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Domain boundaries (DB's) in convection patterns are studied near the onset of convection within

the framework of amplitude equations of the Newell-%'hitehead-Segel type. It is demonstrated that
DB's of an arbitrary direction are possible between domains occupied by convection rolls with
dift'erent orientations. Those DB s are always immobile, and they perform perfect selection of the
rolls' wave numbers. In certain particular cases, exact solutions for DB's of this type are found, and

their stability against long-wave flexural perturbations is established. DB s between the rolls and a
hexagonal pattern in the slightly overcritical case, and between the hexagons and the conduction
(quiescent) state in the slightly subcritical case, are investigated as well. In this case, the DB is, gen-

erally speaking, moving with a constant velocity. The exponentially weak eFect of pinning of the

moving DB by a small-scale underlying structure is studied. Formation of DB's of the "quiescent-
state —hexagon" and "roll-hexagon" types near a sidewall is also investigated. The special case of a
DB between two systems of rolls, the angle between which is close to m/3 or 2m. /3, is studied in de-

tail. This DB is, as a matter of fact, a bound state of two DB's of the "roll-hexagon" type. Finally,
it is demonstrated that in one-dimensional patterns (rolls) a stationary DB is not possible. In this

case, a dynamical problem of decay of a DB-like structure is solved.

I. INTRODUCTION

The onset of Rayleigh-Benard convection in a layer of
liquid heated from below is a typical example of forma-
tion of a nonlinear dissipative structure in nonequilibri-
um systems. According to linear stability theory (see,
e.g. , the book by Gershuni and Zhukhovitsky'), perturba-
tions with horizontal wave vectors k of an arbitrary
orientation, the modulus of which lies in a narrow region
near a critical value k„start increasing when the Ray-
leigh number R exceeds a critical value R, . Nonlinear
patterns resulting from the instability are rather various.
The most well-studied patterns are convection rolls. In
an experiment, the rolls are usually initiated by imposing
a spatially periodic perturbation upon the unstable con-
duction state. However, the patterns which develop
from random perturbations are, as a rule, irregular and
contain various defects: dislocations, domain boundaries
(which are also frequently called grain boundaries), roll
distortion, etc. Alongside the random initial pertur-
bations, defects may be induced by a regular influence of
lateral walls. The study of dynamics of solitary defects is
a necessary step of investigation of spatiotemporal com-
plexity of convection patterns.

The type of defect which is, so far, most well studied
both theoretically and experimentally is a dislocation in a
system of the parallel rolls (see, e.g., Refs. 6—10). Anoth-

er type of defect, which is studied in much less detail, is a
linear defect in the form of a domain boundary (DB)
sandwiched between regions (domains) filled by different
regular patterns, including DB between rolls of different
orientations. "

In this paper we develop a systematic analysis of the
DB's near the onset of convection, i.e., in a slightly over-
critical or slightly subcritical situation. The analysis is
based on amplitude equations, such as the Newell-
Whitehead-Segel equation, ' ' and coupled Ginzburg-
Landau equations. ' These equations are introduced in
Sec. II. Section III is devoted to DB's between domains
occupied by rolls with different orientations of their wave
vectors, orientation of the linear DB relative to those
wave vectors being arbitrary. A solution looked for is a
linear superposition of the two systems of rolls with slow-
ly varying amplitudes. The evolution of the amplitudes is
governed by a system of coupled Ginzburg-Landau (GL)
equations. It is demonstrated that this DB is always im-
mobile, and it uniquely selects wave numbers (i.e., moduli
of the wave vectors) of the rolls. In certain particular
cases, exact solutions of the above-mentioned coupled
GL equations that describe the DB are found. In those
cases it is proved that the DB is stable against long-wave
flexural perturbations of its "crest." In a general case, we
find the form of the DB numerically. At the end of Sec.
III, we study the DB of the "roll-roll" type in the case
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when the "refraction angle" of the rolls at the DB is
small. In this case, the whole pattern is approximated
not by a linear superposition of two systems of rolls, but
by a single family of rolls with a slowly varying amplitude
governed by the Newell-Whitehead-Segel (NWS) equa-
tion. We demonstrate that in this situation the NWS
equation reduces to the Cahn-Hilliard (CH) equation for
a local wave number, and the DB corresponds to the
well-known kink solution of the CH equation. This DB
can be proved to be stable. We also demonstrate that a
stationary DB cannot exist between domains with paral-
lel wave vectors (i.e., with the zero refraction angle) and
different wave numbers. We investigate decay of an ini-
tial configuration of a DB-like form. The decay is
governed by a nonlinear diffusion equation for a local
wave number.

