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The main aim of this work is to give a theoretical interpretation for the “anomalous” liquid-
structure factors of zinc and cadmium near freezing and for their variation with temperature, as
contrasted with the “‘normal” behavior of a liquid metal such as potassium. Using an ab initio gen-
eralized nonlocal model pseudopotential and with two alternative exchange-correlation functions
for electronic screening, we construct interionic pair potentials for the above metals. These are then
used for liquid-structure calculations within two alternative integral-equation schemes of consider-
able refinement, namely the modified hypernetted-chain approach of Rosenfeld and Ashcroft [Phys.
Rev. A 20, 1208 (1979)] and the hybridization of the hypernetted chain and the soft-core mean
spherical approximations as proposed by Zerah and Hansen [J. Chem. Phys. 84, 2336 (1986)]. The
comparison between the theoretical results for the temperature dependence of the liquid-structure
factor of potassium and very recent neutron-diffraction data gives us confidence in the high reliabili-
ty of the pseudopotential in the present integral-equation schemes. The same approach is then ex-
tended to investigate the liquid-structure factors for zinc and cadmium near their freezing tempera-
ture and at a few temperatures above freezing. We find that the asymmetric shape of the main peak
in the structure factor of these elements near freezing can be understood in terms of the role of the
medium- and long-range interaction parts in the pair potential. Our results also shed some light on
the subtle changes of the liquid structure of these divalent metals with temperature, and specifically
on the thermal influence in restoring the skewed shape of the main peak back to a normal sym-

15 DECEMBER 1990

metric shape at much higher temperatures.

I. INTRODUCTION

Central to an understanding of the electronic and ther-
modynamic properties for simple liquid metals is the
liquid-structure factor [hereafter referred to as S(q)]
describing the ion-ion correlations in equilibrium. This
quantity can be evaluated by several different routes,
given an accurate knowledge of the effective interatomic
forces. The most direct means is by computer simula-
tion. This approach generally produces a remarkably ac-
curate pair-correlation function for efficient algorithms,
such as the numerical integration code! in the case of
molecular dynamics or the Markov chain stochastic tech-
nique’ in the case of Monte Carlo simulation. There are,
however, notable inadequacies in using simulation data to
extract S(q). The pair-correlation function [to be denot-
ed by g(r)] is known only over a limited range of in-
terionic distance, and hence the problem of Fourier trans-
formation leading to S (g) entails uncertainties in the low
momentum-transfer region. Computer simulation is also
less informative in the small-r region of g(r), which is
most interesting in relation to the statistical-mechanical
theory of fluids.?

As an alternative to computer simulation, one may at-
tempt to calculate S(q) and g(r) by using variants of the
statistical-thermodynamical theory of fluids.*> A well-
known approach is based on thermodynamic-
perturbative theories. In such theories, the basic step
consists of finding a reference system which is adapted to
construct the Helmholtz free energy of the liquid metal in
terms of suitable expansion parameters. The variational
theory based on the Gibbs-Bogoliubov inequality®’
represents such a technique, which is devised to model
the structure factor S(g) of a liquid metal by an ap-
propriate reference S, .(g;v,...), v,... being parameters
characterizing the reference fluid. According to the in-
equality the liquid-metal Helmholtz free energy is a
bounded function consisting of the reference free energy
plus the expansion parameter which, in this case, is the
difference in potential energies between the real and the
reference fluid, calculated with S (g;v, - --). Evalua-
tion of S .¢(q;v, - --) is accomplished by searching for
the extremum of the free energy.

Another widely used thermodynamic perturbation
theory is the Weeks-Chandler-Andersen® (WCA) scheme.
In this approach one starts with an interionic potential
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V(r), which is first separated into a repulsive part @,(r)
and a long-range attractive part ¢,(r). By invoking the
ansatz that the density correlations in a highly dense fluid
are dominated by the excluded volume effect, it can be
shown’ that the WCA Helmholtz free energy of a liquid
metal has an identical form to that of the variational
theory. However, the physical content and the detailed
means to obtain S(q) in the Gibbs-Bogoliubov inequality
approach and in the WCA perturbation theory are some-
what different. Whereas in the former S _(g;v,...) is
modeled variationally via a chosen fluid system (such as
the neutral hard-sphere system or the one-component
plasma), the corresponding structure factor in the latter
is determined perturbatively by the short-range repulsion
@,(r) which, in turn, is customarily expanded with
respect to a neutral hard-sphere system. Several au-
thors'" !> have applied this approach to the study of
liquid structure for a number of simple metals. Invari-
ably, it is found that, although the characteristic softness
of a liquid-metal potential can be accounted for, the cal-
culated medium-range structure is still inaccurate, being
affected by a shift in phase of oscillations. These studies
have shown that the above approaches, apart from the
ease of simultaneously yielding the values of thermo-
dynamic functions, can only describe S(gq) semiquantita-
tively.

