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Experiments on a system of two magnetic holes (nonmagnetic microspheres in ferrofluid)
subject to a rotating magnetic field show various types of behavior depending on the driving
frequency. For two spheres (holes) mechanically bound together the stable rotation mode at low

frequencies is replaced above a critical frequency by a mode with alternating rotation directions.
This is described by simple nonlinear equations, and simulations show good quantitative agree-
ment with the experiments. For two free spheres not bound together one observes a transition to
a mode in which the spheres undergo both angular and radial motion around the center of mass
of the system. Depending on the frequency and the anisotropy of the rotating magnetic field
the motion passes through a sequence of states with sphere rotation mode-locked to the driving
frequency at diR'erent ratios in good qualitative agreement with simulations. Adding a constant
magnetic field normal to the plane causes the minimum sphere separation to increase from con-
tact to a finite value. At high frequencies tlie spheres are influenced by an effective magnetic
potential, giving rise to a static particle separation proportional to the normal component of
the field.

I. INTRODUCTION II. EXPERIMENT

The term magnetic hole has been used to denote a non-
magnetic particle immersed in a ferrofiuid. The inter-
esting properties of such systems have been studied for
some time. The crystallization and melting of monolay-
ers of these magnetic holes in external fields have been
observed experimentally, and it has been predicted that
there should be phase transitions between various static
two-dimensional (2D) and quasi-2D phases depending on
the layer thickness. On the other hand, the dynamic be-
havior of such systems is not well known even though
there have been some theoretical calculations for the mo-
tion and orientation of similar systems consisting of fine
ferromagnetic particles in a viscous medium.

The understanding of the dynamics as well as the stat-
ics of these systems should be important in connection
with ferrofiuid applications and for use of magnetic
microspheres in medicine. From the theoretical point of
view the magnetic hole systems offer the possibilities of
observing a wide range of nonlinear dynamic pllenom-
ena and collective processes, as they are easy to produce
and to manipulate. A simplifying feature with magnetic
holes is that their magnetic moments are collinear with
an external field at any field strengtli. This is in contrast
to fine magnetic particles for which intrinsic anisotropies,
domains, etc. complicate the theoretical treatment of the
dynamic and static properties of particle assemblies.

Our experimental system consisted of a thin layer
(typically 50—100 pm) of kerosene-based ferrofiuids con-
fined between two glass plates. Highly monodisperse
polystyrene spheres in size range 10-100 pm were dis-
persed in the fluid. The spheres are so large that they
may be stored dry and dispersed directly into the fer-
roAuid. Moreover, since the spheres are hydrophobic they
enter easily the bulk of the fiuid. The separation between
the plates was adjusted evenly by using either somewhat
larger spheres (50—100%) as spacers or using a thin wire
along the edges. The cell was sealed along the edges and
was placed in a magnetic field produced by three orthog-
onal pairs of coils, along the z, y, and z directions. The
microscope used to observe the spheres was connected to
a video camera, a videotape recorder, and a computer
with a digitizing card for numerical analysis of the video
pictures.

A magnetic liquid consists of a colloidal suspension of
monodomain ferromagnetic particles (e.g. , magnetite) of

O

typical size 100 A coated with surfactants to prevent ag-
gregation and dispersed in water or an organic liquid.
The Brownian motions of the particles prevent sedimen-
tation. In an external magnetic field the ferrofluid par-
ticles will partly align with the field and tlius the fer-
rofluid is perfectly paramagnetic. Since the diameter of
the nonmagnetic polystyrene spheres we used was several
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orders of magnitude larger than the ferrofluid particles,
the spheres (holes) moved in a homogeneous, magnetic
background. The particle nature of the ferrofiuid may
thus be neglected in the present case. The interaction
between the dispersed nonmagnetic spheres is of dipole-
dipole type. It should also be noted that the spheres were
so large that their Brownian motions had no inhuence.
(For spheres smaller than 2 pm diameter this has to be
taken into consideration. ) In the presence of a constant
H field in the zy plane (sample plane) the magnetic holes
line up in chains oriented along the field. There is an
apparent repulsive dipole interaction between the chains
forcing them to separate as far as possible. With only
a constant magnetic field normal to the sample plane
(along the z axis), the magnetic holes repel each other
and locally produce a triangular lattice with lattice con-
stant comparable to the sphere diameter, i.e. , 10—100 pm
typically. It is possible to "anneal" the lattice, e.g. , by
using an oscillating field, and to obtain a perfect trian-
gular lattice on long length scales too ()1 cm).