In Sec. IV we consider various types of DB's involving
the hexagonal pattern. This pattern may be regarded as a
superposition of three systems of rolls whose wave vec-
tors form a closed triangle. As is known, ' ' the hexa-
gons are stable sufftciently close to the onset (both in the
subcritical and supercritical ranges) if weak non-
Boussinesq effects, which break the symmetry of the
problem relative to the middle plane of the convective
layer, are taken into account (temperature dependence of
viscosity, thermocapillary effect, deformation of the free
upper boundary of the layer, and so on). These effects
give rise to small resonant (quadratic) additional cou-
plings in a system of three coupled Ginzburg-Landau
equations governing amplitudes of the hexagonal pat-
tern. ' As is well known, ' ' the hexagons coexist with
the stable conduction (quiescent) state in the subcritical
range, and with the rolls in the overcritical range. In ac-
cordance with this, we study the DB's between the hexa-
gons and the conduction state, and between the hexagons
and the rolls. The DB solution can be obtained analyti-
cally in one particular case; in the general case we find it
numerically. Unlike the DB's of the roll-roll type, the
ones separating the hexagons and a pattern of another
type move with a constant velocity proportional to the
difference of the Lyapunov functional densities of the two
patterns separated by the DB. We find numerically a
dependence of the velocity on an angle determining the
orientation of the DB relative to the hexagons. We reveal
that this dependence, i.e., an effective anisotropy of the
system, is very weak. We also consider the exponentially
weak effect of pinning of the DB by the underlying
small-scale structure. This effect is nonadiabatic, i.e., it
cannot be comprised by the amplitude equation. The
pinning takes place provided the DB is nearly perpendic-
ular to any wave vector of the pattern. In the same sec-
tion, we consider the DB of the roll-roll type in the spe-
cial case when the angle between wave vectors of the two
systems of rolls is m/3 or 2~/3. In this case, the resonant
interaction generates a layer of the hexagons sandwiched
between the rolls, so that the corresponding DB is, as a
matter of fact, a bound state of two DB*s of the "roll-
hexagon" type. At the end of Sec. IV, we analyze forma-
tion of the DB's of the "roll-hexagon" and
"hexagon —quiescent-state" types near a sidewall. We
demonstrate that in the case when the hexagons quench,

respectively, the rolls or the quiescent state, the DB is
necessary to match the hexagonal pattern in the bulk of
the system to the rolls or the quiescent state selected by
the sidewall.

As is known, in some "exotic" cases (e.g. , convection
between nearly heat-insulating boundaries' ' ) the basic
stable patterns are square (or, more generally, rectangu-
lar ') cells instead of the rolls. The square patterns with
different orientations may also form a DB. This problem
is briefly considered in Sec. V.

At last, in concluding Sec. VI we discuss possibilities of
experimental observation of the DB's studied in this
work. A short account of the results obtained in the
present work has been given previously in Ref. 22.

To conclude the Introduction, it is pertinent to note
that linear defects of the DB type (grain boundaries) are
well known in liquid-crystal convection; see, e.g. , the cor-
responding experimental observations in Ref. 23 and
theoretical analysis in Ref. 24. The amplitude equations
governing convection patterns in liquid crystals have,
generally speaking, a form differing from that for isotro-
pic liquids. Analysis of the DB s in liquid-crystal convec-
tion patterns lies beyond the framework of the present
work.

II. AMPLITUDE EQUATIONS

The state of a horizontal convective layer is described
by the set of variables U =(v, T,p), where v, T, and p
stand, respectively, for the velocity, departure of ternper-
ature from the heat-conductivity profile, and departure of
pressure from the hydrostatic profile. We assume that
the Rayleigh number R is close to the critical value R„
I..e.,

e—:(R —R, )/R, (2.1)

is a small parameter. Note that we will deal both with
positive and with negative e. These cases are referred to
as slightly overcritical and slightly subcritical ones, re-
spectively. As is known, ' at R =R, the convective insta-
bility to perturbations with wave vectors lying in a hor-
izontal plane sets in at a finite wave number k, of a per-
turbation. In what follows, we measure the wave num-
bers in units of k„ i.e. , we set k, = 1. At small E [see Eq.
(2.1)] and small departure of the instability wave number
k from k,:—1, a dimensionless instability growth rate
o (e, k) may be expanded as follows:

a =e—(k —1) +O((k —1),e(k —1)) . (2.2)

while orientation of their wave vectors in the horizontal
plane is arbitrary.

To derive an amplitude equation governing slow evolu-
tion of a near-onset convection pattern, one should
represent the convective flow in the form

According to Eq. (2.2), at e) 0 the growing perturbations
have wave numbers lying in the interval

(2.3)
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U(r, z, t)= g [ul(z)at(xt, y„t)e ' '+c.c. ]+O(e),
1=1

(2.4)

where t is time, r is the horizontal radius vector, z is the
vertical coordinate, u&(z) are the so-called modal func-

tions, xl =r nl, yl = r-wl, nl and vl are pairs of mutually
orthogonal unit vectors lying in the horizontal plane, and
a& =O(v'e) are slowly varying amplitudes of N indepen-
dent modes, the superposition of which gives a convec-
tion pattern according to Eq. (2.4). The amplitudes are
governed by the closed systems of coupled Newell-
Whitehead-Segel equations

2
'2

ul 8 l 3g+4
dt dxI 2 ~pl

N—g «&~~a~~ aI+aa'a„', 1=1,2, . . . , N
j=1

(2.5}

where Klj are the so-called matrix elements of the non-
linear intermode interaction, the indices m and n are such
that nl+n +n„=0, i.e., the modes with the numbers l,
m, and n constitute a resonantly coupled triad, and a is
the matrix element of the resonant interaction. The
coefficients Kl depend only on the angle 8l between the
unit vectors nl and n, and also on boundary conditions
adopted in the convection problem. The coefficient «(8)
has been first calculated for a layer with solid isothermal
boundaries by Schliiter, Lortz, and Busse in Ref. 25.

