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We present a theoretical study of a Auid in a narrow planar capillary, including the effects of the

periodic structure of the confining walls. A layering transition had been observed for the same

model in a previous Monte Carlo simulation, but it is missing in our density-functional calculation.
The transition is recovered with an approach based on the cluster variational method, which treats
the free energy as a functional of the four-particle distribution function.

I. INTRODUCTION

A fluid in a narrow capillary shows interesting
differences with the behavior of a bulk system. The shift
of the bulk liquid-vapor phase transition into the capil-
lary condensation, already predicted by the macroscopic
analysis of Kelvin and Laplace, has been studied with mi-
croscopic theories for lattice-gas and continuous models, '

which can also account for the shift of the critical tem-
perature. The crystallization of the fluid is also changed
by the confinement; the competition between the intrinsic
lattice parameter of the bulk crystal and the structure of
the capillary wall may produce frustration,
commensurate-incommensurate phases, and solid-fluid
critical points, which make it an interesting but very
difficult theoretical problem. Some attempts have been
done with lattice-gas models, but it is clear that a con-
tinuous description of the fluid is required to analyze the
most interesting effects. The computer simulations have
been mainly restricted to simplified models of a capillary
with planar walls, neglecting the effects of the periodic
structure of the wall at molecular scale. This description
may fail to describe the properties of very narrow capil-
laries, with a few molecular layers width, like expandable
clays and other porous materials. In these systems the
periodic structure of the confining walls may be as impor-
tant as the separation between the walls. The computer
simulation of Schoen et al. was directed to analyze these
effects in a fluid with truncated Lennard-Jones (LJ) in-
teractions inside a micropore made with two parallel
(001) faces of a fcc crystal, also with LJ potentials. The
system was studied along an isotherm path, changing the
separation h between the two walls. The most interesting
result was a sharp change in the structure of the system

from a one-layer "liquid" phase for h «2. 10 to a two-

layer "crystal" phase for h ~ 2. 15, in LJ units.
Here we present a theoretical study of this system with

several techniques. First with a density-functional ap-
proximation which had been successfully used in the
study of wetting and drying transitions, including the
periodic corrugation of the walls. However, this ap-
proach fails to reproduce the layering transition in the
capillary. Instead, there is a smooth evolution of the
fluid structure from one layer to two layers. An exact

analysis of the zero-temperature structure provides the
clue of what is missing in the density-functional approxi-
mation and gives a possible alternative interpretation of
the one-layer phase as the superposition of two asym-
metric structures. To study these structures at finite tem-
perature we include the correlation effects with a cluster
variational theory for the distribution function of the
molecules.

II. THE MODEL
AND DENSITY-FUNCTIONAL APPROXIMATION

The micropore simulated by Schoen et al. is made of
two layers of atoms in a rigid two-dimensional (2D)
square lattice with the two parallel walls out of phase,
like consecutive (001) planes in a fcc lattice. The walls
produce a confining potential acting on the fluid which is
the sum of the LJ interactions:

V (r)=
RE wall lattice

(2.1)

with the usual form for the LJ potential 4(r) and the
same LJ constants, e and o., as for the interaction be-
tween the molecules of the fluid (although the latter was
truncated at r =2.50 ). All the results here are expressed
in reduced units of the LJ parameter e/k~ =o =1. The
simulation was done at temperature T=1 and wall lat-
tice parameter a, equal to 1.13, with a few checks for
larger a. It is worth noticing that the equilibrium value
for the lattice constant of the fcc lattice with LJ interac-
tion is a =1.09, so that the simulated walls were more
open than the equilibrium crystal surface for the same in-
teractions. The grand-canonical Monte Carlo simulation
was done along an isothermal path changing the wall sep-
aration from h = 1.75 to 6.20 at fixed value of
8 =p —kz T ln( V), where V is the capillary volume.
Here we shift the origin of the chemical potential to take
out the thermal wavelength contribution, so that our p
corresponds to p —ks Tin(A ) in Ref. 5. The most in-

teresting result was the sharp change of the total number
of particles from A = 57 for h =2. 10 to N =98 for
h =2. 15, the number of LJ atoms in each wa11 being
X, =64. The density profiles averaged over the xy direc-
tions parallel to the walls presented a sharp change from

