third
dimension have also been observed in Saffman-Taylor
fingers by Tabeling et al. ) By measuring the curvature
of the projection of the cell tip onto the plane of the sam-

ple we miss the component of the curvature in the per-
pendicular direction. Since the sample thickness is of the
same order as the cell width, the measured curvature
could be a factor of the order of 2 smaller than the total
curvature. On the other hand, in the numerical profiles,
the total curvature is in the two dimensions. We feel that
these results show that it is somewhat illusory to seek for
a precise fit between two-dimensional (2D) calculations
(numerical or analytical —such as in the Saff'man-Taylor
model described above) and experiments carried out in
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FIG. 9. An experimental profile (dots, 6 =100 K/cm, V = 31

p,m/s, A. =29 pm, @=5) and the profile calculated numerically

by Saito et a/. for the same conditions (diamonds).

thin samples, the third dimension of which is clearly im-

portant.

IV. WAVELENGTH DISPERSION

The morphology of a solidification front in the cellular
regime (i.e., up to relative velocities a=7 8), once —a sta-
tionary state is reached, is to a good approximation
periodic and the wavelength measured is usually an aver-
age over several tens of cells —we note it here as k. But
in the present study we are particularly concerned with
the dispersion around this value. We shall therefore con-
sider the widths of individual cells, noted k.

Figures 10 and 11 show the widths of individual cells
versus pulling velocity for two temperature gradients
(G =50 and 100 K/cm): points on a vertical correspond
to cells along a given front. The straight lines represent
the variation of the average wavelength A, as previously
reported. In the cellular regime, A, decreases as
V —', with a standard deviation on A. less or of the
order of 10%. The experimental sources of fluctuations
in cell widths are of the same order. These are due to ir-
regularities in pulling speed which give a 5A, /X=3%%uo', side
and grain boundary effects can give a 5X/A, =5%%uo, irregu-
larities in temperature gradient and thickness give a
negligible 5A, /A, . Because of this experimental "noise, "
we cannot afBrm that there is strict selection of A, , but the
band of wavelengths observed is very narrow in compar-
ison to the width of the Mullins and Sekerka neutral
curve or even to the Eckhaus limit (calculated so far only
for a normal bifurcation ).
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FIG. 10. Cell width 1, vs pulling velocity V for a temperature
gradient G =50 K/cm. V, =2.7 pm/s. The straight line

represents previous results (Ref. 6) concerning the average
wavelength.

Beyond a certain velocity, the dispersion in cellular
widths begins to increase spectacularly. It is to be noted
that the points are spread aboue the V curve: anoma-
lously wide cells are appearing. The increase in disper-
sion takes place at different velocities in Figs. 10 and 11
but at the same relative Uelocity: a=7 —8.

In the cellular regime wavelength adjustment can take
place via local phenomena such as cell splitting or pinch-
ing off. ' The widths of neighboring cells then adjust
progressively by what could be a phase diffusion mecha-
nism. The phenomenon is illustrated in Figs. 12(a), a
photograph of the solid shortly after the pinching off of a
cell, and 12(b) and 12(c) which show the evolution of the
cell widths with time during the same event. The width
adjustment is only measureable over 2-3 cells, a distance
insufficient to allow a quantitative analysis that could dis-
tinguish between diffusion and propagation.

As the relative velocity is increased, the cells continue
to be pinched off but splitting no longer takes place. The
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FIG. 11. Cell width k vs pulling velocity V for a temperature
gradient 6=100 K/cm. V, =5.4 pm/s. The straight line
represents previous results (Ref. 6) concerning the average
wavelength.