The regular structures observed in stationary fields are
destroyed when the direction of the field is changing, as
in a rotating field. The many-body modes of motion
which appear in this case are in general very complex,
but in some special cases their spatiotemporal structure
becomes quite simple and clear. To gain insight into the

problem, we performed a series of experiments on samples
containing only a few spheres. In this article, we will con-
sider the simplest case with only two spheres (magnetic
holes). The three-sphere case is much more complicated
and has not yet been thoroughly investigated.

The experimental situation for two magnetic holes in
an B field rotating in the zy plane is shown in Fig.
1. The components of the field are Hpx sin(uHt) and

Hei sin(uH/+ z'/2) where uH is the angular frequency of
the rotation. Both circularly polarized (r = Hoi. /Ho& =
1) and elliptically polarized fields (r & 1) were used. The
frequencies of the modes of motion for the spheres were
low (&1 Hz) and were measured manually by using a
stopwatch. Two distinctly different physical realizations
were employed: In case (i), the spheres were bound to-
gether permanently' so that there was only one degree of
freedom left for their motion, the angular rotation. The
system was then similar to a single anisotropic particle
in a rotating field. In case (ii), the spheres were free to
separate, and this produced different and more complex
modes of motion. These two cases will thus be discussed
separately below.

A. Case (i): Bound spheres

For circularly polarized fields (r =1) there are two dis-

tinctly different steady-state modes of motion. i For low

frequencies uH of the rotating magnetic field, the bound
pair rotates uniformly and is phase-locked to the field.
This mode is denoted by Mf (the superscript c in the
mode notation indicates a circular rotating field). It
occurs below a well-defined angular frequency, ~~, of
the rotating field. (Typically, ~c/2x = 0.3 —0.5 Hz
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FIG. 1. (a) Experimental setup, showing the three orthog-

onal pairs of coils labeled (1), ('2), and (3). (b) Side view of
experimental setup (without coils). (c) Top view, coordinate
system for two magnetic holes rotating in the plane between
the glass plates in (b).

FIG. 2. Plots of the average angular frequency u for var-
ious amplitude ratios r = Ho+/Ho& of the rotating magnetic
field vs H-field angular frequency ~H. The dash-dotted curve
for r=l (curve f) is the exact analytical solution given by
Eq. (14). The solid curves represent simulated results and
the dots experimental results. The intersections of the solid
curves (a)—(e) with the dash-dotted line to the left (U = urH)
represent the critical frequencies uq in Fig, 5, whereas the
intersections with the horizontal solid line (~ = 0) represent
the critical frequencies ~2 in Fig. 6.
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in most cases. ) Above ac, the motion is no longer uni-

form. Instead, the pair goes through a periodic sequence
of forward and backward rotations (mode M&). For &uH

just above u~, the forward rotations last much longer
than the backward ones. As ~~ increases, they become
more frequent and comparable in length. On average,
the bound pair rotates in the same direction as the ro-
tating field, but the average angular frequency ~ of this
motion goes to zero as ~H ~ oo. This average behavior
is shown in Fig. 2 where all frequencies are normalized
relative to ~c (~& ——~H/~c). It was observed that this
critical frequency, which separates t,he modes Mf and

Mz, is proportional to the square of the magnitude of
the rotating field.

Using different amplitudes of the two components Hog
and Hp& of the rotating field (elliptical field) the tran-
sition from the phase-locked state (denoted by Mi) to
the forward-backward rotation mode M2 now occurs at
a lower frequency than ~c;. The M~ mode may be con-
sidered as a modulated version of the Mi mode with
the angular velocity of rotation oscillating at a frequency
2~H with small amplitude around the average value ~0.
Similarily, the M2 mode can be seen as a modulation of
the M~ mode.

tive volume susceptibility of the ferrofluid. These ap-
parent magnetic moments My carried by each magnetic
hole are equal and always parallel to the magnetic field,
but opposite to its direction. This is a magnetic analog
of Archimedes s principle. Figure 1(c) shows the situa-
tion when two spheres are placed in an external rotating
field H(t) which at time t makes an angle PH with the z
axis. %e assume that the line through the centers of the
spheres, which are separated by a distance d & a, makes
an angle Pd with the z axis. The interaction energy be-
tween the spheres is given to first orderis by the dipolar
term

Mi ——V y,&HD (cos ~H t + i' sin' ~H t),
with r = Hsv/Hox, Ho —Hox and

(2)

tan &P~ = r tanaHt .

