PHYSICAL REVIEW A

VOLUME 42, NUMBER 12

15 DECEMBER 1990

Electrochemical aspects of the generation of ramified metallic electrodeposits

J.-N. Chazalviel
Laboratoire de Physique de la Matiere Condensee, Ecole Polytechnique, F-91128 Palaiseau, France
(Received 16 July 1990)

The growth of ramified metallic deposits by electrodeposition from dilute salt solutions and in a
high electric field has been considered in the geometry of a thin rectangular cell. The equations
governing ion motion in the case of a dilute electrolyte have been solved numerically and analytical-
ly in a one-dimensional (1D) and a 2D approximation. It is found that ramified growth is a direct
consequence of the creation of a space charge upon anion depletion in the vicinity of the cathode.
The front of the ramified deposit is predicted to advance at a speed just equal to the velocity of the
anions in the applied electric field. The presence of this space charge ahead of the growing front is
associated with a potential drop 8V. Resolution of the equations in the 2D case shows that the
dense-parallel morphology of the deposit also results quite naturally from the existence of a space
charge in the vicinity of the filament tips. The average filament spacing and sidebranch tilting angle
can be directly related to the values of 8V and of the applied electric field. The mechanism giving
rise to the space charge will apply as well to any physical system involving electric conduction with
two types of carriers, if one of them exhibits blocking-contact characteristics.

I. INTRODUCTION

The recent activity in the field of fractals and
diffusion-limited aggregation (DLA) has brought renewed
interest in the old subject of ‘““dendritic’ electrodeposition
of metals from a salt solution. Under certain conditions,
i.e., in the presence of a supporting electrolyte and in a
restricted potential range, the motion of the metal cations
is indeed solely governed by diffusion, and the electro-
deposition process is then expected to be well described
by DLA. However, this process is very slow"? and is
complicated by recrystallization phenomena. A much
more efficient way for producing ramified structures by
electrodeposition consists in taking a dilute solution of a
pure salt, e.g., 107 M to 107! M CuSO, or ZnSO; (i.e.,
without supporting electrolyte), and applying a large po-
tential (~10 V) between two electrodes dipped in the
solution.’~° Fractal-like structures can then be grown at
speeds as high as ~1 mm/s.

Most recent efforts have focused on the geometrical as-
pects of the problem, various morphologies of the aggre-
gates have been identified, depending upon the experi-
mental conditions (“DLA-type,” “dense branching,” etc.)
and fractal dimensions have been measured. However,
the basic electrochemical aspects of the problem have
been little considered in the context of these studies. On
the other hand, while the electrochemical literature has
largely addressed the problem of roughening in electro-
deposition," 19713 the present case of simple binary elec-
trolytes has been usually avoided in these studies, as it is
of lesser technological interest, and there is general agree-
ment that the absence of a supporting electrolyte causes
departures from electroneutrality and breakdown of the
standard framework of diffusion-limited ion transport,
hence raising considerable theoretical difficulties. How-
ever, the central problem of electroneutrality near an
electrode has been questioned on more general grounds,
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especially by Newman, and an expansion approach to
this problem has been proposed.!*”!¢ We feel yet that
the problem is far from being settled, so that the funda-
mental question on the respective roles of diffusion and
electromigration in ‘“‘fractal” electrodeposition experi-
ments remains largely unanswered. We will try to ad-
dress this question in the following.

We will consider the growth of metal electrodeposits in
a two-dimensional geometry, starting from a linear
cathode. In Sec. II we will calculate the distribution of
electrostatic potential and ion concentrations for a dilute
electrolyte, in the hypothetical case where uniform
(nonramified) electrodeposition would take place. A sim-
ple solution may be derived. The paradoxical result that
is obtained will prompt a critical revision of the hy-
potheses. This will lead us to the conclusions that the
ramified growth is initiated by the creation of a very large
electric field near the interface, and that the velocity of
the front of the deposit is determined by the velocity of
the anions. This theoretical prediction has been verified
experimentally and some preliminary results have been
reported elsewhere.!” In Sec. III we will consider the re-
gime of “‘dense-parallel” electrodeposition and try to un-
derstand what the origin of the characteristic length that
determines the spacing between the growing filaments is.
It will be shown that it comes out simply from the basic
equations of ion migration.

II. THEORY FOR THE UNIFORM-DEPOSITION CASE
A. The basic equations

We consider a thin rectangular cell, as sketched in Fig.
1. We assume that the two electrodes are made of the
same metal, and that the cell is filled with a dilute solu-
tion of a salt of this metal (soluble anode cell). The
motion of the ions is described by concentration-
independent mobilities (u,. for the cations, u, for the
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Cathode (V=0) Anode (V=V,)

FIG. 1. Scheme of the cell.

anions) and diffusion constants (respectively D, and D,),
which is a reasonable approximation for very dilute solu-
tions.'® We neglect convection of the electrolyte, which
is reasonable to some extent for a very thin cell. The
basic equations for the concentrations C. and C, are then

o _ VW (1)
at €’
aC,
=—V-W,, (2)
at
W,=—-D,VC,+u,C.E, (3)
W,=-D,VC,—u,C,E , @

where E is the electric field, and W, (W,) is the cation
(anion) flux. The electric current density is given by
J=z,eW_,—z,eW,, where z,e and —z,e are the cation
and anion electric charge, respectively. The electrostatic
charge density is p=e(z,C,. —z,C,) (for the bulk, equilib-
rium electrolyte, we define C,=z,C;"=z,C;%") and the
Poisson equation for the electrostatic potential ¥ can be
written