FIG. 12. A cellular front shortly after the pinching off of a
cell (a) and (b), (c) the evolution in time of the widths of the cells
numbered in Fig. 13(a). Cell number 5 is pinched off at time
t =110 s. Its neighbors become successively abnormally wide
then readjust on a time scale of the order of a minute.
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cell tip radius having decreased, a much greater Quctua-
tion of tip curvature is necessary to create the concave
point that initiates tip splitting. The same phenomenon
is observed in impure pivalic acid by Bechoefer and
Libchaber: close to threshold cell shapes are sufficiently
rounded for tip splitting to take place, then, very rapidly
because the strong anisotropy of pivalic acid gives more
pointed shapes than CBr4, tip splitting becomes impossi-
ble as pulling speed is increased. It also seems that in the
experiments reported here the phase-diffusion-type mech-
anism is blocked: we no longer observe the rapid read-
justment illustrated in Fig. 12. Under these conditions
cells can only grow larger, hence the anomalously large
ones observed.
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V. FROM CELLS TO DENDRITES

There is some confusion in the literature as to the exact
definition of the term dendrite. We shall call a dendrite
any cell that has developed visible sidebranches, i.e., non-
stationary, quasiperiodic deformations of its flanks, in
practice of a minimum amplitude of 2 —3 pm.

The increase in the dispersion in the cell widths de-
scribed above announces the appearance of dendrites. It
is associated with a dispersion in the cell shapes. One can
observe along a given front the coexistence of narrower
rounded cells behaving like the cells described in Sec. III
and wider cells that are more pointed. These cells, when
reduced to unit width, are no longer superposable. Fig-
ure 13 shows the cell widths observed along a given front
and photographs of some of the cells. The ratio A. /p is no
longer constant (Fig. 14) but increases for the larger cells,
so that they are no longer homothetic. The profiles of the
larger cells fit to a parabola over a greater height (at most
2p) and the tip radius tends to become independent of I,
as expected in the dendritic regime where p is determined
only by V. Finally, the largest cells develop sidebranches.
With such a large dispersion not only in cell widths—
they can vary by a factor 3 along a given front —but also
in ce11 shapes, it becomes quite meaningless to compute
an average value of the cell width, one loses too much in-
formation on the physical mechanism behind the appear-
ance of sidebranches.

The dispersion in cell widths associated with the ap-
pearance of sidebranches can be observed in a number of
systems. Trivedi remarked on the coexistence of nar-
row cells and wider dendrites in the succinonitrile-
acetone system, as did Bechhoefer et al. in liquid crys-
tals. Published micrographs of A1-Cu show the same
phenomenon.

The Peclet number expresses the degree of "intercon-
nection" of the cells through solute diffusion which has a
range of the order of the diffusion length. When this
length becomes smaller than the cell width (i.e., P ) 1),
the cells should no longer be influenced by each other,
and the lateral instability should be free to develop. This
notion is confirmed by the numerical calculations of Saito
et al. We have calculated the Peclet number for the
widest cells, P„&~,and for the narrowest dendrites, Pd,„,
along various fronts (Fig. 15). We find that sidebranches
appear for P between 2 and 3 at velocities of 20—30
pm/s and 4—5 at velocities of 50—60 pm/s. This result
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FIG. 13. Cell widths vs their position along the solidification
front (a) and photographs of cells at the points indicated on the
curve [(b), (c) (d)]. Note the small amplitude sidebranches on
(b).
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FIG. 14. Tip radius p (squares) and reduced curvature k/p
(diamonds) vs cell width (G =46 K/cm, V =25 pm/s, @=9).

can be compared with other experiments when data con-
cerning indioidual cells are available. We calculate the
Peclet numbers for the widest cells (P„~~at V„s)and for
the narrowest dendrites reported (Pd,„atVd,„),which
gives us a more or less well-defined interval. These data
appear in Table II and in Fig. 15. In spite of the irnpre-
cision, there is a clear tendency for the limiting Peclet
number to increase as velocity is increased. Classen
et al. ' have shown numerically that the Peclet number
at which sidebranches appear increases with increasing
kinetic anisotropy. Anisotropy of surface tension on the
other hand does not affect it. Figure 15 tends to confirm
this result, since kinetic effects increase as velocity in-
creases. The increase in the limiting P can be interpreted
qualitatively as being due to the fact that the preferential
directions of growth are more sharply defined when
strong kinetic effects are present. In the cubic crystals
under study here sidebranches must grow perpendicular
to the main stem, that is, well back to the sides of the
cell. More space is needed than for less anisotropic
growth where the branches can begin to grow on the in-
clined flanks of the cell tips. For low velocities the limit-
ing P=0. 1. The model of Karma and Pelce concerning