Further progress in the calculation of S(q) has
emerged from two closely similar approaches, which may
be called the WCA and the one-component-plasma (OCP)
random-phase approximation (RPA). In both these
theories, the contribution of the long-range attraction
@,;(q) to S(q) is accounted for within the RPA for the
Ornstein-Zernike direct-correlation function of the
liquid. The main difference in the WCA RPA and OCP
RPA lies in the treatment of the unperturbed reference
system. In the WCA-RPA method one treats the unper-
turbed reference part by a method similar to that de-
scribed above for the WCA thermodynamic perturbation
theory, whereas in the OCP-RPA method the unper-
turbed reference potential is modeled by the direct
Coulomb interaction of the “bare” ions and ¢,(r) is thus
related entirely to the indirect ion-ion screening term.
Both the WCA-RPA (Ref. 16) and the OCP-RPA (Refs.
17-20) approaches have been applied with varying de-
grees of success to the study of S(q) for all liquid alkali
metals?! and several polyvalent metals. The applicability
of both these theories is limited, however, to the low-
angle scattering region and to thermodynamic states that
are not too far from the freezing point.

A number of authors have attempted to circumvent
this inherent weakness of the RPA method. The central
idea underlying the so-called optimized RPA (Ref. 22) is
to give attention to the behavior of the attractive term in
the excluded volume region, with the aim of preserving
the property that the pair-correlation function should
remain essentially zero inside a region of space in which
penetration is prohibited by the interparticle repulsions.
Depending on the liquid metal of interest, both the WCA
(Refs. 12-14, 23, and 24) and OCP (Ref. 25) versions of
the optimized RPA have been developed. Here it suffices
to stress two points. First, the above-mentioned

works!? 71423725 have shown that, quite generally, the
optimized RPA yields marked improvement over the
RPA scheme in the liquid alkali metals and a few po-
lyvalent metals. Second, the usefulness of the method ap-
pears to be somewhat dependent on the choice of the
reference system used. Indeed, on the one hand, Pastore
and Tosi?® applied successfully the optimized OCP RPA
and obtained very good agreement with simulation data
and experiment for liquid Rb and other alkali metals near
freezing, while, on the other hand, Kahl and Hafner,"
using the optimized WCA RPA, were unable to obtain
the optimal potential for Rb in the same thermodynamic
state.?® Obviously there still is a need for more work to
assess the potentiality of this approach.

There is yet another avenue to a theoretical study of
S(g), which is the thermodynamically self-consistent
integral-equation method which has received revived in-
terest in the past few years. There are at least two
reasons for this. From the practical viewpoint, while in
the traditional integral-equations method, given a closure
for the Ornstein-Zernike equation, the iterative pro-
cedure to obtain a solution for the pair-correlation func-
tion often proceeds inefficiently,’ elegant algorithms?®’
have become available for carrying out such a procedure
efficiently. This technical advance has stimulated the
study of more refined methods for obtaining S(q), since,
as mentioned just above, even the best thermodynamic
perturbation approach is only partially successful in its
predictions for S(gq). In this work we adopt (i) the self-
consistent modified hypernetted chain®>*® (MHNC) and
(ii) the “mixture” of HNC and soft-core mean spherical
approximation? (HMSA) integral-equation techniques
for an investigation of the liquid structure of Zn and Cd.
We are motivated partly by the recent work of Pastore
and Kahl,*®3! who applied these techniques successfully
to liquid alkali metals, and partly by the fact that these
elements are intrinsically interesting by having ‘“anoma-
lous” liquid-structure factors. Specifically, their struc-
ture factors show asymmetric shapes in the main peak at
or near the melting point, which are seen to disappear
gradually as temperature increases. To our knowledge,
such a behavior of S(g) has not been studied beyond a
speculative discussion by Weaire’> and the optimized
RPA calculations by Regnaut, Badiali, and Dupont?} and
by Hafner and Kahl.>* In order to investigate quantita-
tively the factors that contribute to this behavior, we
have combined the above-mentioned integral-equation
theories with a highly reliable generalized nonlocal model
pseudopotential of Li, Li, and Wang>® which we first ex-
amine for liquid K as a means to ascertain its reliability
as applied to a normally symmetric S(q). In connection
with our choice of integral-equation methods, it is
perhaps relevant to note that the MHNC integral-
equation theory has already been applied successfully to
the study of the OCP system both for bulk>* and surface’*
properties. Very recently, it has also been applied by
Hoshino et al.>® to explain the temperature dependences
of the S(q) of expanded liquid Cs. Much less work has
been devoted to the HMSA method,?”*® however.

The layout of the paper is as follows. In Sec. IT we
summarize the essential ingredients needed in the present
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study and give some computational details. Section III
presents our numerical results. Here we compare the re-
sults first for liquid K with very recent experiments®® at
various temperatures and then for liquid Zn and Cd met-
als at those temperatures at which experiments are avail-
able.*! % We discuss quantitatively also the factors that
give rise to such anomalous behavior of the structure fac-
tor. Finally in Sec. IV we give our summary and con-
cluding remarks.

II. INTEGRAL-EQUATION METHOD

In this section we summarize in Secs. I A and II B the
three basic ingredients—the interatomic pair potential,
the HMSA and MHNC theories, and the choice of bridge
functions in the latter—to be used in our integral-
equation calculations.