42 7340 1990 The American Physical Society



42 CLUSTER VARIATIONAL METHOD FOR A FLUID IN A. . . 7341

one broad central layer at h =2. 10 to two symmetric nar-

row peaks at h =2. 15. The analysis of the transverse
correlations lead the authors to interpret the monolayer
phase as a Quid and the bilayers as a crystal. The
density-functional approximation used here to study this
system has been described in a previous work for the wet-
ting and drying transitions in a single wall and in a wide
capillary, h ~ 20. The approximation is based on the sep-
aration of the LJ interactions into a hard-sphere (HS)
core and the attractive interaction. The free energy of
the HS is given by a nonlocal density functional which
has been successfully used for several problems, ' and
the attractive interactions are included in an effective
mean-field approximation. The full grand-potential ener-

gy, at fixed T and p, is minimized with respect to the den-
sity distribution, p(r), which is periodic in x and y, paral-
lel to the walls, and vanishes for z out of a narrow inter-
val, 0&z &h. The details of the approximation and the
numerical procedure are given in Ref. 6. In Fig. 1 we
present the density distribution p(z), averaged on x and y,
which results of our calculation for T=1, @=0, and
different capillary widths from h =2.0 to 2.7. It is clear
that they correspond to a monolayer for small h and to a
bilayer for the larger values of h, but the evolution from
density distributions with a single central maximum to
those with two symmetric maxima is smooth, without
any signature of phase transition. The system with two
layers, for h =2.7, may be regarded as a slab of the bulk
crystal, but also as a Auid strongly modulated by the
confining walls, with the same symmetry as the one-layer
case. %e have checked that the same qualitative behav-
ior is observed at much lower temperatures, so that the
failure to observe the layering transition is not a mere
shift of the critical temperature due to our approximate
density functional, but a qualitative defect of our ap-
proach. The failure of the density-functional calculation
for this system should be contrasted with the qualitative
and quantitative accuracy of the same approximation for
the properties of a single interface, including the periodic
structure of the wall and for porous with parallel smooth
walls. The combined effects of the narrow confinement

in the z direction and the periodic structure on the xy
planes make it a more difticult and interesting problem to
analyze.

III. ANALYSIS AT ZERO TEMPERATURE

The phase diagram in the (h, p) plane for T =0 is given
by the minima of the grand-potential energy:

(3.1)

with respect to the number of molecules, N, and their po-
sitions r; (i = 1, . . . , X). In the range of capillary width
studied here, there are three kinds of possible solutions:
the empty capillary, N =0, the monolayer with as many
molecules in the Quid as in each of the crystal walls,
X =X„and the symmetric bilayer with X =2N, . The
position of the monolayer inside the capillary depends
only on V, and it is straightforward to show that this
function has two symmetric minima around the central
value z =h/2, so that there are two degenerated mono-
layer phases. The symmetric central layer density
profiles described in the computer simulation at T = 1 are
not present in the T =0 phase diagram. In the two-layer
phase the two symmetric wells of V are occupied, al-

though the position of the layers is shifted out of true
minima of V„by the layer-layer interaction. The phase
diagram in the (h, p) plane is obtained by direct compar-
ison of the energy for each phase. The result is presented
in Fig. 2. There is a triple point for h, =2.05 and