V (p.m/s)

FIG. 15. Peclet numbers for the widest cells (P„~~)and the
narrowest dendrites (Pd,„)reported, vs pulling velocities. Dia-
monds represent the values measured in the present experiments
and diamonds those indicated in Table I.

the mechanism for the apparition of sidebranches could
be applicable in this regime.

To summarize, a given cell becomes a dendrite once it
is sufficiently wide, that is, once P reaches a value that is
of order 1 but that increases with the pulling velocity.
This limiting value of P can be attained by increasing
k—this is the case in our experiments. Then the appear-
ance of sidebranches on a cell is a local phenomenon and
when and where this occurs depends on local events
(neighboring cells being pinched off). The concept of a
sharp and well-defined "cell to dendrite transition, " fre-
quently used in the literature, is not appropriate here: we
do not observe a global transition. The limiting value of
P can also be attained by increasing the pulling velocity,
as in the experiment of Bechhoefer and Libchaber
where wavelength adjustment mechanisms are blocked.

Further experiments on different materials are clearly
needed. It will be important to examine the characteris-
tics of individual cells and not only to consider averaged
or global quantities. In particular, the increase in the A,

TABLE II. Peclet numbers and pulling velocities for the widest cells and the narrowest dendrites re-

ported in various alloys. (SCN denotes succinonitrile. )

Alloy

Impure pivallic acid'
Pivalic acid —ethanol'"
SCN acetone'
SCN acetone'
Al —4.5 wt. % CU

Al —2 wt. % Cug

Al —4.1 wt. % CU"

Fe-8 wt. % Ni'

Pcell

0.75
1

0.5

0.1

0.2
0.1

0.7

Vc, l) (Pm/S)

10
3
2.5

5.8
10
3
7.4

Pd,
„

1.5
1.8
0.7
0.15
0.2
0.3
0.2
1.5

Vd,„(pm/s)

20
7
8.5
1

9.8
10
6

16.1

'J. Bechhoefer and A. Libchaber, Phys. Rev. B 35, 1393 (1987), Fig. 2.
~Using D = 10 ' cm'/s [J.Bechhoefer, H. Guido, and A. Libchaber, C. R. Acad. Sci. 306, 619 (1988)].
'M. A. Eshelman, V. Seetharaman, and R. Trivedi, Acta Metall. 36, 1165 (1988).
dUsing D =0.4X 10 ' cm'/s [P. Bouissou, Ph. D. thesis, University Paris VII, Paris, France (1989)].
'H. Esaka, Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, 1986.
An Geying and Liu Lixin, J. Cryst. Growth 80, 383 (1987).
R. M. Sharp and A. Hellawell, J. Cryst. Growth, 11, 77 (1971),Fig. 1(b).

"Y.Miyata, T. Suzuki, and J. I. Uno, Metall. Trans. 16A, 1799 (1985).
'I. Jin and G. R. Purdy, J. Cryst. Growth 23, 37 (1974).
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versus V curve, often used to define the cell to dendrite
transition, probably masks the large dispersion occurring
as the cells develop sidebranches.

VI. CONCLUSION

We have observed two different regimes in cellular
growth. The first, observed up to relative velocities of ap-
proxirnately 8 produces rounded cells, of well-defined
widths, the shape of which only depends on this relative
velocity. These shapes are not well predicted by an anal-

ogy with Saffman-Taylor fingers. As the constraint is in-

creased, abnormally large cells begin to appear and when

their width exceeds 2 —3 times the diffusion length
(P ~ 2 —3) they develop sidebranches. The appearance of
dendrites is therefore a local phenomenon in CBr4-Br2
and not a global transition.
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