AV=—V-E=—p/eey= —e(z,C.—2,C,) /€€, , (5)

where €, is vacuum permittivity, and € is the dielectric
constant of water. Eliminating the fluxes W, and W,
the evolution of the system is fully determined by

aC,

o =D.AC,—u E-VC.—u,.C.V-E, (6)
aC,

3 DaAC, tu E-VC +pu,CVE, %)
V-E=e(z,C,—2,C,) /€€, . (8)

Let us now consider the hypothetical case where the elec-
trodeposition would be uniform. Then the only relevant
space coordinate is x, the electric field becomes a scalar,
and Eqgs. (6)-(8) reduce to"®

ac, 3’C, aC, 3E
ar Doy THETG THCeG ©)
ac, d’C, ac, 3E
ot Daga THaEg THaCay 1o
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g—f=e(zCCC—zaCa)/eeO. (1)
Now, since the electrolyte is very dilute (cation concen-
tration much smaller than atomic density in the metal)
one may assume that the electrodeposition will not
significantly affect the size and shape of the electrodes,
i.e., the cathode will be fixed at x =0 and the anode will
be fixed at x =L, and the only thing left is to define the
boundary conditions at x =0 and x =L. We suppose
that the only electrochemical reactions are metal deposi-
tion at the cathode and metal dissolution at the anode,
and we assume that the electrochemical kinetics are
ideally fast, hence the boundary conditions for the cat-
ions are just the conditions for electrochemical equilibri-
um at the interface, i.e.,”® ¥(0)=—(kT /z.e)In[z,C.(0)/
Cy] and V(L)=V,—(kT/z.e)ln[z,C.(L)/C,]. Since
the anions are not involved in the electrochemical reac-
tions, the boundary conditions for the anions are
W,(0)=W,(L)=0. We will first show that this set of
equations and boundary conditions can be solved analyti-
cally by using a regional approximation, next we will
present the results of a numerical resolution, then we will
discuss the consequences for the electrodeposition mech-
anism.

B. Analytic resolution

If we limit our interest to the steady-state regime, Egs.
(9)-(11) reduce to

d*C, d | . av
Dc dx? I’l'c—d; CE =0, (12)
d’C, d dv
Da dx2 —,LI.GE agx— —0, (13)
d*V/dx*=—e(z,C.,—z,C,) /€€, . (14)

Since W,(0)=W_,(L)=0, the anions in the steady state

will simply be in equilibrium in the potential, and Eq. (13)
can readily be integrated to

W,=—D,dC,/dx +u,C,dV /dx =0 (15)
or, by using the Einstein relation D, /u, =kT /z,e,

C,(x)xexp[z,eV(x)/kT] . (16)
In the same way, Eq. (12) can be integrated to

W,=—D.dC./dx —u.C.dV/dx=J/z.e , 17

where J is the electric current density through the system
(J <0). Now a simple solution can be derived by using a
regional approximation. In the following, we will be led,
quite naturally, to distinguishing two different regions: a
quasineutral region (z.C.=z,C,) extending from the
anode to the vicinity of the cathode, and a space-charge
region (C, << C,) in the close vicinity of the cathode.

1. Region I: the quasineutral region

The electrostatic potential varies from nearly zero at
x =0 to about ¥V, at x =L. Equation (16) tells us that the
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anions will be concentrated near the maximum of V(x).
As we do not expect a strong concentration of anions
(much larger than C;) over a narrow x range, this indi-
cates that the maximum of V (x) will be rather flat, that is
V(x) will stay within ~kT /e from V, in a sizeable part
of the cell. [This argument, which is derived from Eq.
(16), will of course hold true only for the steady state.]
The flatness of ¥V (x) requires a quasineutrality, that is
z.C,=z,C,, and extracting dV /dx from Eq. (15) and re-
placing into Eq. (17) reduces the system to

dc,
v _ kT T (18)

dx z,eC, dx ’
— dC, C. dC, z, dC,
J —p, + L p, = [1+— |D,
z.e dx pu,C, dx z, dx
(19)

Introducing a constant x; and using J as a parameter that
will be determined later, we get

C =z =—TX7%n (20)
Zete T2 T D (142, /2,)
X —X
v=v)+ Ll 25 1)

z;e L —x;

This region will extend for values of x decreasing from L
to some position x;.

2. Region II: the space-charge region

Equation (21) shows that for x, the potential becomes
markedly smaller than V. In this region, according to
Eq. (16), C, will become negligible (C, << C,). There will
then remain a space charge z,eC,, and the potential will
be given by

d*V /dx = —ez,C, /ee, . (22)

Now the current is still given by the two terms in Eq.
(17). As we may expect that Eq. (22) will lead to very
large electric fields, we will keep only the drift term, as it
is expected to be dominant over the diffusion term

—J/z.e=p, C.dV/dx . (23)
Combining Egs. (22) and (23), we get
€€, dx? dx |z.eu.C, zeep, C? dx
(24)
Integrating the differential equation in C, yields
1/2
— €€,
= \|Tm 0{ , (25)
2zfe*u (x1—x)
172
v=v,—2 | =2 | (x1—xp2, 26)
3 | e€qu,

where the constants ¥ and x| must be chosen close to
V(L) and x;, respectively, in order to match with region
I. Region II will then extend from x ~x; down to zero.
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3. Matching at the boundaries

The values of J and x; can now be derived from the
known quantities. The matching between the two regions
has already been used in Egs. (25) and (26). We are left
with the matching of ¥ in x =0; from Eq. (26) it gives

— X3 ={3[V(L)—V(0)]/2}%€qu. /2 . (27)

Also we have to express that the total amount of anions
in the cell has not changed. This is obtained by integrat-
ing C, from x to L in Eq. (20), hence,

eD . (1+z./z,) 2

=C,L . (28)

An order-of-magnitude estimate, taking D,=D,=10"°
em?/Vs, z,=z,=1, Co=6X10'"® cm™3 (0.01M), V,=10
V, and L =1 cm, gives —J =40 ,uA/cmz, x;=20 pm,
Vo—V(L)=0.02 V, and V(0)=0.3 V. This shows that
one has x; <<L, V(L)—V(0)=9.68 V=V, and the re-
gional approximation is justified. The essential formulas
derived above can now be simplified and are summarized
hereafter:

—2eD,C,
J=—— Uz /2, (29)
[ veelV3 zz, | 50
17 I6kTC, 2.2, |
3L%3V,C, z.zZ 2
v0)=%*L, 0~0 | Zcfa : 31)
z.e deey(kT)? | z.+z,
V(L)=V,—(kT/z,e)ln2 ; (32)
Region I, x; <x <L:
2,C.=z,C,=2Cy(x —x;)/L , (33)
X —X
V=V(L)+ ffln i L (34)
a
Region II, 0 <x <xi:
€ekTCy  z,+z, |'
C,<<C.= , (35)