p, = —6.7 at which the empty capillary [V (for vapor
phase)], the symmetric bilayer (Sz), and the two asym-
metric monolayers (A, ) coexist. For h ~h, there is a
direct transition from the V to the S2 phase, while for
h &h, there is a V-A, transition at low p and a A, -S~
transition at a higher chemical potential. The diagram
for very narrow capillaries (h S 1.5) shows some unrealis-
tic features due to the model of the wall as a single layer
with a lattice parameter larger than in the equilibrium
crystal, but this is irrelevant for our discussion of the
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FIG. 1. Density profiles, averaged over the xy plane, as given by our density functional calculation for T = 1, p=0 and different
values of the capillary width h (given by the numbers from 2.0 to 2.7 inside the figures) showing the smooth evolution from one to two
layers.
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monolayer-bilayer transition. The conclusion of this
analysis is that the symmetric monolayer is not present at
T =0. Instead we have two degenerated phases, each one
with a monolayer in an asymmetric position. These
phases are found as global minima of the grand potential
for h «2.05, close to the location of the layering transi-
tion observed in the computer simulation. The origin of
these phases is the structure of the potential produced by
the walls. As said above, the two walls would form the
binary basis AB for the periodic structure ABABAB. . .
of the (001) planes in a fcc lattice. The two walls with
nothing in between would have the minimum energy for
ho=2 ' . The total energy would again be minimized
for h =3ho, with the capillary filled by two layers made
of "fluid" atoms, making a ABAB structure. However,
to have a single layer of fluid in the capillary implies a
stacking fault like AAB or ABB, which correspond to
occupy each of the symmetric minima of V . The occu-
pancy of both minima, to avoid the stacking fault, is pe-
nalized for h 2.24 by the short-range repulsive interac-
tion between the two "fluid" layers. This repulsion in-
creases very fast as h decreases, so that the occupation of
one of the two symmetric minima blockades the other
and produces the asymmetric A

&
phases. In the density-

functional approximation we have used a hard-sphere
description of the core interactions instead of the soft

14

repulsion of the original LJ interaction. %ith this ap-
proximation the effects described above should be
enhanced because the double occupancy of the two wells
would not only be penalized but completely forbidden for
small h. However, this effect is missed by the density-
functional approximation used to describe the hard-
sphere fluid. This density functional uses the thermo-
dynamics and correlation structure of the bulk fluid to
describe, in an approximate way, the inhomogeneous sys-
tem. The approximation is quite accurate for the layer-
ing of the fluid near a hard wall and also for the strong
modulations in the crystal phase. However, this density
functional, as any other analytic approximation based on
the information of the bulk system, cannot take full ac-
count of the infinite repulsion between individual mole-
cules. In particular, a density distribution with only two
molecules separated by less than the HS diameter gives a
large but finite free energy, instead of the infinite energy
implied by the hard-sphere model. Moreover, the HS
contribution to the free energy scales with kz T, so that it
disappears in the T =0 limit and the packing effects are
missed altogether. A theoretical treatment of this prob-
lem should include the correlation structure in a con-
sistent way, to avoid the partition of the interactions in a
hard core and an attractive part. Only with this require-
ment may we get the correct T=O limit and follow the
evolution of the phase diagram to T) 0. This is done in
the next section with an approximation based on the clus-
ter variational method.

T=O IV. A CLUSTER VARIATIONAL APPROACH

10

—10
1.3 1 9 2 ' 2.3 25

FIG. 2. Isotherm sections of the global phase diagram show-

ing the stability regions of the different phases on the (p, h)
plane. For the T =0 isotherm there are three different phases in

this interval of the capillary width h. The vapor phase (V)
which represents the empty capillary at low chemical potential,
the asymmetric monolayer 3, , and the symmetric bilayer S2
are as described in the text. The three phases coexist at the tri-
ple point labeled as t. The T=1 isotherm has only two phases

and S: because the V-S~ transition has become critical
below this temperature. The short-dashed line intersecting the
T= 1 coexistence isotherm represents the path followed by the
computer simulation of Ref. 5.