A. Interatomic pair potential

Given a system of N pseudoatoms confined in a volume
Q at a given density p=N /€ and temperature T, we as-
sume that they interact via a symmetric pairwise poten-
tial ¥ (r) which is constructed using the modified general-
ized nonlocal model pseudopotential (GNMP) of Li, Li,
and Wang.*® Following Li, Li, and Wang and Wang and
Lai*® we may write

ZZ
Vir)=—f
r

2 o singr
1—— dg Gylg)—— | , 1
= [ "da Gyl p (1

where Gpy(q) is the normalized energy-wave-number
characteristics and Z2;=Z%—p%, Z and p, being the
nominal valence and the depletion charge, respectively.
It is worthwhile to emphasize that in the work of the
above authors proper attention has been given to the
one-electron energy and pseudo-wave-function and that
higher-order perturbative corrections have been incor-
porated through the introduction of a parameter in the
bare-ion pseudopotential. The rigorousness of such a
procedure has been justified theoretically by Li, Li, and
Wang?? and its reliability is further confirmed by several
successful applications to various metallic properties.*’
Consequently we feel that our calculations are based on
interionic potentials having a high degree of refinement.
We also recall that the calculation of Gy(q) involves a
local-field factor for exchange and correlation in electron-
ic screening. We shall present below the results obtained
with two alternative choices for this factor.

B. MHNC and HMSA theories

Having described our basic input source V (r), we turn
to summarize the essential equations needed in the
integral-equation approach. Common to both integral-
equation techniques is the Ornstein-Zernike (OZ) equa-
tion, given by

v(r)=h(r)—c(r)
=p [ h(r')e(lr—r'dr’ @)

in which A (r)=g(r)—1 and c(r) is the direct correlation

function. To solve the OZ integral equation, one needs a
closure between A (r) and c(r). A formally exact closure
relation is

g(r)=exp[y(r)—BV(r)—B(r)], (3)

where B (r) is the sum of the “bridge” graphs.® [The usu-
al hypernetted-chain approximation corresponds to set-
ting B(r)=0.] Given a prescription for B(r), Egs.
(1)=(3) can be solved iteratively to yield g (7).

A number of reliable bridge functions®3%4%4° have
been proposed in the literature. In the MHNC one takes
advantage of the ansatz of universality in the bridge func-
tion and adopts the Percus-Yevick (PY) hard-sphere
parametrized form of B (r). According to Rosenfeld and
Ashcroft,’ the latter can be written

—cpy(r)—1—In[ —cpy(r)], r<o

B(r)= gpy(r)—1—Ingpy(r), r>0

4)

The advantage of using Eq. (4) is that B(r) is a function
of a single parameter n=7po>/6 and that analytical ex-
pressions for gpy(7) and cpy(7) are available.’®>!

Coming to the second integral-equation approach, we
note that the HMSA is essentially a generalization of the
thermodynamical self-consistent closure of Rogers and
Young,*® interpolating continuously between the soft-
core mean spherical approximation (MSA) equation®? at
small r and the HNC closure at large . Implementation
of this integral-equation scheme is slightly more involved.
First, V(r) is split into ¢,(r) and ¢,(r), the short-range
and long-range terms respectively, according to

Virn—Vir,), r=r,
¢, (r)= 0, rzr,
(3)
| Vry), r=r,
Pi(r)= vir), r=r,

where V(r, ) is the pair potential evaluated at its first-
minimum position r,,. Next, by virtue of Eq. (5) Zerah
and Hansen?’ proposed

exp{f(r)[y(r)—Be,(r)]} —1

g(r)=exp[ —Bep,(r] |1+ 0
(6)
in which
fr)=1—exp(—ar), (7)

where a is a mixing parameter to be discussed immedi-
ately below. As can be seen, the “switching function”
f(r) satisfies, on the one hand, the limiting behavior

lim f(r)=0 (8)

r—0

[so that Eq. (6) reduces in this limit to the soft-core MSA
closure] and, on the other hand, the limiting behavior

lim f(r)=1, 9)

r— o

corresponding to the HNC closure.
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We turn next to discuss the determination of the pack-
ing fraction 77 in the MHNC and the parameter a in the
HMSA. Following a customary procedure, we relate the
determination of these adjustable parameters to con-
sistency between the isothermal compressibility obtained
from the long-wavelength limit of S (q),
1+47Tpf[g(r)—l]r2dr

Xr=Bp~' , (10)

and that obtained by an alternative route. The virial
route is often chosen, leading for a metal to the expres-
sion

du(n) 2 d*u(n)

2
" dn dn?

(x7)"'=pB " '+p

(1n

where the superscript V¥ denotes the virial pressure route.
In the above, n is the electronic density and u (n) is the
structure-independent contribution to the energy, con-
sisting of the ground-state electron-gas energy, the aver-
age interaction between electrons and the non-Coulombic
part of the bare-ion pseudopotential (first-order pseudo-
potential) and other self-energy terms (for the GNMP
theory, see Lai*’). Equation (11) follows by the well-
known homogeneous deformation method of calculating
the isothermal compressibility and has been widely used
in the literature.’3 >

The evaluation of Eq. (11) can be quite delicate, in view
of the comparatively less accurate u(n) term.>>3*7% In
this work, instead of using the full form of Eq. (11), we
adopt a different self-consistency condition. To this end,
we note two relevant points. First, as an alternative to
Eq. (10) which determines Y from S(0) through a calcu-
lation with interionic interactions at constant volume,
there is a computationally convenient way of calculating
the isothermal compressibility of a metal by the so-called
method of long waves (LW).>*%%%83% [n this method one
sets out to consider a total-energy expression of the form

DN =Nulng)+1 3 Viring)+ -, (12)
iJj
i<y

where N is the total number of ions and the electron den-
sity n, is kept fixed at the appropriate thermodynamic
state throughout. The expression for y, that follows
from Eq. (12) (see Ref. 59) can be shown to be equivalent
to that in Eq. (10).% Second, it has been pointed
out’3%3%59 that the y; obtained by the LW method and
that obtained by the homogeneous deformation route are
in principle equivalent, provided one carries out the per-
turbation calculation to an infinite order. Nevertheless,

within second-order perturbation theory, it was also
found*3%%%%% that the homogeneous deformation route
invariably yields a y value which differs from that in the
LW approach using Eq. (12).