The radial magnetic force Fd acting on each of the
spheres is

U = M& [1 —3 cos (PH —Pd)]/d

When the magnetic field is rotating with angular velocity
uII, we obtain

B. Case (li): Free spheres
Fq ——— —3Mi, [1 —3 cos (PH —Pg)]/d

Dd

and the magnetic torque G& acting on the pair is

(4)

VVhen the spheres are not bound together, the system
has an additional radial degree of freedom, and the mo-
tion becomes more complex. The phase-locked M&' mode,
however, remains unchanged. At ~c it transforms into
a new mode M4. The angular behavior (oscillations) of
the system in this mode is similar to the M2 mode, but
an additional radial oscillation takes place each time the
axis between the spheres rotates opposite to the field.
The spheres thus move in antiphase in loops around the
fixed mass center of the system. The number of loops
increases with increasing frequency of the driving field.

For the anisotropic case Ho~ g Hoi ( r (I ) the
loops are no longer even but vary according to the mag-
nitude of the magnetic field. The most important differ-
ence between the bound and free pair cases is that in the
latter case we observe locking to the external frequency
for other ratios than the simple ~:~H——1:1M~ mode ob-
served for bound spheres. For certain intervals of ~~, the
rotation of the pair locks to the field in ratios ~:~H ——1:2,
1:4, 1:6, 2:3, etc. as will be shown later in the simulation
part of this paper.

III. PHYSICAL MODEL

Let us consider a system of two equal nonmagnetic
spheres with diameters a (a = 10—100 pm) placed inside
a thin layer of magnetic fluid confined between two glass
plates with spacing typically twice the diameter of the
spheres. In an external magnetic field, the holes carry
an apparent magnetic moment My ———Vy, fIH where
V = vra /6 is the sphere volume and g~rr is the effec-

H
GH&

—— ——3Mv sin[2(PH —Pq)]/d
Bpd

and

Fq ——3

irma�(

~ d)

(dF" = —3niva
~

respectively, where il is the ferrofluid viscosity.
In equilibrium, F& + Fd ——0. Since the magnetic

torque on each of the spheres is ziG&H, the equilibrium
condition for the torques about the center of rotation can
be written 2G4, + 2F~n = 0 We illtroduce new dllnen-
sionless variables for distance D = d/a, time 7 = ~ct,
angular frequency ~H ——~H/uc, and field h = H/Ho
The constant ~~ is given by

~c = 7rHoy, fr/18',

which corresponds to the experimentally observed critical
angular frequency described above.

Thus the dimensionless equations of motion for a pair
of holes are

aIl d

= h [1 —3cos (PH —Pd)]/Dd7

Assuming a simple Stokes law for the viscous force F"
acting on the spheres, the radial and angular compo-
nents, F& and F&, are
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FIG. 3. The angular position Pq vs time r for two bound
spheres in a circular symmetric rotating magnetic field for
different field angular frequencies ~H. The initial conditions
for all simulations were Pq(r =O) =PH(r =0) =O.

IV. NUMERICAL SIMULATIONS

A. Bound spheres in a circular field

"(4H) = s arc»n(~H) . (12)

Experimental observations reveal that in the case of
bound spheres there exist two distinctly diA'erent steady-
state modes of motion denoted above by M& and M2. In
the M& mode observed below a critical frequency ~H
~i ——1(~H = "),the spheres rotate uniformly with the
same angular frequency as the field. Above ~HI ——1 the
Mz mode appears. Qualitatively, it can be described as
a periodic sequence of forward and backward rotations.
In the phase-locked Mi-mode there develops a constant
phase lag 8 = PH(r) —P'(r) between the direction of
the field and the axis through the centers of the spheres.
Setting d8/dr = 0 and using Eq. (10) the magnitude of
the phase lag is found to be

= I sin[2(PH —Pz)]/D

The magnitude of the dimensionless magnetic field h is

given by

h =cos (u)Hr)+r sin'(~/rr).

In the reasoning above, we have neglected the inertia
term IP" since the moment of inertia I is small and
the viscosity of the ferrofiuid is high (strong damping,
Reynold's number R 10 s). Using Eqs. (9)—(11)above
we have performed numerical simulations on the system
using a fourth-order Runge-Kutta algorithm. The results
of these simulations are presented in Figs. 2—4. Due to
the strong damping of the system, the initial transients
were always relatively short except when ~& was close to
the critical frequencies as discussed below.
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FIG. 4. The angular position Pq vs time r for two bound
spheres in an anisotropic rotating field for diferent field
anisotropy r. The angular frequency is the same in all three
cases, ~H ——1.7. The case r=1.0 represents the Mz mode,
the r=0.8 case is a typical example of the M~ mode, while
the r=0.6 case is an M3 mode as explained in the text.