The cluster variational method (CVM) was designed by
Kikuchi et al. and later developed also by other au-
thors' as an approximation for lattice models. The
method uses as a variable the probability of each possible
configuration of a basic cluster of m lattice sites. The free
energy of the system is written as a function of these
probabilities, using a combination approximation for the
entropy. By increasing the size of the basic cluster one
may generate a series of approximations: the mean-field
result corresponds to m = 1 (the basic cluster being a sin-
gle site), and the Bethe approximation is the m =2 case,
with the nearest-neighbor bond as a basic cluster. If the
lattice model has continuous variables, instead of a few
possible values like in the Ising or Potts models, the prob-
abilities of each configuration become continuous func-
tions of the variables and the free energy is approximated
by a functional of the m-site distribution function. The
functional minimization leads to a set of integral equa-
tions which may be solved numerically. The method has
proved to be useful for a system of planar rotors
representing Nz molecules adsorbed on graphite. " The
application of the method to a fluid with continuous posi-
tions, without any real lattice, has been recently explored
by Schlijper and Kikuchi, ' but the power of the method
in this ease is still not clear. The problem we face here is
different because although we want to treat the positions
of the fluid molecules as continuous variables, our system
has a real lattice structure, created by the potential of the
capillary walls, which may be used to set the basic cluster
in a natural way. We start by dividing the volume inside
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the capillary into periodic cells containing one and only
one of the minima of the wall potential, V (r }. On the xy
planes we take the natural division given by the Wigner-
Seitz two-dimensional unit cells of the square lattice.
Along the z direction we just took the central plane
z =h/2 as the boundary between the cells of each wall.
The three-dimensional signer-Seitz cells of the two-wa11
lattice could appear as a more natural division, but it was
more cumbersome to use and we do not expect important
differences. For the range of h in which we are interest-
ed, two molecules in the same cell would have a very
large potential energy, which would make these
configurations very improbable at any reasonable value of
T and p. Thus, we may impose the restriction that any
cell may be empty or be occupied by a single molecule.
Each configuration of the basic cluster is fully described
by the occupancy of each site, n, =0, 1 (the index i gives
the position of the site) and by the position r; of the mole-
cule inside each occupied cell [in the following we use x;
as an abbreviation for (n;, r;)]. We use a basic cluster
with m =4 including two sites in each wall, as shown in
Fig. 3. The interaction between the nearest-neighbor
sites in the cluster is attractive for large h and becomes
repulsive as h decreases, producing the blockade de-
scribed above. The distribution function for the cluster
formed by the sites i,j,k, l is given by the function

P, kr(x, x', x". ,x"'). The distribution function for small-

er clusters may be obtained from P; &l by integrating over
part of the variables. Thus, the distribution function for
the bond ij is given by

P(J(x&x')= f f P(& I, I(x,x', x",x'"), (4.1)

where we use an abbreviated form for the sum over
x =(n, r):

FIG. 3. Sketch of the basic cluster used in the CVM. The
open circles on a square lattice represent the center of the unit
cells associated to one of the walls. The solid circles are the
centers of the unit cells associated to the other wall; they are
also in a square lattice, although we have represented here only
two of them. The two square lattices are displaced with respect
to each other. The solid lines join the solid circles to their
nearest-neighbor open circles in the basic cluster of our sites.
The full system may be filled with these basic clusters sharing
bonds, with the same topology as the square lattice.

CVM applied to this lattice with m =4 corresponds to
the Kramers-Wannier approximation for the Ising model
in the square lattice. With the notation (4.2) we write the
grand-potential energy as

kaTf f f f P;)k)ln(P;Jkl)
(i,j,k, l) X X X X

—g f f P, &[k&Tin(P, )
—n;n 4(~r, —r ~)]

(i,j )

f f (x) = f f (n, r)—:f (n =0)+f drf (n = l, r), (4.2}
X X Uc +g f P, IksT ln(P;)+n;[V„(r, ) —p]I,

(i)
(4.7)

where UC stands for the unit cell and we use that for
n =0 any function of x =(n, r) becomes independent of r.
The distribution function for one site is given by

P;(x)= f P, (x,x'),
X

and the density distribution in each cell is given by

p;(r)=P;(n =1,r) .

(4.3)

(4.4)

The total density distribution in our capillary is given by
adding the contributions of each cell.

The distribution functions P, J & I(x,x', x",x"') have to
be normalized:

f f f f P„„(x,x', x",x")=1, (4.5)

and through the relations (4.1)—(4.3) the normalization
also applies to P; »d P, . In particular, the average
number of molecules in the cell i is given by

where the sum over (i,j,k, l) runs over all the basic clus-
ters in the lattice, the sum over (i,j) runs over all the
nearest-neighbor pairs, and that on (i) over all the lattice
sites. This expression has to be minimized with respect
to the functions P, j & l with the constraints that the bond
distribution functions should give the same result when
evaluated from the two clusters sharing the same bond.
These constraints may be imposed with the appropriate
Lagrange multipliers (as done in Ref. 11) so that at the
end we reduce the problem to the minimization with
respect to a single basic cluster, say P, 2 3 4 and it may be
written in terms of the two-site distribution functions P,--
and a set of two-site Lagrange multipliers A, i(x,x')
(with i,j =1—4):