With these two points in mind, and aiming only at
statistical-mechanical self-consistency for liquid structure
at fixed density, we determine the parameter n or a by
demanding equality between Eq. (10) and the expression
to which Eq. (11) reduces when the density dependences
of u and V(r) are dropped. This self-consistency pro-
cedure was also followed by Pastore and Kah1**?! for al-
kali metals. We further note that since the GNMP
theory adopted here incorporates higher-order correc-
tions to the usual second-order perturbation treatment of
the electron-ion interaction, we expect the value of Y
obtained by this method to be of comparable accuracy as
the homogeneous deformation results, thus approximate-
ly achieving thermodynamic self-consistency. Indeed, as
we shall demonstrate in Sec. III C, in the absence of such
higher-order corrections, our integral-equation method
produces distinctly poor results for S (q).

III. NUMERICAL RESULTS AND DISCUSSION

In this section we first present our results for liquid K
at different temperatures, then the liquid-structure factor
of Zn which shows a slight “tilting” behavior, and finally
that of Cd having a strongly asymmetric S(q). In all the
calculations given below, we adopt two alternative
exchange-correlation factors in the pair potential, due to
Singwi et al.%®® (SI) and to Ichimaru and Utsumi® (IU),
respectively, and apply them separately in the two
integral-equation approximations. For convenience in
discussion, we shall adopt the following notation:
MHNC-SI means that the integral equation used is the
MHNC and the input interionic potential is constructed
using the exchange-correlation function of SI. Similar
meanings apply to the other symbols.

A. Liquid potassium

As a preliminary test of our integral-equation schemes,
we present in Fig. 1 the pair-correlation function for
liquid K at freezing calculated in the MHNC and the
HMSA, along with the Monte Carlo data of Lai*’ ob-
tained from the same interionic pair potential and SI
exchange-correlation factor. The SI V(r) interionic pair
potential used in the calculation of g(r) is also given in
the same figure, together with the IU V(r) included for
comparison. Further details of our results are reported in
Table I.

It is immediately evident from Fig. 1 that both the
MHNC-SI and the HMSA-SI integral equation produce
virtually indistinguishable g(r), which compare rather
well with the simulation result particularly in the main
maximum and subsequent oscillations. There is a slight
overestimation near the second peak of g (r) and this ac-
counts for a small enhancement in oscillation near the
second maximum of S(q) relative to experiment®® (see
Fig. 2). We also note that in the low-momentum-transfer
region, where electronic screening is most important, our
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FIG. 1. The pair-correlation function g(r) for liquid K at
freezing calculated in the MHNC-SI (full curve) and HMSA-SI
(dashed curve) compared with the Monte Carlo data (solid cir-
cles) of Lai (Ref. 47). For the interionic pair potentials, we in-
clude the IU V(r) (full curve) and SI V(r) (dashed curve) for
comparison.
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calculated S(g) (0<g<1 A7 agrees with experiment
within about 10%, as indicated in the magnified insert in
Fig. 2. The above calculations have been repeated at
T =338 K by replacing the SI local-field corrections func-
tion with the IU one. Except for a minor but noticeable
improvement shown by the HMSA-IU structure factor in
the proximity of the second peak, both the MHNC-IU
and HMSA-IU structure factors do not differ visibly
from those given in Fig. 2 and accordingly we do not
present them here. Thus, the overall quality of our
theoretical S (q) can be considered to be very satisfactory
for all wave vectors.

To make a further check on our present approach, we
extend our calculations on liquid K to several elevated
temperatures (7 =373, 573, 773, and 973 K) for which
very recent neutron diffraction data*>*’ are available.
Our MHNC-SI results for S(q) at different temperatures
are depicted in Fig. 3 together with the experimental data
of van der Lugt and Alblas®® at T=373 K and of Jal,
Mathieu, and Dupuy® for all the other temperatures. It
is gratifying to see that our theoretical results compare
very closely with these observations not only near freez-
ing but also at temperatures up to 973 K. These results
are of a much better quality than those calculated using
(i) the Gibbs-Bogoliubov inequality (compare, for exam-
ple, Akinlade, Lai, and Tosi®) and (ii) a similar MHNC
approach of Kahl and Pastore’! involving a local empty-
core pseudopotential. Again upon repeating the calcula-
tions with the HMSA-SI at all temperatures of interest

S(q)

| I 1

q @™

FIG. 2. Liquid-structure factor S(q) for K at freezing in the MHNC-SI (full curve) and HMSA-SI (dashed curve), compared with
neutron-diffraction data (solid circles) of van der Lugt and Alblas (Ref. 39). The inset in the figure shows the small-angle scattering
region on an enlarged scale.
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TABLE I. Temperature 7, packing fraction 7 in the PY bridge function, mixing parameter a [in
units of inverse r, =(3/4mn)'’?, n being the electronic density, see text] and the long-wavelength limit
S (0) calculated in the MHNC and HMSA schemes for liquid potassium at various temperatures. The
second column refers to the exchange-correlation function. The experimental values S.,, (0) are ob-
tained either from the compressibility data quoted in Ref. 31 or from diffraction data (Ref. 66), the

latter being given in parentheses.