L(zCe)Z(x]—x) z.z,

V=V(0)+[V(L)=V(0)][1—(1—x/x;)?]. (36

It is interesting to notice that there are several natural
lengths in the problem, namely, the length of the cell L,
the Debye screening length A={e€e.kT /[e’Cylz,
+z,)]}'/%, and the backstream diffusion length
Apy~D, /(u Vy/L)Y=L(kT /z.e)/V, (typically L ~1 cm,
A~30 A, Ap~100 pum). This may allow one to get more
physical insight into the above parameters. The length
x; is simply of the order of L(A/A,)*/*~10 um. The
concentration in region II is roughly C.~CyA/[(x;
—x)L]'”, which is of the order of Cy(A?A,)'//L [in
order of magnitude, (A%A,)!/3*/L ~107°]. These behav-
iors can be qualitatively understood as a simple conse-
quence of Poisson equation and current conservation:
the current is limited by diffusion in the quasineutral re-
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gion, ie., J~eD,Cy/L, which is very small; the space-
charge region must satisfy the Poisson equation
(eCr&llx? /e, ~ V) which makes x| small, and current
conservation (J ~Cr& ey ¥V /x;) in turn makes C¢!!
small.

4. Remark on the boundary conditions:
the double-layer regions

In the preceding we have implicitly neglected what
occurs in the immediate vicinity of the interfaces. Actu-
ally, there is a sharp variation of electrostatic potential
near the interface’® of magnitude Upzc = Uequ, Where
Up,c is the electrode potential corresponding to zero
charge, and U, is the electrode potential corresponding
to electrochemical equilibrium. This sharp variation of
the electrostatic potential takes place in the so-called
“double-layer” region, whose thickness is of the order of
the Debye screening length. This is quite short near the
anode (A~30 A) but might be appreciably larger near
the cathode, since the concentration of the electrolyte is
considerably decreased in region II. Also, special condi-
tions may result from the presence of the very large
space-charge electric field. If one tries to include the
double layers explicitly in the calculation, then ¥ must be
taken continuous through the interface, and the bound-
ary condition becomes

2.C(0)=Cyexplz,e(Upyc— Uy)/kT] , (37

where U, is the electrode potential corresponding to elec-
trochemical equilibrium in an electrolyte with a cation
concentration Cy/z..?° If such a condition is used as the
boundary condition at x =0, then a third region appears
at very small x values. This characteristic length occurs
when dC, /dx becomes large enough, so that the diffusion
term in Eq. (17) competes with the drift term. Taking the
surface electric field from Eq. (26) with x =0, this occurs
for x <xy=D,/(n.dV/dx)=(—e€€ekTD,/2Jz.ex;)"?,
hence

ee,L (KT)? '3

6(2(.8 )3V()C() z; +za

Z:2,4

Xn=

~(A)13~10% A . (38)

In spite of the increased value of x; as compared to A, it
is still much smaller than x;. This justifies having
neglected the diffusion term in Sec. IIB2. It also shows
that it is quite reasonable to take into account the double
layer just as a boundary condition. One will notice, how-
ever, that the boundary conditions as given above (Sec.
II A) are not complete, since only one condition has been
given for C, and V. If the double layer were included in
the system, one would have two conditions [continuity of
V and Eq. (37)]. When the double layer is taken outside
the system, one may add to the condition of quasiequili-
brium (Sec. I A) a condition stating that the diffusion
term is negligible. A convenient way of doing so is to
take dC, /dx =0. This condition will be used in the nu-
merical calculation (and we will keep dropping the con-
stant term Up,-— Uy, as it has been done above).
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C. Numerical resolution

The surprising character of the above results has
prompted us to perform a numerical resolution of Egs.
(9)-(11). This was expected to provide a verification of
the regional approximation scheme, together with an ex-
act picture of the functions C.(x), C,(x), and V(x).
Also, such a calculation may provide access to the tran-
sient regime, which has not been considered yet. Howev-
er, for practical display purposes as well as for ease of
computation, conditions had to be chosen such that the
characteristic lengths in the problem (L,A,A;) do not
differ by many orders of magnitude. For this reason, we
have been using unrealistically small values for C,
(10°-10'"" cm™3). This is of no trouble since the magni-
tude of the relevant parameters for the practical concen-
tration range are given by the analytic treatment.

The set of equations (9)—-(11) with the boundary condi-
tions has been solved on a microcomputer. The x vari-
able was discretized using a mesh 8x and a typical num-
ber of 100 mesh points. Starting from a uniform distribu-
tion of anions and cations (p=0), and a potential
V=V,x/L, the evolution of C, and C, was deduced
from Egs. (9) and (10) by applying successive small time
increments 8¢. At each step the Poisson equation (11)
was integrated with due care to the boundary conditions
on V, and the new potential was used for the next step.
The use of an “explicit” recursion scheme in the discreti-
zation of (9) and (10) requires, as usual, a stability condi-
tion 8¢ < K8x? to be fulfilled, where K is some constant
depending upon the various coefficients entering the equa-
tions.”!

Typical results for the steady state are shown in Fig. 2.
These results are in good agreement with the predictions
from the analytic resolution: the concentrations are iden-
tical and vary linearly with x in the main part of the cell,
while V is essentially constant V= V. In the vicinity of
the cathode, a fast variation of V occurs, associated with
a small value of C. and a negligible value of C,. The
thickness of the space-charge layer and the value of C. in

0 x/L 10 x/L 1

FIG. 2. Profile of the ion concentrations C. and C,, and of
the electrostatic potential ¥ resulting from the numerical simu-
lation in the hypothetical case of uniform deposition with negli-
gible growth of the cathode. L=1cm, Vy=1V,
D.=D,=10"° cm?/s, z.=z,= 1, €=80; (a) C,=10"" cm ™3, (b)
C,=10"" cm 3. Notice the two regions I and II as discussed in
the text.
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this region are found to agree quantitatively with the ana-
lytic results, and also exhibit the expected dependence
upon changing C, (see Fig. 2). In summary, the steady-
state regime—in the hypothetical case of uniform
deposition—exhibits a squeezing of the applied field in
the near-cathodic region. Furthermore, since most of the
cell is outside the electric field region, the electrical
current in the steady state will be of the order of
eD.C,/L, an extremely small value, independent of the
applied potential.