P) 2 3 g(X,X,X,X )

N, = f drP, (n = l, r)=1 P, (n =0) . —
UC

(4.6)
=CY, z{x,x') Yz 3(x,x")Y3 4{x",x'")Y4, (x"',x),

(4.8)
The topology of our»ttice is equivalent to the two-
dimensional square lat t&ce, in which nearest-neighbor
sites are associated to the cells of opposite walls. The

where C is a normalization constant fixed to satisfy (4.5)
and
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P, (x, x')3, (x,x')exp[ n—
, n 4(~r; —r ~)l(k&T)]

Y, (x,x')=-
[P,(x)P (x')]'

(4.9)

From (4. 1) and (4.8) we get the following set of coupled
integral equations for I'; and A,

and

P;, (x,x')=CY; (x,x')T, , (x,x')

T z(R (x),R (x'))
A;, ( x,

x')=
T; (x,x')

(4.10)

(4.1 1)

and where indices i,j,k, I run on cycles over 1,2,3,4; 8, in
(4.11), is the rotation operator that transforms r=(x,y, z)
into R (r) = (y, —x, z).

At T =0 the contribution of the entropy to (4.7) van-
ishes and we are left with the exact phase diagram of Sec.
III. For T)0 our expression for the entropy is only ap-
proximate but we hope relatively accurate, because we
are including the main effects of the correlation up to the
four-nearest-neighbor term of the basic cluster. The nu-
merical integration over the cells adds some uncertainty
to the quantitative accuracy of our predictions, but with
a judicious use of special quadratures we may get them
with a reduced number of points. The integral equations
are solved by iterations with good convergence from an
appropriate initial guess.

V. RESULTS AND DISCUSSION

The iterative scheme used to solve the integral equa-
tions of the CVM keeps the symmetry of the initial guess
for the pair distribution functions. Phases like the S2 and
V of the T =0 phase diagram are obtained from a sym-
metric input with nearly full or nearly empty capillaries.
The asymmetric phases A, can also be obtained if we
start with an asymmetric distribution function. At low
temperature we obtain all the phases of the T=O dia-
gram, although the phases boundaries in the (h, p) dia-
gram are shifted with T. The direct transition from V
(the low-density vapor phase which is vacuum at T=0)
to Sz (the bilayer solid), at h ~ 2.05, becomes weaker with
increasing T up to a critical temperature depending on
h, T, (h ), at which the phase transition disappears. We
have followed this in detail for h =2, 3, and the results for
the total number of molecules in the capillary as a func-
tion of the chemical potential for different isotherms are
presented in Fig. 4. The critical temperature for this
value of h is about T, =0.48, so that the transition can-
not be observed in the simulation of Ref. 5, done at T =1.
The existence of a critical temperature for the V-S2 tran-
sition and the smooth evolution of the density distribu-
tion for T~ T, (h) is possible because the S2 phase has

where

T, ,(x,x') =JI'Y, „(x',x")Y„,(x",x" ) Y„(x",x),

(4.12)

2.0
T =0.40

1.4

1.2

1.0

0.8

0.4

o.o
—6.5 —6.4 —6.3 —6.2

FIG. 4. The number of molecules in the capillary as function
of the chemical potential for dift'erent temperatures at fixed
capillary width h =2.3. At low temperature there is a phase
transition from the V phase, N/N, &&1, to the bilayer S2, with
N/N, close to 2. The transition becomes critical at T=0.48
(for this particular value of h) and above this temperature the
system goes smoothly from the empty capillary to the bilayer.

not broken any symmetry of the wall potential; it may be
regarded as a "crystal" phase because the density distri-
bution is made of narrow peaks in the regular positions of
the V„minima, but it has the same symmetry as the V
phase, which is regarded as a rarified fluid modulated by
the wall potential. In this respect the asymmetric phases
are different; they have a broken symmetry which makes
them qualitatively different from the other phases.