T Exc.-corr. n a Smunc(0) Stmsa(0) Sexpt(0)
(°C) function (units of r, 1)
65 SI 0.4648 0.1782 0.0213 0.0189 0.0247
IU 0.4562 0.0011 0.0260 0.0221 (0.0241)
100 SI 0.4550 0.1924 0.0231 0.0206 0.0254
U 0.4428 0.0009 0.0295 0.0249
300 SI 0.3928 0.1674 0.0426 0.0373 0.0469
500 SI 0.3466 0.1567 0.0649 0.0569 0.0769
700 SI 0.3077 0.1470 0.0920 0.0811 0.1177

here and with the MHNC-IU and the HMSA-IU at
T=373 K, we find very little (in most cases insignificant)
differences from the results shown in Fig. 3.

At this point it is appropriate to make a remark in con-
nection with a comment already made in the preceding
section. We pointed out there that higher-order correc-
tions have been taken care of in the construction of the
present pair potential ¥ (r) by the GNMP theory, and
emphasized that such corrections are important in the
evaluation of y; by the LW method. Indeed, we find no

S(q)

2 .3
q (A7)

FIG. 3. Liquid-structure factor S(q) for K at various tem-
peratures, calculated using the MHNC-SI method (full curve)
and compared with neutron-diffraction data (solid circles, Refs.
39 and 40).

difficulty in obtaining either the HMSA-SI or the
HMSA-IU structure factor even at the freezing point,
whereas Pastore and Kah1*® were previously unsuccessful
in applying the HMSA-IU within the context of a local
pseudopotential. It thus appears that their failure to ob-
tain a solution for a is to be attributed to the truncation
at low-order perturbation theory. In addition, their
values for S(0) in the MHNC tend to be overestimated
(see Table I in Ref. 31). This conjecture will be further
supported by our MHNC-SI results for Cd presented in
Sec. III C where we shall compare the MHNC-SI results
for the structure factor with and without**® the higher-
order corrections. In summary, we emphasize that the
presently adopted GNMP theory, in conjunction with the
MHNC or the HMSA scheme, it quite reliable and can
thus be confidently applied to the study of the liquid-
structure factors of Zn and Cd.

B. Liquid zinc

Relative to simple liquid metals such as K, the liquid-
structure factor of Zn is observed*! ~*’ to have the follow-
ing features.

(a) At or near freezing at 723 K, its principal peak ex-
hibits an asymmetric shape with respect to the position of
the first maximum (g,, say), with the low-angle side of
the main maximum being appreciably less steep than the
high-angle side. The subsequent oscillations of S(q) are,
however, not dissimilar from those of the symmetric
structure factor observed in many other liquid metals.

(b) As temperature increases, the asymmetry is reduced
so that at 7~923 K the main peak in S(q) has essential-
ly regained the usual symmetric form.

The anomalous structure of divalent metals was first
discussed by Weaire,’? who extended his previous de-
tailed study® of the stability of the crystalline state to a
liquid analog. According to Weaire, the asymmetric be-
havior of the structure factor in liquid divalent metals,
such as Zn and Hg, has its origin in the tendency of the
liquid system to achieve a stabilized state. Specifically, he
argued that these liquid metallic systems will attain a
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FIG. 4. The pair-correlation function g(r) and interionic
pair potential ¥V (r) for liquid Zn calculated at T=723 K in the
MHNC-IU (full curve) and the MHNC-SI (dashed curve).

lower band-structure energy if their atomic structure is
distorted so as to avoid the subtle crossing between the
first node of the pseudopotential and the first peak posi-
tion of the liquid-structure factor. To our knowledge,
such an interpretation while physically appealing has not
been substantiated by any realistic calculation. A more
conventional “structural” calculation was put forward by
Regnaut, Badiali, and Dupont®® and by Hafner and
Kahl,?* both using the optimized RPA method to calcu-
late S(g). An interesting point that emerges from their
work is that both calculations interpret such a skewed
structure in Zn as due to a significant role of the long-
range attractive interaction in V' (r). We therefore exam-
ine if the present approach can shed light on the intimate
relation between the asymmetric liquid-structure factor
and the long-range attractive interaction.

The bottom part of Fig. 4 shows V(r) as calculated
near freezing temperature for both the SI and IU
exchange-correlation factors. The corresponding MHNC
pair-correlation functions are displayed in the top part of
Fig. 4. There are two interesting features that merit em-
phasis.

(a) There are clear similarities as well as differences be-
tween the SI and the IU pair potentials. In the (first) re-
gion 0=<r=<2.5 A both pair potentials show similar
repulsiveness. As one proceeds into the medium-range
(2.5 ASr=<4.5 A, second region), there is a drastic

S(q)

|

6_,
q A7)

10 12

FIG. 5. Liquid-structure factor S(q) for Zn calculated at T=723 K in the HMSA-SI approximation (full curve) compared with
the charged-hard-sphere Scys(q) (dashed curve, Ref. 62) and with experimental data (solid circles) of Waseda (Ref. 45). The inset in

the figure gives the region of the main peak on an enlarged scale.