D. Discussion

The steady state described above is actually unphysi-
cal: ion motion is governed by diffusion in region I, which
occupies the larger part of the cell, and by electric-field
migration in region II, i.e., very close to the electrode.
This behavior is strikingly different from that encoun-
tered in standard electrochemical situations, i.e., with a
supporting electrolyte. Also, there is no evidence, among
“fractal electrodeposition” experiments, of a system ex-
hibiting a current density independent of the applied po-
tential. Actually, the absurdity of our result was our ini-
tial motivation for doing an analytic and a numerical cal-
culation. The remarkable agreement between both is a
good check of the resolution procedure. Notice also that
this is an essentially exact solution, in contrast to the ex-
pansion methods that have been proposed in the litera-
ture.!* A similar solution for the special case z, =z, =1
has been recently obtained by Bruinsma and Alexander.?
Of course, since practical systems behave differently, it
will be of uttermost importance to discuss our hypotheses
in order to resolve the paradox. However, before going
to this discussion, a better understanding of the underly-
ing physics may be gained by looking at the time evolu-
tion leading to the steady state in this simple model.

Since the Poisson equation was integrated at each time
step in the numerical calculation, the intermediate results
give an exact picture of the actual path toward the steady
state. Figure 3 shows the graphs of C,, C,, and V, at
different times, for a typical calculation. At =0, there is
no space charge and the field is uniform. The cations
then migrate from the anode to the cathode. The cation
concentration is not strongly disturbed at the boundaries,
since the electrodes can freely absorb or provide cations.
The situation for the anions is much more dramatic, be-
cause they cannot be transferred to or from the elec-
trodes. So there is a piling up of anions near the anode,
and a depleted region near the cathode, whose thickness
tends to increase with a velocity v, =pu, ¥V, /L. This tends
to create space charges near the electrodes, hence a
modification of the potential through the Poisson equa-
tion. The problem yet is not symmetric: near the anode,
the piling up of anions will tend to increase the local field,
leading to fast neutralization by an increased arrival of
cations from the anode; on the other hand, near the
cathode the increased field will only accelerate the cat-
ions on their way to electrodeposition. By virtue of
current conservation, increased ion speed implies reduced
concentration, hence the space charge z_.eC. will be de-
creased [actually by a factor ~L /(A%A,)!"*~10°], but
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FIG. 3. Profile of the ion concentrations and electrostatic po-
tential as a function of time, for the same system as Fig. 2(b);
t =100 s (solid lines), t =10° s (dashed lines), ¢t =10* s (dotted
lines). Notice the motion of the anion distribution, due to the
drift in the applied electric field, and the associated rise of the
space charge near the cathode.

complete neutralization is unattainable as long as there is
a flux of cations to the cathode. The steady-state poten-
tial distribution is almost reached when all the potential
drop occurs near the cathode. This takes place on a rath-
er fast time scale (x;/v, ~1 s). The steady state for the
concentrations takes somewhat longer to attain, as it
needs diffusion through the large distance L (and
L%*/D,~10%s).

Observing the early steps of the evolution therefore
shows that the crucial mechanism for the creation of the
space-charge region near the cathode is anion migration
in the applied electric field. Now it is known that such a
steady state will not be obtained in practical systems.
The reason for that is also clear from the above: the in-
terface will hardly withstand a potential drop of ~10 V
over 10 um. There are various ways in which the system
can escape this unphysical situation, thereby violating
our simple hypotheses. One is convective motion of the
solution. This can be brought about, either if external
stirring is provided, or simply under the influence of con-
centration gradients and gravity,”> or else under the
influence of the current (electroconvection).?? In all
cases, this will provide mixing of the concentrations,
which may hinder building of the space charge. Howev-
er, it is not clear that convection plays a large role in
practical experiments (the thin-cell geometry is rather un-
favorable for convection, and similar experiments have
been realized in media where convection is severely inhib-
ited, such as filter paper).” On the other hand, if convec-
tion is inhibited, as soon as the interface electric field
reaches some critical value, a surface instability may de-
velop: a growing tip will find an increased electric field
near its apex, hence an increased deposition rate and a
fast growth' of the tip, as long as the apex stays in the
space-charge region. This mechanism provideés a natural
explanation for ramified growth, and leads us to some
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predictions on the practical behavior. The potential dis-
tribution should start to evolve until some potential drop
occurs in the nascent space-charge region (this might
take a time ~x;/v,~1 s), then ramified growth should
start. The forward front of the ramified deposits should
follow the migrating anions, in such a way that no large
space charge can further develop. If the experiment is
realized at a constant current density J rather than at con-
stant potential, then the front of the deposit should ad-
vance at a constant speed v, = —u,E, and the potential
drop across the cell is expected to follow a law
V=6V —E(L —v,t), where E is the (constant) electric
field in the neutral region [J =eCy(u,+pu,)E] and 8V is
the critical potential drop necessary for growing the in-
terface ramified (it is recalled that E and J are negative
with our conventions).

These predictions have been verified experimentally for
a wide range of experimental conditions: current density,
salt concentration, and cell geometry. Especially, the
surprising prediction that the velocity of the front is ex-
actly equal to the anion velocity in the applied electric
field has been verified by using different salts with com-
mon cation. A preliminary report on this work has been
published elsewhere!” and a more detailed report is
planned to appear later on.?* The central role of space
charge and electric-field migration, evidenced by our cal-
culation and confirmed by these experiments, is at vari-
ance with simple guesses, such as those found in the
literature.’

III. TOWARD AN UNDERSTANDING
OF THE MORPHOLOGY

The above calculation has been used as an ab absurdo
argument. It is of course important now to determine
what the actual distributions are during the growth of the
ramified electrodeposit. Also, the front of the deposit is
probably the most obvious characteristic feature that one
may think of, but one may wish to go one step further in
the understanding of the morphology. Depending upon
the experimental conditions, deposits have been observed
to exhibit a branched, treelike, structure, very reminis-
cent of DLA (this usually takes place at lower fields) or
look like a bunch of parallel filaments. This last mor-
phology has been called ‘“dense-branching morphology”
(“dense radial” when starting from a point cathode,*> or
“dense parallel” when starting from a linear cathode,!” as
it is the case here). In spite of their similar appearance
on a microscopic scale, these morphologies are clearly
distinct and have attracted much attention, but the
reason for this change of behavior is as yet not under-
stood. In the following we will focus on the dense-
parallel morphology and will try to analyze the distribu-
tions of concentrations and potential during the growth,
in order to understand how the invoked instability can
give rise to such regular structures, with special attention
to the characteristic separation length between the fila-
ments.