The V-A, and A, -S2 coexistence lines at T) 0 are also
shifted with respect to the T=O phase diagram. The
main effect can be understood in terms of the entropic
contribution to the free energy. The monolayers in the
A, phases are at the minima of the wall potential, which
has relatively wide wells. At finite T we expect that the
fluid molecules would be vibrating around the minima,
giving a density distribution made of relatively wide
peaks. In the S2 phase, for narrow capillaries, the double
occupancy of the potential wells includes a repulsive term
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between the nearest-neighbor molecules which pushes
them against the walls, the effective potential has minima
which are much narrower than those of V, and the
peaks of the density distribution in this phase are much
sharper than in the A

&
phase. This argument is valid for

h ~2.2, so that for these values of h the entropy is
greater in the A, than in the Sz phase, and the first one
should become relatively more stable as T increases. The
second change we may expect with respect to the T=O
phase diagram is that when the critical temperature for
the V-Sz phase coincides with the triple V-A, -Sz coex-
istence, the differences between the V and the S~ disap-
pear, and we should find a single boundary between the
asymmetric and the symmetric phases in the (p, h) phase
diagram. At T =1, the temperature studied in the com-
puter simulation, the phase diagram (Fig. 2) shows the
stable A, phases for h &2. 15 and intermediate values of
the chemical potential. The isothermal path followed in
the computer simulation corresponds to a chemical po-
tential decreasing with increasing h as

@=3.5 —ln(s h), (5.1)

where s =7.9925 is the linear size of the simulation box
in the xy plane. In the scale of Fig. 2 this path is nearly
horizontal from p = 1.21 at h =2 to p = —1.53 at
h =2.4. Our prediction along this path is a transition be-
tween h =2. 15 and 2.20 from the asymmetric phase for
small h to the (supercritical) symmetric phase at large h.
This corresponds exactly to the location of the transition
from the bilayer "crystal" to the monolayer "fluid" ob-
served in the simulation. However, our calculation indi-
cates the stability of the asymmetric monolayer with
respect to the symmetric monolayer, which can also be
obtained as an unstable solution of the CVM equations,
by iterating from initial symmetric distribution functions.
Of course, at high temperature we should recover a densi-
ty distribution with the full symmetry of the wall poten-
tial, and with adequate tuning of h and p we can always
find a stable symmetric monolayer phase. To check the
transition from the asymmetric to the symmetric mono-
layer, we have performed a series of calculations at fixed
h =2. 1 and p= —1.5 with increasing temperature. The
result is a smooth change from the asymmetric to the
symmetric phase, with N/N, nearly equal to 1, between
T =1.6 and 1.7, well above the temperature of the simu-
lation.

In conclusion, the capillary model simulated by Schoen
et al. is a particularly hard test for theoretical approxi-
mations. Our density-functional approach, which had
been successfully used to describe the properties of single
walls and smooth capillaries, fails to reproduce the be-
havior of these systems, due to the combined effects of
the narrow confinement and the structure of the walls.
The phase diagram for this system at T =0 shows the ex-
istence of asymmetric rnonolayers in a finite interval of p
for h ~2.05. We have obtained the phase diagram at
T)0 with a CVM calculation in which the free energy is
written as a functional of the four-molecule distribution
function. With this approach we reproduced the
monolayer-bilayer transition observed in the simulation
at T=1 between h =2. 15 and 2.2, but our monolayer

0
0.0 0.2 0.4

z/
0.6 0.8

0
1.0

FIG. 5. Density profiles, averaged over the xy plane calculat-
ed with the CVM across the A, -S~ transition for T = 1 and
LM=4. The profile with two peaks corresponds to the bilayer Sz
for h =2.2 and the profile with the single central maximum is
obtained as the superposition of the two asymmetric monolayers
3& for h =2.0. The result of this superposition is the broad
central maximum qualitatively similar to those observed in the

computer simulation of Ref. 5.