7296

S. K. LAI, WANG LI, AND M. P. TOSI 42

S(q)

6—1
q A7)

FIG. 6. Same as Fig. 5 but for MHNC-SI.

difference between the IU V(r) and SI V(r)—the former
remains repulsive but is soft and shows a faint “kink” just
before the first node, whereas the latter develops its first
minimum. At r=4.2 and 4.4 A, respectively, there is a
well-defined first minimum in the IU V(r) and a weak
second minimum in SI V(r). In the final (third) region
r 2 4.6 A one notices that the two potentials are essential-
ly indistinguishable.

(b) As a result of (a) we discover that the pair-
correlation functions also exhibit some subtle structure.
The initial rise in slope of g () just reflects the dominant
role of the excluded-volume effect operating in the first
region, which is very similar in the two potentials. How-
ever, because of the substantial differences in V' (r) in the
second region, the MHNC-IU g(r) is found to be less
steep in slope on the right-hand side of the first peak

S(q)

6._,
q A7)

FIG. 7. Same as Fig. 5 but for HMSA-IU.
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FIG. 8. Same as Fig. 5 but for MHNC-IU.

(with a tendency to “bend over” to the left). Probably be-
cause of this, the subsequent oscillations in the MHNC-
IU g (r) are being shifted to shorter distances relative to
those in the MHNC-SI one, despite the fact that the two
potentials in the third region are virtually the same.

We have repeated the above calculations in the HMSA
approach. The two basic features described above remain
virtually the same except for slightly enhanced oscilla-
tions of g (r) in the HMSA-SI scheme. It is interesting to
analyze at this point what bearing will all these features
have on the liquid-structure factor S(q). For this pur-
pose we compare in Figs. 5-8 the set of four liquid-
structure factors (HMSA-SI, MHNC-SI, HMSA-IU, and
MHNC-IU) with (i) the charged-hard-sphere structure
factor Scys(9),*? which may serve as a reference for
differentiating the degree of asymmetry, and (ii) the data
of Waseda.*> There are several observations that can be

made.

(1) For the four calculated S (g)’s, the degree of repro-
duction of the skewed structure is in the ascending order
HMSA-SI-—-MHNC-SI—-HMSA-IU—-MHNC-IU, with
the MHNC-IU best explaining the asymmetric first peak.
This is related to our earlier point (b) simply via Fourier
transformation. Basically it is due to the IU g(r) being
characterized by a less steep slope on the right-hand side
of its first peak. By contrast, the corresponding SI g(r)
has a steeper slope superimposed on an enhanced magni-
tude in g(r,), r, being the position of the first maximum,
which is in turn related to the first minimum of the SI
V(r). The general trend is clearly arising, within the
nearly-free-electron pseudopotential method, from the
role of exchange and correlation in dielectric screening.
In addition, for a polyvalent liquid metal having a hard-
type potential we would expect the MHNC to be superior

TABLE II. Temperature T, packing fraction 7 in the PY bridge function, mixing parameter a [in
units of inverse r,=(3/4mn)'/3, n being the electronic density, see text] and the long-wavelength limit
S(0) calculated in the MHNC and HMSA schemes for liquid Zn at various temperatures. The second
column refers to the exchange-correlation function. The value of S, (0) is taken from Webber and

Stephens (Ref. 67).

T Exc.-corr. a

(°C) function n (units of r, 1) Smunc(0) Shmsa(0) Sexpt(0)

450 SI 0.4161 0.1600 0.0284 0.0238 0.015
U 0.3936 0.5769 0.0216 0.0190

560 SI 0.4005 0.1513 0.0330 0.0278
IU 0.3798 0.5680 0.0250 0.0221

660 SI 0.3876 0.1466 0.0374 0.0317
U 0.3681 0.5602 0.0281 0.0250
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to the HMSA, although for a given exchange-correlation
function the difference between the two integral-equation
schemes should not be significant.

(2) When compared with liquid potassium (Table I), we
find (see Table II) that the mixing parameter a deter-
mined using the SI ¥V (r) shows regularity and is quite in-
dependent of the liquid metal under study (a=~0.15r,"},
r, being the electron density parameter). This is not so
for cases using the IU V' (r), where the magnitude of « for
Zn is much larger than for K. Clearly, the magnitude of
o reflects the shape of the potential (recall that =0 cor-
responds to the soft-core MSA). As regards the value of
7, we generally obtain a lower 7 for Zn than for K.

(3) Except in the proximity of the main peak and in a
limited region at lower wave-vector transfer, the overall
agreement with experiment in all four cases is quite satis-
factory, especially from near the first minimum and
beyond. The discrepancy in the low-g region may be due
to experimental uncertainties, since more recent experi-
ments*! and calculations®* show better accord with our
present results.