Our model of Sec. II can be easily extended to the case
of an electrodeposition in the shape of rectilinear, equally
spaced, parallel filaments. The system can no longer be
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treated as one dimensional, but the periodicity allows one
to restrict the two-dimensional plane to a stripe located,
for example, between a filament and the middle line be-
tween two adjacent filaments (for example if the filaments
lie at x <0 and y =0,+2a,*4a, ..., the stripe can be
taken as 0 <y <a). Furthermore, in a constant applied
field, the filaments will grow at a constant speed, and we
may expect to find a steady state in the reference frame
attached to the filament tips. If the filaments grow at a
speed v, then the equations in the moving frame are
readily deduced from (6)-(8):

aC,

3 =D.AC,—(p.E—Vv)-VC,—u C.V-E, (39)
aC,

5, ~DaAC,+ (i E+V)-VC, +1,C,VE,  (40)
V-E=e(z,C,—2,C,) /€€, . (41)

(It is recalled that E and v are antiparallel.) Here again
these equations have been solved by numerical integra-
tion, and also a simple reasoning, based upon analytic
considerations, has been worked out. In the following we
will present these two treatments successively.

A. Numerical resolution

In view of the increased complexity of the problem
when going from one dimension (1D) to 2D, we will first
present the numerical resolution. For numerical integra-
tion of Egs. (39)-(41), the two-dimensional domain was
restricted to a rectangular box by cutting the stripe far
enough from the origin, and was discretized using a
square mesh of typically 100X 10 points.'® The boundary
conditions were 0F /3y =0 (F =C,,C,,V) for y =a and
for y =0, x >0 (symmetry axes); dC,/dy =0, W,, =0,
V=—(kT/z.e)In(z.C./C,) for y =0, x <0 (filament);
dC./9x =9dC, /dx =0, dE, /dx =0 for x =x;, (bound-
ary far inside the deposit); the boundary condition far
outside the deposit was taken assuming that the electro-
lyte is unperturbed there (z.C.=z,C,=C,, E,=E, for
X =X n.x) since the perturbations advance at the same ve-
locity v, as the moving front. In practice Eq. (41) was
also transformed into an evolution equation

w_
at

which was solved together with Egs. (39) and (40) accord-
ing to an explicit recursion scheme. The values of the
constant K’ in Eq. (42) and of the time increment in the
numerical scheme were chosen for optimum convergence.
[The “artificial” transformation of Eq. (41) into Eq. (42)
obviously sacrifices the idea of a convergence scheme that
would exactly follow the physical route toward the steady
state.] The potential drop 8V near the interface was tak-
en as a parameter;>> the velocity of the front was given an
initial value v, and was updated each recursion step in
order to keep 8V to the desired value. Such calculations
were simple enough to be performed on a PC-type micro-
computer.

Figure 4 shows some typical results. The two-
dimensional maps of C,, C,, and V are displayed. Two

K'[AV +e(z,C.—2,C,)/€€,] (42)
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very different cases are found to occur depending upon
the value of a. For values of a smaller than a critical
value a,, the electrolyte appears to be completely ion dep-
leted behind the front of the deposit. In other words, all
the metal ions are consumed by the electrodeposition
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FIG. 4. Typical results for the numerical resolution of the
2D problem of filamentary growth. These are 2D maps of the
ion concentrations C. and C,, and electrostatic potential V, in
the stripe 0 <y <a, representing one half of the 2D domain be-
tween two neighboring filaments (see text). The space charge
z.C,—z,C, is also shown. The filaments appear as the bold seg-
ments. E,=10 V/cm, D,=D,=10"° cm?¥/s, z.=z,=1, e=80,
Co=10'2 cm™~3, 8V =0.55 V; (a) a =100 um, (b) a =300 um.
Notice the change of scale and also the change of behavior be-
tween (a) and (b). (c) shows, as a function of a, the fraction a of
anions left at x =x,,, (anions “leaking” through the front of the
deposit), calculated from (O) the average concentration on the
segment (X,,,y =0) to (xp.,y =a), and (X) the quantity
1—v, /v, where v is the velocity of the front. This provides a
verification of the conservation of the anions a=1—uv, /v, and
gives a practical method for the determination of the critical
value a..
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process, and the velocity of the front converges to the ex-
pected value v, (full-deposition regime). For values of a
larger than a,, part of the ions survive between the fila-
ments; since the net anion flux through the domain is
zero, this implies an advance speed larger than v, [if a is
the fraction of anions that survive between the filaments,
then av =v —v,, hence v =v, /(1—a)], which is verified
by the obtained value of v (partial-deposition regime).
Now it is clear that these regimes will both be unstable.
The partial-deposition regime, by allowing massive
penetration of the ions between the filaments, will favor
branching, hence decreasing of a. On the other hand, in
the full-deposition regime, any filament growing at a
slightly reduced speed will die out rapidly by starving, as
the ions will be consumed more efficiently by the neigh-
boring filaments. A reasonable conclusion then is that
the naturally occurring spacing must be of the order of
the critical spacing 2a,. We have determined 2a,. for
various sets of parameters E,, C,, and V.. The critical
spacing 2a, is found to increase with increasing 8V and
to decrease with increasing |E,| and C,. However, here
again only rather low values of C;, have been usable.
This has prompted us to make an analytic study of Egs.
(39)-(41), that we are going to present now. All the re-
sults will be discussed together below in more detail.

B. Analytic study

The regional approximation scheme that was used in
Sec. II B is not easily transposed to the two-dimensional
case. This can, however, be done in the simple case
where the spacing between the filaments is infinitely
small, since the problem then turns back to one dimen-
sional. We will first present this calculation, then we will
analyze what occurs upon increasing a.