phase is asymmetric. A possible interpretation of this re-
sult is that a symmetric monolayer density profile may be
obtained by superimposing the two degenerated asym-
metric phases, which corresponds to having the capillary
filled with a mixture of the "right" and "left" mono-
layers. This produces the symmetric density distribu-
tions, averaged over the xy plane, shown in Fig. 5 which
is qualitatively similar to those observed in the simula-
tion. Such superposition of the two degenerated asym-
metric phases may appear in the computer simulation,
and the long-run averages would show symmetric mono-
layers. Otherwise, the discrepancy may be a defect of our
theoretical approach, which may be overestimating the
stability of the asymmetric monolayer with respect to the
symmetric one. However, we are sure of the existence of
the A& phases in the T=O phase diagram, and they
should still be there at finite but small T. Our estimate of
T=1.7 for the end of the stability of the asymmetric
phase may be too high, but the accuracy of the CVM
with m =4 to predict the critical temperatures for other
models within a few percent error makes unlikely such a
gross overestimation.

Finally, we have to remark that the richness of the
phase diagram and the difficulty of its theoretical study
are partially produced by the choice of antisymmetric
walls. As described above, the capillary walls are two
consecutive (001) planes in a fcc crystal. The capillary
width is changed by moving the planes away from each
other along the z direction without any displacement on
the xy plane. Thus, the capillary has the symmetry to ac-
commodate an even number of layers but it leads to
stacking-fault defects, with breaking of the symmetry, if
we try to put an odd number of layers. These defects
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might be easily healed by allowing the walls to make a
relative displacement on the xy plane so as to become

symmetric or antisymmetric depending on the number of
fluid layers which can be accommodated in the capillary.
In that case, all the phases would have the full symmetry
of the wall potential. That may be the relevant model for
expandable clays if we imagine them as being made of sil-
icate sheets bonded together by molecular forces, but
with the ability to slip over their neighbor, at least over

molecular distances, to better accommodate a rnonolayer
of water (with the due apologies for neglecting the pecu-
liarities of the water interaction potential).

ACKNOWLEDGMENTS

This work has been financed by the Direccion General
de Investigacion Cientifica y Tecnica of Spain (SEUI
Grant No. PB0237).

'M. E. Fisher and H. Nakanishi, J. Chem. Phys. 75, 5857 (1981);
B. C. Freasier and S. Nordholm, ibid. 79, 4431 (1983); R.
Evans and P. Tarazona, Phys. Rev. Lett. 52, 557 (1984), E.
Bruno, U. Marini Bettolo Marconi, and R. Evans, Physica A
141, 187 (1987).

~P. Tarazona and L. Vicente, Mol. Phys. 56, 557 (1985); G. Na-
vascues and P. Tarazona, ibid. 62, 497-507 (1987).

3L. A. Rowley, D. Nicholson, and N. G. Parsonage, Mol. Phys.
31, 365 (1976); 31, 389 {1976);J. E. Lane and T. H. Spurling,
Chem. Phys. Lett. 67, 107 {1979);Aust. J. Chem. 29, 2103
(1976); F. F. Abraham, J. Chem. Phys. 68, 3713 (1979); I. K.
Snook and %'. van Mergen, ibid. 72, 2907 (1980).

4See, e.g. , R. M. Barrer, Philos. Trans. R. Soc. London Ser. A
311,333 (1984).

5M. Schoen, D. J. Diestler, and J. H. Cushman, J. Chem. Phys.
87, 5464 (1987).

E. Velasco and P. Tarazona, J. Chem. Phys. 91, 7916 (1989).
7P. Tarazona, Phys. Rev. A 31, 2672 (1985).
P. Tarazona, U. Marini Bettolo Marconi, and R. Evans, Mol.

Phys. 60, 573 (1987); P. C. Ball and R. Evans, ibid. 63, 159
(1988).

R. Kikuchi, Phys. Rev. 81, 988 (1951); M. Kurata and R. Ki-
kuchi, J. Chem. Phys. 21, 434 (1953); R. Kikuchi and S. G.
Brush, ibid. 47, 197 (1967).

' See, e.g. , A. Surda, Z. Phys. B 46, 371 (1982); A. G. Shijper, J.
Stat. Phys. 40, 1 (1985), and references therein.
E. Chacon and P. Tarazona, Phys. Rev. B 39, 7111 (1989).

' A. G. Schlijper and R. Kikuchi (unpublished).