(4) On quantitative comparison with the observed S (q),
the two IU S(q)’s underestimate somewhat the magni-
tudes of the first maximum, whereas those of SI S(q)’s
are of comparable magnitudes. We should recall, howev-
er, that there is quite a scatter of measured data, as point-
ed out by Wagner.*

As a last point we examine the temperature depen-
dence of S(g). Our MHNC-IU results for the liquid-
structure factors of Zn at T=723, 833, and 933 K are
given in Fig. 9 together with the experimental data of

S(q)

1 J; 1 ] 1 L 1
8, 10 12
qa A7)

FIG. 9. Liquid-structure factor S(q) for Zn calculated in the
MHNC-IU (full curves), compared with charged-hard-sphere
Scus(q) (dashed curves, Ref. 62) and with measured data (solid
circles) of Waseda (Ref. 45).
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FIG. 10. Same as Fig. 9, giving an enlarged representation of
the region of main peak of S(q).

Waseda.** We notice from this figure and from the en-
larged representation of the first peak in Fig. 10 that the
MHNC-IU scheme predicts rather well the general be-
havior of S(g)—i.e., near freezing the first peak of S(q)
shows a bending towards the high-angle side and as tem-
perature increases this asymmetric distortion gradually
disappears. Over the present temperature range, howev-

T T T
S —
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m
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o \/
- -
-5 1 | | | 1
2 8
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FIG. 11. The interionic pair potential IU V(r) vs r for liquid
Zn at T=723 K (full curve), 833 K (short-dashed curve), and
933 K (long-dashed curve).
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TABLE III. Temperature 7, position g, (in A—I), and height S(g,) of the main peak calculated in the MHNC and HMSA approx-
imations for liquid zinc at various temperatures. The second column refers to the exchange-correlation function.

T Exc.-corr.
(°C) function 9p, MHNC 9p, HMSA 9p,expt Smunc(g,) Shmsa(q,) Sexpt(q,)
450 SI 2.812 2.796 2.9° 2.345 2.499 2.527%
U 2.860 2.826 2.89+0.02° 2.072 2.071 2.8510.05°
560 SI 2.806 2.789 2.9° 2.206 2.332 2.426°
IU 2.855 2.822 2.8940.02° 1.975 1.976 2.67°
660 SI 2.801 2.783 2.9° 2.103 2.208 2.3752
IU 2.851 2.819 2.89+0.02° 1.899 1.901 2.53°

From Ref. 45.

"From Ref. 41, measured at temperatures of 460 °C, 550°C, and 650°C.

er, both the MHNC-IU and the measured S(q) still con-
tinue to show some tilting, which is made evident by the
comparison with Scys(q). Numerical results for the be-
havior of the main peak with temperature are given in
Table III. In Fig. 11 we show the temperature variation
of the IU V(r). Within our earlier discussion, these
changes of the pair potential (and in particular the de-
crease in energy of the “kink” with respect to kz7T) are
clearly correlated with the behavior of S(g) with increas-
ing temperature as shown in Figs. 9 and 10.

C. Liquid cadmium

The structural behavior of liquid Cd is qualitatively
similar to that of liquid Zn, but the “anomalous” behav-
ior that we have discussed above is more marked.
Specifically, the distortion of the principal peak in S(q)

3
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FIG. 12. The pair-correlation function g(r) and interionic
pair potential ¥ (r) for liquid Cd calculated at T=623 K in the
MHNC-IU (full curve) and the MHNC-SI (dashed curve).

near freezing is much more severe, and increases in tem-
perature are less effective in restoring S(q) back to the
normal symmetric form, the asymmetric features being
clearly present even up to the highest temperature of
T =923 K attained in experiment.*>**

Applying the same integral-equation approximations to
liquid Cd, the following are several of the discernible
similarities and differences that we notice.

(a) The SI V(r) and IU V (r) pair potentials are similar
in structure to those of liquid Zn (Fig. 12). The main
differences are that the kink in the second region of the
IU ¥V (r) is more pronounced and the second minimum of
the SI V(r) is well developed. As a consequence, we find
that the “bend-over” of the IU g (r) towards the left-hand
side of its first maximum [relative to the SI g (r)] is slight-
ly more pronounced than in Zn (Fig. 12).%% Such a distor-

S(q)

o il I R R N
6_, 10 12
q A7)

FIG. 13. Liquid-structure factor S(gq) for Cd in the MHNC-
IU (full curves), compared with Scys(g) (dashed curves, Ref. 62)
and with measured data (solid circles) at T=623 K of Waseda
(Ref. 45).
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FIG. 14. Same as Fig. 13, giving an enlarged representation
of the region of the main peak of S(q).

tion accounts for the more asymmetric shape of the main
peak in S(q), as borne out in our MHNC-IU results and
further corroborated by their very good agreement with
experiment (Figs. 13 and 14).

(b) In accordance with our earlier discussion for Zn we
find that our a values for HMSA-SI near freezing and at
higher temperatures are also about 0.15r,"!, whereas
those for HMSA-IU remain noticeably dependent on the
shape of V(r). The 7 values in the MHNC scheme are
again somewhat small compared with those appropriate
to liquid K. All these results are collected in Table IV.

(c) The temperature dependence of S(q) for the
MHNC-IU case is shown in Figs. 13 and 14. The agree-
ment with experiment is much better than for Zn, for

S(q)

4 6 8 10 12
q &7
FIG. 15. Liquid-structure factor S(q) for Cd near freezing
calculated in the MHNC-SI with an energy-independent nonlo-
cal model pseudopotential (dashed curve) and with the GNMP
(full curve).

what concerns particularly the skewed shape of the main
peak. The temperature variation of ¢, and S(g,) for Cd
is reported in Table V.