The numerical solutions for the M2 mode are shown in

Fig. 3 where the forward-backward motion relative to the
field rotation is clearly seen. The backward motion inter-
vals occur when the phase lag 8 mod (m) crosses the value

x/2. At this point the magnetic torque changes sign, re-
versing the direction of rotation for the pair. This lasts
as long as 0 mod (x) p (n/2, n). The cycle ends when
the field and pair axis coincide and the torque direction
changes once more.

It is possible to find the angular frequency ~b of the
backward rotation by integrating Eq. (10) from the end
of one backward rotation to the end of the next (for D=l
and r=l)

lr 1
Gdy =2K GO . =2 4)II —1

0 ~~1 —sin 20

Since in one period of the forward-backward M2 mode
the rotating pair loses an angle m relative to the rotating
field, the average angular velocity of the rotation ~ may
be expressed as ~ = ~H —"b/2 Thus w. e obtain

(14)

as the average angular velocity in this case. This curve
is shown in Fig. 2. This analytical result was used as a
test for the numerical accuracy of our simulations. For

~ oo, Eq. (14) gives ~ I/2~» which is in close
agreement with experimental observations. In the other
limit ~0 1,

(15)

Thus A~ (A~H) / and the "critical exponent" for the
transition is —.2'

B. Bound spheres in an elliptical field

For an elliptical field, the M~ and Mq modes both
change character as seen in Fig. 4. The new Mq and M2
modes are modulated versions of the My and M„'modes.
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tion of motion for the angular motion of the bound pair.
Introducing e = 1 —r as the measure of the deviation
from circularity this equation reads

dpd —(1 —c) sin[2(uHr —pd)] —c sin(2pg)
d7

= G„„(1—c)+ Getr(c, dd) . (16)

Its interpretation is relatively simple. G, ;,,(1 —c) is the
torque induced by an efFective circular field of magnitude

~h~ = gl —c G, t.r(c, Pd) is the torque stemming from an
effective angular energy barrier

U,tr(gg) = ——cos(2gd) .
2

(17)

FIG. 5. The values of the lower critical angular frequency
calculated from simulations for diA'erent values of the

anisotropy parameter r. The solid curve shows the asymp-
totic behavior for r ~ 1.

Thus the motion of the bound pair in an elliptic field can
be viewed as the motion of a pair induced by an efFective
circular field within a stationary energy barrier.

For a general equation of the form

In spite of the modulation, the average frequency of ro-
tation is still ~ = ~H in the M~ mode, and as r ~ 1

the Mq mode changes smoothly into the M& mode. The
transition between the Mq and M2 modes takes place at
a frequency ui smaller than ~i(r = 1) = 1. As is shown
in Fig. 2, the average angular velocity ~ in the M2 mode
does not approach 0 asymptotically. Instead, there is a
finite transition frequency u~ above which the spheres do
not rotate but perform an oscillation around some fixed
axis. The direction of this axis is midway between the
largest and smallest axis of the 8-field ellipse at ~H
and approaches the former as ~& ~ oo. This mode,
which we call Ms, can be considered as a limiting case of
mode locking to the magnetic field with ratio V:~1&——0:1.
As r decreases, the ~H range in which the M2 mode is
observed decreases and the M~ mode presumably van-

ishes below a certain r value. By carefully approaching
the ui value from below and the ~2 value from above, it
is possible to get good numerical estimates for these val-
ues for difFerent values of r. Figures 5 and 6 show these
numerical estimates together with the analytical limit for
r~1.