1. Case of infinitely small spacing

In the case of vanishingly small a, the problem be-
comes one dimensional. It is, however, slightly different
from the problem of Sec. II because of the motion
of the reference frame and different boundary condi-
tions, here  dC,/dx(0)=0, w,(0)=0, V(0)
=—(kT/z,e)n[z,C.(0)/Cy]. Taking v=v,, Eags.
(39)-(41) reduce to

d’C, d dv dC,
D—+4pu, 2 2L |+ =0 43
¢ dx? Be'ax |7 dx Ya " dx ’ “3)
d’C, d dv dC,
D ———nu — - =0, 44
a dx2 .u’a dx a d.x va dx ( )
d?V /dx*=—e(z.C,—2z,C,)/€c, . (45)

These equations are very similar to Egs. (12)-(14) and
their resolution can be carried out in the same way as in
Sec. II B. Integration of Eqgs. (43) and (44) gives

—D,dC, /dx —p,C.dV /dx —v,C,= (. +p,)E¢Co/z. ,
(46)
—D,dC, /dx +p,C,dV /dx —v,C,=0 , 47)
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which are similar to Egs. (17) and (15), respectively.
Equation (47) can be further integrated to

C,(x)xexp[z,eV,(x)/kT] (48)
with
V,(x)=V(x)+Ex . (49)

Following the same scheme as in Sec. II B, and starting
from x =x_,,,, one again finds two regions: (i) Quasineu-
tral region:

z.C.=z,C,

Cc=C, |1 (1 p, /) —8
~+ 7% exp Ha /K zc+za
x Lo ) (50
kXTI )
V=8V —Eyx +(kT /z,e)In(C/C,) ; (51)
(ii) space-charge region, for
9ee B V2 13
< —
X ST TReE o1+, /) |

(notice that x| bears some similarity with x; of Sec. II)

_ 660EOC0(1+'U.a /.U'c) 172 (52)
2z%e(x,—x) ’

C,<C,=

V=V(0)+[6V—V(O)][1—(1—x/x,)*?*], (53)

where V' (0) is given by

3e8VC, 173

eoE3(1+u, /u, )?

The resulting solution is represented in Fig. 5. There is
an obvious analogy with Fig. 2. Actually the present
solution can be obtained from Egs. (32)-(38) by simple
substitution of ¥, by 6V and L /2 by the backstream
diffusion length A,=(—kT/eEy)Nz.+2z,)[z.2,(1+p,/
u.)]”". Here, however, a truly neutral region is present
ahead of the quasineutral region, i.e., for x >x,+A,,
where the applied electric field survives, and a most im-
portant parameter 8V appears, which represents essen-
tially the potential drop in the space-charge region. This
8V of course should depend upon the microscopic mecha-
nism giving rise to the surface instability (the more unsta-
ble the surface, the smaller §¥). Here we will not attempt
such a microscopic theory and keep 6V as a parameter.
A noteworthy feature is the role of §¥ in connection with
anion depletion: 8V is generated by the positive charge
left upon anion depletion; on the other hand [see Eq.
(48)], the anion concentration appears to be in equilibri-
um in the moving frame in a potential V,=V +Ex, i.e.,
there is no effective force exerted on the anions in the
neutral region, but the energy z,e8V appears as a poten-
tial barrier that prevents them from entering the region
x <x,. This point of view will be very useful for giving
insight into the problem of an arbitrary filament spacing.

v0)=*

z.e

(54)
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FIG. 5. Profiles of the ion concentrations C, and C,, and
electrostatic potential ¥ in the moving frame, in the case of fila-
mentary growth with an infinitely small spacing between the
filaments. The same two regions as in Fig. 2 can be found. No-
tice, however, the appearance of a truly neutral region ahead of
the quasineutral region, i.e., for x —x; >>A,.

Also, in an experiment, it is clear that this potential drop
8V will reach its steady-state value only after some time,
corresponding to building up of the space charge. This
time is a natural explanation for the induction time be-
fore ramified growth, which has been observed experi-
mentally.!”2*

2. Arbitrary filament spacing

For filament spacings larger than x,, the problem of
Egs. (39)-(41) is really two dimensional and the above
approximation breaks down. However, Eq. (40) can be
written

V-(—D,VC,+u,C,VV—v,C,)=0 . (55)

In the case where no anions can penetrate the x <O re-
gion, and in view of the boundary conditions, the sum of
the terms in parentheses can itself be deduced to be zero
(this is just W, in the moving frame), hence

C,(x,y)xexp[z,eV, (x,y)/kT] (56)
with
V,(x,y)=V(x,y)+Esx , (57)

which is just the 2D extension of Eqgs. (48)-(49). The cru-
cial point then is to predict whether or not the effective
potential ¥, =V + E x will be able to prevent the anions
from reaching the x <0 region. In the absence of any
space-charge effects, ¥ would be simply given by solving
the 2D Laplace equation with a metallic comb as the
boundary condition. Such a potential, schematized in
Fig. 6(a), will clearly oppose a barrier to anion penetra-
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FIG. 6. Electrostatic potentials as a function of x: (a) elec-
trostatic potential V in the absence of space charge, with an ap-
plied electric field E, [represented along y =0 (dotted line) and
along y =a (dashed line)], and in the presence of a positive
space charge near the filament tips (solid line, shown along
y =a); (b) same for the effective potential ¥, =V + E;x seen by
the anions in the moving frame. a and 8V have been chosen in
the full-deposition regime (a <a_). Notice the appearance of a
potential barrier (8§V > V) preventing the anions from reach-
ing the x <x, region. For 8V <V, the barrier disappears and
the ions massively penetrate between the filaments. In this
figure, for clarity, the Nernst contribution ¥(0)
=(—kT/z.e)ln[z.C.(0)/C,] has been assumed to be negligible.

tion along y =0, but no barrier along y =a [see Fig. 6(b)].
Deviations from electroneutrality are therefore of pri-
mary importance in creating a barrier against anion
penetration. Such deviations occur of course in the
space-charge region, but also in the quasineutral region
[see Eq. (51)]. Depending upon the values of x, and A,,
either of these regions may govern the appearance of the
potential barrier. Namely, for extremely dilute electro-
lytes, one would have x, >>A, and the space-charge re-
gion might play the dominant role; on the other hand, for
more realistic concentrations, one will have x; <<A,, the
space-charge region will penetrate between the filaments,
and the critical spacing will be determined by the
quasineutral region. Only the latter regime is of interest
for the practical case. However, because the numerical
calculations are actually performed in the intermediate
regime, we will successively consider the two regimes in
the following, then we will discuss the obtained results.
(a) Dilute regime: space-charge region dominant. For
very dilute concentrations (Cy/E} <<10'? cm~ 'V ™2,
Egs. (50)-(53) give x; >>A,. Then if the space-charge re-
gion can fully penetrate between the filaments, the bulk
ion concentrations will also penetrate (partial-deposition
regime). In other words, the space-charge region is the
only defense against penetration of the ions between the
filaments. We then consider the case where the quasineu-
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tral region stays ahead of the filament tips, and focus on
the space-charge region.