Finally, we should comment on a relevant work by
Hafner and Kahl.?* These authors attempted to explain
the trend of the liquid-structure factor for many simple
liquid metals using the optimized WCA RPA in conjunc-
tion with a local empty-core pseudopotential. For liquid
Cd, they showed that an atypical pair potential similar in
form to the IU V(r) in Fig. 12 is a prerequisite for pro-
ducing an asymmetric S(q). While this observation is
generally in line with our earlier discussion, one should
also note that the underlying physics for the liquid-
structure factor turns out to be more subtle. This can be
seen from our MHNC-SI S(q) given in Fig. 15, where we
compare the results obtained from the energy-
independent nonlocal model pseudopotential, for which
the higher-order corrections are omitted,*®% and from
the GNMP theory. It is evident that even the theory

TABLE IV. Temperature T, packing fraction 7 in the PY bridge function, mixing parameter a [in
units of inverse r,=(3/47n)!”?, n being the electronic density, see text] and the long-wavelength limit
S(0) calculated in the MHNC and HMSA schemes for liquid Cd at various temperatures. The second
column refers to the exchange-correlation function. The value of S.,,(0) is taken from Webber and

Stephens (Ref. 67).

T Exc.-corr. a
(°C) function n (units of rf’) SMHNC(O) SHMSA(O) Sexp,(O)
350 SI 0.4314 0.1588 0.0246 0.0202 0.011
1U 0.4049 0.5100 0.0208 0.0177
450 SI 0.4166 0.1537 0.0284 0.0235
IU 0.3914 0.5001 0.0239 0.0206
550 SI 0.4022 0.1468 0.0327 0.0272
IU 0.3783 0.5005 0.0271 0.0236
650 SI 0.3890 0.1408 0.0372 0.0311
1IU 0.3662 0.4800 0.0309 0.0270
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TABLE V. Temperature T, position g, (in ;\71), and height S(g,) of the main peak calculated in the MHNC and HMSA approxi-
mations for liquid Cd at various temperatures. The second column refers to the exchange-correlation function.

T Exc.-corr.

(°C) function qp, MHNC 9p, HMSA 9p,expt Smunc(g,) Shmsa(q,) Sexpt(qp)

350 SI 2.531 2.515 2.62° 2.590 2.771 2.54*
IU 2.583 2.562 2.57° 2.365 2.334 2.55°

450 SI 2.525 2.518 2.56° 2.432 2.578 2.45°
U 2.577 2.556 2.234 2.213

550 SI 2.518 2.500 2.55° 2.296 2.415 2.38°
IU 2.571 2.550 2.104 2.088

650 SI 2.511 2.493 2.54° 2.182 2.281 2.24°
1U 2.563 2.543 2.026 2.014

?From Ref. 45.
®From Refs. 43 and 44.

without higher-order corrections may yield fortuitously
an asymmetric structure for the main peak but it badly
fails, as in the work of Hafner and Kahl,?* in the lower
and higher momentum-transfer regions.

IV. SUMMARY AND CONCLUDING REMARKS

In this work, using a highly reliable GNMP theory and
two different exchange-correlation functions, we have
constructed interionic pair potentials for the liquid met-
als Zn and Cd at freezing and at a few temperatures
above freezing, as well as an interionic pair potential for
liquid K. As a means to ascertain the accuracy of the
present approach, and also with a view to interpreting
the recent neutron-diffraction data for this latter element,
we have carried out calculations of its liquid structure
within the MHNC and the HMSA integral-equation
schemes. We have obtained remarkably good agreement
with computer simulation data and with experiments.

We have then proceeded to apply the same techniques
to an investigation of the liquid structure of Zn and Cd.
We have analyzed the intimate connection between the
interionic pair potential V' (r) and the pair-correlation
function and found that the medium-range and long-
range attractive parts of V(r) are indeed crucial for a
quantitative understanding of the asymmetric distortion
of the main peak in S(q) in these divalent liquid metals.
This conclusion is in accord with the earlier calculation
on liquid Zn by Regnaut, Badiali, and Dupont23 who
used the optimized WCA RPA for a similar purpose. As
far as our calculations show, the exchange-correlation
factor of Ichimaru and Utsumi is quite accurate, beside
being computationally simple, and can thus be quite
confidently used for quantitative studies of S(g) and pos-
sibly for thermodynamic and electronic properties. A

similar conclusion has been reached by Kahl and
Hafner!? in their investigation of expanded liquid Rb.
We have also stressed the role of higher-order perturba-
tive corrections in the construction of the bare-ion pseu-
dopotential. However, both nonlinear corrections and
the nature of exchange and correlation in the electron gas
do not easily lead to a deeper understanding of systems
such as Zn and Cd in terms of electronic structure or
chemical bonding.

Underlying the success of the present integral-equation
approximations is the method of long waves to the iso-
thermal compressibility )y, which we have taken togeth-
er with S(0) to determine the parameters 7 and a subject
to the condition of statistical-mechanical self-consistency.
Bearing in mind that our pseudopotential is treated
beyond second-order perturbation theory, our theoretical
results for g(r) and S(q) are built on firm grounds. It
would be interesting, however, to examine also the homo-
geneous deformation route for imposing thermodynamic
self-consistency.
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