In the Appendix we have derived the simplified equa-

~i(r) =1—c=r.
From Eq. (16) we get an equation for the average mo-

tion

~ = (1 —c)(sin[2(cJlgr —Pd)])@ —csin(2gg)

1 —E —csin(2gg) .
24)H

(2o)

When the average motion vanishes, u = 0, then

1 —E 1 —E

2c sin(2$d) 2c
(21)

The maximum field angular frequency ~q for observation
of the Mg mode for r ~ 1 is therefore

1 —6 r
(22)

= A sin[2(4Jt —Q)]
dh

the critical frequency is ui —A and similar to Eqs. (13)
and (14) the average angular velocity for ~ )& ~i is

(dP/df) = A/2u. Using this and Eq. (16), the frequency
~~ for the transition from the Mi to the M~ mode in the
limit r ~ 1 is found to be

100—
Good empirical fits to the numerical estimates of the

critical frequencies for the range 0.5 ( r ( 1.0 shown in
Figs. 5 and 6 are given by

and

r2+ 1
~i(r) = 2r—

2
(23)

4l2(r) ~~
(1 —r)(3 —r)

(24)

P ] I I I I j

0.99 C).995

FIG. 6. The solid curve shows the asymptotic behavior
r ~ 1 for the upper critical frequency u2, while the circles
represent the values fouIId in simulations.

and have the same asymptotic form as the analytical re-
sults given above for r ~ 1. The experimental values of
~i and ~~ (Fig. 2) agree well with the simulations except
for u2 close to r=l where small experimental deviations
from the nominaj r value produce large changes in ~g.
The simulations show (Fig. 7) that, close to ~i
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over at least four orders of magnitude, where A~'H—
(vH —uri). This is in close agreement with what was
found analytically in the circular r=l case.

C. Free spheres in a circular field

Q 4.

0.2—

Q. Q
G. C

~
I 1 I

05 1 0

1:6 r=0 8

(b)

2.0
As long as ~& is small enough, the pair follows the

magnetic field since in this mode, Mf, the lag angle 0
cannot exceed n/4 [Eq. (12)]. The radial magnetic force

F& is then always negative and the pair is bound to-
gether by magnetic forces. Above a critical frequency,
the situation changes dramatically and a new mode M~
appears. The angular motion is similar to the case for
bound spheres, but the spheres additionally perform an
oscillatory radial motion. The cause for this is sim-
ple: Each time [1 —3cos (PH —Pg)] ) 0, i.e. , when

~PH —Pd~ mod (n) ) 54.7', the radial force Fd becomes
positive and the spheres are pushed apart. Calculating
the average speed of rotation ~ in this case [Fig. 8(a)],
we find that it is larger than it was in the case of bound
spheres (Fig. 2). Still, however, as uH ~ oo, U ~ 0
asymptotically as in the case for bound spheres.

The experimental data for the nominal r=l case [Fig.
8(b)] show mode locking with ratio ~:~H——1:2. The most
probable explanation for this somewhat unexpected re-
sult is that it is not possible experimentally to produce
a perfectly circular symmetry. Even small anisotropies
(& 5%%uo for the present system) will break the symmetry
and allow mode locking.

Another distinct difference between experiments and
simulations was apparent. From the experiments, it was

easily observed that the absolute value of the speed was
almost constant when the spheres moved through a loop.
On the other hand, the simulations gave a dramatic in-
crease in radial velocity when the spheres moved toward
each other compared with when they moved away. In
addition, the maximum separation found experimentally
for uH near 1 was typically 1.6a (center to center), but
only 1.25a was found in the simulations. Thus the radial

FIG. 8. Plots of the average angular frequency ~ vs field

angular frequency uH for two free spheres. (a) The results
from the simulations for different field amplitude ratios r. (b)
The experimental results in two cases. The dashed lines show

some of the mode-locked ~:~H ratios.

component of the viscous damping should be decreased
and an additional damping term for small sphere sepa-
rations and approaching spheres should be introduced.
The simplest way to do this was by introducing a radial

damping factor Z on the left-hand side of Eq. (9). Ex-
panding K in powers of sphere separation D and keeping
terms up to second order we used

A(D —Do)2+ 8 for dDldr & 0
and D& Do

, 8 otherwise

where A, Do, and 8 are constants. For ~H uri reason-
able agreement with experiments was found for A 4,
Do 1.5, and B 0.1. Due to this change, the average
u from the simulations decreased slightly relative to the
K=1 case for uH )& ~y. ~ approached the bound sphere
values for 8 ~ oo. However, due to the minor diA'er-

ences thus obtained, we prefer to use the results from
the simulations without this damping factor in the fol-

lowing discussions and in all the figures except Figs. 9
and 10.

D. Free spheres in an elliptical field

Here, the situation is similar to the bound sphere case
discussed above. The mode M~ for r & 1 changes
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FIG. 9. Sphere motion for a system of two free spheres in

an anisotropic rotating field with r=0.8 and ~H ——2.0. This
is an example of a typical M4 mode. (a) shows the angular
position iris' vs time and (b) the corresponding ceuter-to-center
separation D = d/s. (c) The trace of the motion of the center
of one of the spheres [note that the trace is for a longer time
period than shown in (a) and (b)].