The space charge is expected to be maximum near the
filament tips. For small filament spacings, the space-
charge regions associated with neighboring filaments
overlap, so that there is a potential barrier opposing ion
penetration for all the values of y (including y =a). Van-
ishing of the potential barrier for y =a is expected to
occur when the filament spacing becomes large enough so
that neighboring space-charge regions no longer overlap.
For a qualitative estimate of the critical spacing, one may
model the space-charge region associated with a filament
tip as a roughly disk-shaped domain, with a cation con-
centration C.. The critical spacing will just occur when a
is of the order of magnitude of the radius of this domain.

Now electrostatics and current conservation impose
two conditions, which allow us to determine C, and a. (i)
The potential drop 8V can be related to the equivalent di-
poles formed by the positive space charges and negative
counterchanges on the filaments. Since each dipole is of
typical magnitude ez, C,a> and the linear dipole density is
~1/a, then one has

8V ~ez,C.a*/e€, . (58)

(This is an approximate integral version of the Poisson
equation.) (ii) The typical electric field in the space-
charge region is ~&8V /a, hence the total current driven
to a given filament is ~(ez.u.C,)(8V /a)a. The sum over
all filaments must equal the current far ahead of the
front, hence

ez,u, C.8V/a~—eCylu,+u)E, . (59)

Eliminating C, between Egs. (58) and (59), one gets the
critical value for a,

a,~[—e€dV?/eEyCol1+u, /n )1 . (60)

As one might have expected it, this value of a, is just of
the order of magnitude of x .

(b) Practical regime: quasineutral region dominant.
For more realistic concentrations (C,/E3}>>10"
em ' V72, Egs. (50)-(53) give x; <<A,. Then if a >x,
the space-charge region may penetrate along the fila-
ments; but the penetration of the bulk electrolyte will still
be hindered as long as A, stays larger than a. We are
thus going to examine the 2D behavior of the quasineu-
tral region in more detail.

Figure 7 shows the expected map of the various regions
in the full-deposition regime. The quasineutral region
penetrates between the filaments, and is separated from
the filaments by a thin space-charge layer. It is limited,
on the x <0 side, by a small space charge similar to that
calculated above. As long as we are in the full-deposition
regime, the anions are in equilibrium in the moving
frame, and we can use Egs. (56) and (57) in Eq. (39),
hence

—D,(14z,/2,)AC + (. +1, )EO%S—=O . 61)

As long as the space-charge-layer thickness is much
smaller than g, this equation can be solved with the
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FIG. 7. Scheme of the various regions for 2D growth in the
moving frame, in the case of practical concentrations
(Co/E}>>10"2cm ™! V™72). The plus signs stand for the positive
charges in the space-charge region.

boundary condition C,(x,0)=0 (here we make use of the
fact that the concentration in the space-charge region is
much smaller than Cg), and a solution of the form
F(x)sin(my /2a) may be looked for. The result is (with
C=z.C,=z,C,)

C(x,y)=Cysin(my /2a)exp(x /A ) (62)
with

Aeg=2[(A; 2+m2a =) 2=, 17! (63)
and

Ay =(—kT/eEy)z.+z,)z.2,(1+p, /u)]"" . (64)

The concentration of the electrolyte is found to decrease
exponentially upon penetrating between the filaments.
The effective anion potential also decreases, according to
Egs. (56) and (57). This provides the barrier against
anion penetration. The simple regime depicted by Eq.
(61) will end for x negative enough so that the space-
charge-layer thickness / reaches the same order of magni-
tude as a (“pinch off” of the quasineutral region). An es-
timate of / requires consideration of the space-charge lay-
er. This can be done in a 1D approximation, taking into
account only the dependences along y:

V=V(x,0)+[8V—Eyx —V(x,0[1—(1—y/1)*/?],

(65)

C,=C,(1—y/D7"?% . (66)
Writing the boundary condition at (x, /)

J,=—eD C(m/2a)1+z./z,) (67)

and using the Poisson equation finally yields [with the as-
sumption ¥ (x,0) <<8V]

c C#kT(l/zc+1/za)l 3eey(8V —Ex)
ST 3z.ea(8V —Egx) 4z el?

(68)

Hence
9ee, a(8V —Eyx)*
T 4w KTC(1/z,+1/z,)

3
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In view of the variation of C, given by Eq. (62), the max-
imum of / will be reached for

x =2Ag+8V/E, . (70)

In practice, even if the corresponding value of ! stays
smaller than a, one will consider that an efficient defense
against ion penetration is reached if, at this position, the
initial concentration has dropped to a small fraction of its
initial value, say a~10"!-1072. This gives the condi-
tion

x <Aglna . (71)
Hence from Egs. (63) and (70)

2a,~2m(2q /A, +q*) "1 (72)
with

g =2(2—1na)|Ey|/8V (73)

and A, as given by Eq. (64).

C. Discussion

Equations (60) and (72) provide two determinations for
the value of the critical spacing 2a, at which the transi-
tion between the full-deposition and partial-deposition re-
gimes occurs. We recall that this is expected to be the
natural spacing occurring between the growing filaments.
These two predictions have been represented in Figs. 8
and 9 as the curves, together with the values of 2a, ob-
tained from the numerical resolution of Egs. (39)-(41).
As expected, the numerical results for the lowest concen-
tration (10'' cm™3) are rather close to the prediction

CRITICAL SPACING 2a; (mm)

- l_—-'_ s I 1
0 02 04 0.6 018 1.0 1.2
EXCESS POTENTIAL DROP &V (V)

FIG. 8. The critical value 2a,, representing the prediction for
the natural spacing between the filaments, as a function of 8V,
from the numerical calculations. D,=D,=10"° cm?/s,
z,=z,=1, €=80, E,=—10 V/cm; +, C,=10"" cm™3; A,
Co=10"? cm ™3 O, C,=10" cm™3. The curves have been ob-
tained from Eqgs. (60) and (74), representing the two extreme
concentration regimes (dashed curves for the low concentra-
tions [Eq. (60)], and solid curve for practical concentrations [Eq.
(74)]). Notice the crossover between 10'2 and 10" cm™3. The
numerical results, obtained in the intermediate regime, can best
be represented as the sum of these two contributions.



42 ELECTROCHEMICAL ASPECTS OF THE GENERATION OF ...

10,7 T T T T T
E e
\E, - N .
o AN -
« . S ]
SR N o NN
2 | e |

~ ~ =
< < 2
O “\.{’ So T
4 SR e
% - \sz. < =
N
2 01k AN .
e | o e
= AN
~

S _—=
0.01

1 1 1 1 l 1
105 1010 1011 1072 1013 1014
SALT CONCENTRATION Cq (cm-3)

FIG. 9. The critical value 2a., representing the prediction for
the natural spacing between the filaments, as a function of Cy,
from the numerical calculations. D.=D,=10"° cm?/s,
z.=z,=1, €=80; @ E,=—10V/cm, 8§ V=1.1 V; @,
E,=—100 V/cm, 8§V =1.5 V. The curves have been obtained
from Egs. (60) and (74), representing the two extreme concentra-
tion regimes (dashed curves for the low concentrations [Eq.
(60)], and solid curves for practical concentrations [Eq. (74)]).
Notice the crossover concentration, scaling as E2. The dotted
curves represent the sum of the two contributions from Egs. (60)
and (74).

from Eq. (60). For increasing values of Cy/E}, the calcu-
lated points become increasingly closer to the prediction
from Eq. (72). A rather accurate description of the nu-
merical results would actually be obtained as the sum of
the two contributions from Eq. (60) and (72) (see dotted
curves in Fig. 9). This can be understood easily: since
the space-charge region and quasineutral region both act
as a defense against ion penetration between the fila-
ments, the approximate additivity of their effects may
indeed be expected. We will now consider in more detail
the high-concentration regime, which is that encountered
in practice (C,~10'-10% cm ~3). Our prediction for ex-
perimental situations can then be given more explicitly
from Eq. (72),

2q ~— TV
¢ 2—Ina |E,|
2 2 —1/2
x (14— ZF ], (4

(2—Ina)kT z,+z,

where a reasonable value for @ may be ~107'-1072,
hence 2—Ina~5. The logarithm makes the order of
magnitude of 2aq, rather insensitive to the exact choice
for a.

One will notice that this value is somewhat larger than
Ay, by a factor ~(e8V /kT)'/2. (This corrective factor
makes the high-concentration regime attained for con-
centrations appreciably below the above given nominal
condition A, >>x,.) For large enough 8V, the critical
spacing 2a, from Eq. (74) is proportional to 8!/ and in-
versely proportional to |E,|. Comparison with experi-
ment would of course require the measurement of V.
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An experiment has indeed been performed, whei. the po-
tential of the electrolyte was probed with a series of
copper-wire probes, giving access to the full potential dis-
tribution through the cell.!” From this measurement,
values of 8V’ ~3 V can be deduced, and the predicted
values 2a, ~0.5 mm from Eq. (74) are in fair agreement
with the experimental measurements. However, a sys-
tematic study of 2a, as a function of 8¥ and |E,| is still
to be performed.

More detailed predictions on the morphology of the
filaments can also be extracted from the above calculation
[Egs. (61)-(73)]. The observed filaments are actually
known to be covered with small sidebranches. The aver-
age angle O between the sidebranches and the filament
axis can be predicted from the ratio of the x and y com-
ponents of the cation current in the laboratory frame:

J
tanf=—=
an 7.
= my m/2a
=cot | . (75
2a | 1/Ag—(eEy/kT)z.z, /(2. +z2,) 75
Using Egs. (70)-(73), one finally obtains
— my
tanf=cot | ——
anf=cot | >
5V Z:Z K 2
e c“a a
+ e
! (2—Ina)kT z.+z, ! e
X
edV Zc2,
+
: (2—Ina)kT z,+z,
(76)

Taking cot(my /2a)~1 and e8V >>kT, this gives the pre-
diction tan@~ (20kT /e8V)'/2. It is interesting to consid-
er this prediction in parallel with the prediction for the
average filament spacing: if the applied electric field |E |
is decreased, a decrease of 8V is to be expected. The aver-
age spacing depends most strongly on |E,| and will then
increase. The average angle is governed by 8V and will in-
crease. This seems to describe a progressive transition
from the ‘“‘dense-branched” to the “DLA” morphology.
To this point one might even question whether the
“DLA”regime may exist at all, except as an asymptotic
limit when the applied field is made vanishingly small.

An appealing work, of course, would be an investiga-
tion of the microscopic mechanism responsible for the
appearance of 8V. A first naive guess might be that
ramified growth will occur as soon as the deposition rate
will overwhelm surface diffusion in the vicinity of the fila-
ment tips. However, various problems will have to be ad-
dressed: since each filament is actually ramified, it exhib-
its multiple tips; also, the dependence of equilibrium po-
tential upon interface curvature, the interface overpoten-
tial, and the convection in the electrolyte, which have
been completely neglected here, might well play an im-
portant role in practice. This is especially true for con-
vection, which indeed seems to be present in the experi-
ments.>* These problems will probably make deeper in-
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vestigations increasingly difficult. Yet the role of 6V in
governing the morphological transitions might be very
important and would deserve further analysis. Further
work trying to incorporate electrolyte convection is
presently being planned.

IV. CONCLUSION

We have shown that the growth of ramified metallic
electrodeposits in dilute salt solutions is essentially driven
by the space charge that tends to develop upon anion de-
pletion near the cathode. The front of the ramified elec-
trodeposit has been shown to advance at a velocity
v,=—u,E, which is just the velocity of the anions,
determined by their mobility p, and the electric field E
in the neutral region of the electrolyte. We have further
shown that the same kind of analysis can be fruitfully ap-
plied to the growth in the dense-parallel morphology: it
is shown that there is a space-charge region concentrated
near the tips of the growing filaments, with an associated
potential drop 8V the characteristic time for building the
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space charge gives a natural explanation for the observed
induction time before beginning of the growth, the aver-
age filament spacing is predicted to be of the order of
(8VKT /eE})'’?, and the average sidebranch tilting angle
of the order of (20kT /e8V)!/?, in qualitative agreement
with experiment. These trends are highly suggestive of a
progressive transition from the “dense-branching” mor-
phology to the “DLA” morphology as the electric field
E, is reduced.
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