Z~+i = Z~ + 27I 0 + ICsill(Z~)' (27)

(c)

smoothly into the M„' mode as r -+ 1. Typical simu-
lations of the angular and the radial components of the
motion of the spheres for anisotropic fields are shown in

Figs. 9(a), 9(b), 10(a), and 10(b) and the trace of the
overall motion is shown in Figs. 9(c) and 10(c). Both
the experiments and the simulations with r & 1 show the
mode locking ~:~&——1:2. But in addition, mode locking
is also found for other u:cu& ratios. The simulations for
the case r =0.8 clearly show mode locking at the ratios
1:2, 1:3, 1:4, and 2:3 as is shown in Fig. 8(a). This can
be compared to the experimental measurements in Fig.
8(b).

The width of the mode-locked ~& intervals for fixed r

decreases with increasing denominator n in the 1:n locked
modes. Thus, to find the mode-locked intervals, very
small steps in uH are needed. The overall appearance of
these results has some resemblance to the widely inves-

tigated circle map in nonlinear dynamics. It is well
known that circle maps, for example,

FIG. 11. The shaded areas show the mode-locked intervals
(Arnol'd tongues) for dÃerent field anisotropy (1 —r) and
average pair rotation frequency ~ ("winding number"). The
crosshatched region is unphysical since ~(~H) & u(ur'H ——~i).

show mode locking at every rational winding number
W = 2z'A. The width of the mode-locked intervals for
the circle map (commonly referred to as Arnol'd tongues)
is increasing as the nonlinear coupling constant Ix is in-

creased. This can be compared to Fig. 11 showing the
Arnol'd tongues for different values of the anisotropy pa-
rameter e = (1 —r) in our system. The relation between
this case and a particular circle map has not been estab-
lished at present. Our simulations show that near i"=0.65
(e 0.35) the motion changes character, and the trajec-
tory in phase space becomes very complicated. As is seen
in Fig. 8(a) V fluctuates a lot for i'=0.6 and is strongly
dependent on the time interval for averaging.

The experimental i =0.8 curve in Fig. 8(b) shows that
the width of the mode-locked states is larger in the ex-
periments than in the simulations. The V:~'H ——1:2 locked
state dominates and the 1:3 mode is not experimentally
observed even though the 1:4 mode is easily obtained.
As ~& ~ oo, V goes to zero at a finite but somewhat
greater uH value than the numerical one. Even though
the quantitative agreement between the experiments and
the simulations is not too good, we believe that the qual-
itative agreement is reasonable considering the simple
model used.

d

4

t

V. NONPLANAR MACNETIC FIELDS

f
0I

iI(b)

1.0
0 40

FIG. 10. Same legend as for Fig. 9. In this case x=0.7 and
~H ——0.87. This shows the spheres' motion in the mode-locked
u:uH ——1:3state since each time the spheres move through one
loop the phase lag 8 = PH —Pg is increased by x. The trace
of the motion of one sphere shown in (c) is therefore a closed
curve and should be compared to the quasiperiodic motion in
Fig. 9(c).

In all the cases discussed above the attractive interac-
tion between the spheres has been the dominating one
since the spheres are in direct contact for a large part of
the time. It is possible to weaken this dominating attrac-
tion by introducing an additional constant repulsive po-
tential between the spheres. This can be done by apply-
ing a magnetic field H~ normal to the sample plane in ad-
dition to the circular rotating field HII in the plane. The
magnetic-field vector in the ferrofluid is then rotating on
a cone with a cone angle e (tan n = HII/Hg) Depending.
on the ratio H~/HII and the field angular frequency u&1
three main types of behavior were observed: (i) stable
rotation with spheres in contact (mode Mi ), (ii) motion
in loops around the mass center with spheres in contact
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FIG. 12. "Phase" diagram for two free magnetic holes in
a rotating field H~~ in the plane of motion and with a constant
field Hg perpendicular to the plane of motion. The angular
frequency of the rotating field is ~H. The regions for three
diR'erent modes of motion are marked by A, B, and C (A
and B correspond to the M&' and I& modes discussed in the
text for H~ 0, C is ——the M~ mode). The dots represent the

value (=ui) and H~/H~~ ratio at transition from stable
rotation to motion in radial loops. Triangles show the tran-
sition from the M& mode with spheres in contact part of the
time (dm;„=a) to the M~ mode with spheres permanently
separated (dmin & a).

part of the time (mode M&), and (iii) motion in loops
with minimum particle separation d~;„&a (mode Ms).

Cases (i) and (ii) are the sphere hard-core case dis-
cussed previously, while (iii) is similar to spheres with a
soft repulsive core with diameter a,g ) a. No stable ro-
tation mode with separated spheres was observed. The
"phase" diagram for these rotation modes is shown in

Fig. 12. At low ~H and small ratio H~/H~~ the Mi mode
is the preferred one. As ~H increases the system passes
into either the M4 or the Mz mode (denoted 8 and C
in Fig. 12) depending on H~/Hi. For H~/HI & 5 the

M5 mode is the only stable one for all frequencies. This
is easy to understand as the cone angle n ( 11' and the
magnetic moments of the spheres are almost perpendic-
ular to the line between the centers of the spheres. Tlie
magnetic force between the spheres is then repulsive.

The most interesting property of this phase diagram
is the behavior near uH —1 and H~/H~~ 0. The
experiments show that a small H~ tends to stabilize
the M& mode and then the transition frequency u~ in-
creases with increasing H~. This continues until Hg/H~~
is between 1.2 and 1.5. At this point the cone angle
is close to the value where the magnetic dipole force

—{I —3 cosz [(x/2) —aj) changes sign from attractive
to repulsive. Above this H~ value, the stability range of
the M& mode grows at the expense of the M& mode and
ui decreases. For H~/Hi & 2.5 the M5 mode is the most
stable at high frequencies, but the transition between the
M4 and the M5 mode is dificult to observe due to the
long relaxation time. The effective (average) sphere sep-
aration in the M5 mode increases with increasing Hg,
and the size of the loops decreases as ~H increases. Most

FIG. 13. Center-to-center distance D = d/a for two

spheres vs the ratio between the normal field H~ and the
amplitude H~~ of the higli-frequency rotating field. This cor-
responds to plotting d;„asthe system moves along a vertical
line at high ~H in the "pliase" diagram in Fig. 12. The slope
of the straight line fitting the curve for d/a & 1.6 is 0.78. The
vertical arrow indicates the theoretical value (dipole model)
of Hg/HI at the transition from an average attractive force
(left) to an average repulsive force (right) between the spheres

of the observed behavior can be understood qualitatively
from simple arguments based on the dipole model of the
interactions.

The phase diagram indicates the possibility of obtain-
ing a fixed but tunable separation between the spheres
by going to high uH values where the size of the loops in
the Ms mode vanishes. In fact, it is possible to adjust
the distance between the spheres continously from con-
tact to any fixed separation by varying the H~/H~~ ratio
at high ~& (typically, ~H ——10 —100).

The separation grows linearly with H~ above a thresh-
old value H~/Hi 1.6 (Fig. 13), and can be approxi-
mated by

—= 0.78
a H))

(28)

There is no difference between increasing and decreasing
field (no hysteresis). The experiments were repeated for
different frequencies from 20 Hz up to 1 klutz and exactly
the same behavior was observed. These observations con-
tradict our simple dipole model which predicts that the
spheres should stay together for H~/H~~ ( 1.4 (marked
by an arrow in Fig. 13) and should become infinitely sep-
arated above this value.

VI. CONCLUSIONS

The results of our studies of very simple systems of
magnetic holes in external rotating magnetic fields show
that the dynamics of the system is complicated, but
can in the simplest cases be well described by an over-
damped nonlinear equation of motion including magnetic
dipole forces and viscous forces. Several basically differ-
ent modes of motion were obser ved, depending on the
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frequency of the rotating magnetic field, the anisotropy
of the H field, and the magnitude of added constant fields
normal to the plane of motion. Increasing anisotropy in
the rotating field (r ( 1) tends to destabilize the low-

frequency stable rotation M& mode and force the system
into oscillations around a fixed axis (the Ms mode).

The simplest case with spheres bound together showed
good agreement between the numerical simulations and
the experiments. For spheres with radial motion, there
was qualitative agreement between simulations based
on our simple dipole model and the experiments, even
though the quantitative agreement was less good. The
average rotation of the system showed mode locking to
the external rotating magnetic field in certain frequency
intervals.

It seems worth noting that for the case of bound
spheres in a circular field (i.e. , D=l and h=l) Eq. (10)
can be easily transformed to the reference frame of the
rotating magnetic field where it takes the form of the
equation of motion of an overdamped pendulum under a
constant torque. This simple system has been shown to
model well a particular case of a Josephson junction. 's

It is quite possible that in view of this analogy some of
the results we presented can be of use in analysis of ex-
periments performed on the latter system.

The introduction of a constant field H~ perpendicular
to the plane of rotation stabilized the M~ mode for small

Hg/H~~~. Three diH'erent modes of motion were possible:
(i) stable rotation (small H j /H~~ and small ~I&), (ii) mo-
tion in loops around the center of the system with spheres
in contact part of the time (small H~/H~~~, large ~H), or
(iii) permanently separated spheres (large Hg/H~~~). At
high frequencies the motion vanished and the spheres sta-
bilized at a fixed separation.

As the important feature of our model is the difference
Ap between the magnetic permeability p& of the spheres
(holes) and that of the surrounding medium p, , it should
be possible to observe the same phenomena in systems
consisting of paramagnetic particles in a nonmagnetic liq-

uid (water). In fact, we have done similar experiments
using superparamagnetic spheres' of the same size dis-
persed in a water-sugar solution with almost tlie same
viscosity as the ferrofluid and observed the same behav-
ior as for magnetic holes. Preliminary experiments with
paramagnetic spheres having a fixed remanent magneti-
zation showed similar behavior except that in this case
the spheres had an internal "spin" degree of freedom.
This gave rise to an additional rotation of each individ-
ual sphere about its center in the same direction as the
field. The observed behavior could be reproduced numer-
ically using a model similar to Eqs. (1)—(7) with added

FIG. 14. The decomposition of the rotating field h into
two components, h~ and h2, rotating in opposite directions
with angular velocity ~H.

terms taking care of the interaction between the perma-
nent magnetic moments and the external field.
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APPENDIX

To derive a simplified equation of motion for the bound
pair of spheres we start from Eq. (10) with D=l

ding

d7.
= Ii sin[2(PH —Pq)] . (A1)

Introducing e = 1 —r for the deviation from circular-
ity, using the trigonometric relation cos(2~HT) = 1—
2 sin ~HT, and keeping terms to first order in c, Eq. (11)
can be rewritten as

Ii' = cos (~HT)+ (1 —e) sin (~HT)
~ (1 —f) + E cos(2tdH T)

Combining Eqs. (Al) and (A2) we get

d4d = (1 —e) sin[2(PH —Pg)]
dT

+E cos(24JH T) sill[2(QH —pd)]

(A2)

(A3)

To further simplify Eq. (A3) we need a simple expression
for the angle PH. The dimensionless field h = H/Ho can
be decomposed into two parts hi and hq..
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h(r) = cos(cuHT) i + (1 —c) sin(~HT) j
= (1 —2e + ze) cos(cuHT) i+ (1 —ze —2c) sin(uHT) j
= (1 —2c)[cos(ur~r) i+ sin(uHT) j] + &e[cos(uHT) i —sin(uHT) j]

(A4)
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The field hi of magnitude hi —
~hi~ = (1 —2c) rotates

in the counterclockwise direction with angular frequency
and the field h2 of magnitude h2 —

~h2~ = 2E' (( hi
rotates in the opposite or clockwise direction. The angle

7 between these two vectors (Fig. 14) is p = 2~Hr mod
(2tr). Let us denote the angle between h and lit by P.
From Fig. 14 it is seen that PH = ~oHr —P. Using the
general sine rule for a triangle we get sin P = [sin(tr-
p)](h~/h) (sing)h~/h&. Since hz && h, P is a very
small angle and sin P can be replaced by P. Thus P can

I

be approximated by

E

P ~ Sin(2&Br) —6/(1 ——E) ~ —sin(24/H r)2 2 2

and then

(A5)

~Br ——sin(2io'Hr) .
2

(A6)

Substituting Eq. (A6) for PH into Eq. (A3) and keeping
terms to first order in e, we get a first-order approxima-
tion for the equation of motion:

(1 —e) sin(2[toHr —2e sin(2urHr) —Pg]) + e cos(2ioHr) sin[2(u&r —P~)]

= (1 —e) sin[2(ioHr —gd)] —e cos[2(toH r —Ps)] sin(2urH r) + e sin[2(a~r —Ps)] cos(2~H r)
= (1 —e) sin[2(toter —P~)] + e sin[2(tour —Pd) —2~&r]
= (1 —e) sin[2(toHr —P~)] —e sin(2$~) . (A7)

This is the same as Eq. (16).
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