Note that the positiveness of «,I
—=«(8=0) was ascer-

tained as early as in 1954 by means of a variational princi-
ple. As was mentioned above, the quadratic term in
Eq. (2.5) takes account of weak effects violating the sym-
metry with respect to the transformation z~ —z, so that
the coefficient a is typica11y small. ' '

An important property of the system of coupled equa-
tions (2.5) (which is not shared by the underlying hydro-
dynamic equations of the convection theory) is the pres-
ence of the Lyapunov functional F:

5F
5a,'

F= dr —e al +4 a
Bxt

+ —,
' g«& ~a&~ ~a

~

+ —,'a g (ara a„+a&'a'a„')
I, m, n

(2.6a)

(2.6b)

It is assumed that the summation in the last term on the
right-hand side comprises the resonance triads only.
Equation (2.6a) entails the inequality

2
dF

yd
5F (

dt 5a
(2.7)

al rle, rl e~ ql ~e (2.8)

with constant rI and qI (1=1, . . . , N). In particular,
X= 1, 2, and 3 give rise to rolls, rectangles, and hexagons,
respectively (in the last case, the three modes must con-
stitute a resonance triad). In the case a=0, «(8} «(0) at
I9) 0, the only stable patterns are rolls, the wave-number
detuning q1 of which from q, =1 lies inside a certain in-
terval. ' If «(8)~«(0) but aAO, the stable rolls may
coexist with stable hexagons. In the case when there are
values of 8 such that «(8) &«(0), the rolls are unstable,

hence at t ~ ~ the system must approach a stationary
state which provides a minimum of the functional F.

Stationary spatially periodic or quasiperiodic convec-
tion patterns corresponds to solutions of Eq. (2.5) of the
form

and the fundamental types of the stable patterns are rec-
tangles with angles 0 between the unit wave vectors
(n„nz) for which «(8) &«(0). ' ' ' If aAO, the rectangles
may coexist with the hexagons. ' The stability intervals
of the wave-number detunings [in the cases q, =qz%1
and q, =1, qzAq, for the rectangles; q& =qz =q3 for the
hexagons] have been found in Ref. 21. In the case of
coexistence of the rolls with the hexagons, their stability
against finite perturbations was investigated in Ref. 27.

At last, the case N ~4 in Eq. (2.8) gives rise to quasi-
periodic patterns with the symmetry of a two-
dimensional quasicrystal. These patterns and their stabil-
ity have been studied in detail in Refs. 28.

The rnultistability may give rise to a situation when
different dynamical regimes are established in different
parts of the convective layer, provided its aspect ratio is
sufficiently large. This possibility broaches the problem
of boundaries separating different patterns. These may
be patterns of the same type differing in wave vectors
(DB's roll-roll, hexagon-hexagon, or rectangle-rectangle),
or patterns of different types (roll-hexagon,
hexagon —quiescent state, or rectangle-hexagon). Let us
emphasize that in this work we confine ourselves to boun-
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daries between locally stable patterns, and we do not
touch the problem of propagation of a front of transition
from an unstable state into a stable one (see, e.g. , Refs. 29
and 30).

III. ROLL-ROLL DOMAIN BOUNDARIES

A. Formulation of the problem

boundary conditions

Va)
=i(k) —1)n), a&=0 at x = —co,

a&

Va2
=i(k~ —1)n2, a, =0 at x =+ oo,

Q2

(3.2a)

(3.2b)

In this section we will deal with the case a=O [see Eq.
(2.5)], when the only stable uniform patterns are the rolls.
A superposition of the rolls with wave vectors k, and k2
is described by the system of two coupled NWS equations
(2.5):

i 82
e'+4 0) Ic(0)IQ) I

3x] 2 Qy2&

where k, 2= lk, 2I, n, 2
——k, z/k) 2. The partial deriva-

tives in Eqs. (3.1) are expressed in terms of B/Bx and
()/By as follows:

a = a a—:cos8, +sin8,
()x) ()x ()p

()
slnHI +cost9t

Qyl BX By

a2
a+4

r}t

—~(8) —8, }1~2I'~),
() t 8

(42 2 c}y

2

(3.1a)

a2 —Ic(0) I a& I a2 E

Ic(0)

Let us look for a solution corresponding to a plane DB
perpendicular to the x axis:

' 1/2
i ( k) —) )( sine) )yxe

a'(8) 8p)l~) I'a2, (3.1b)

fl,
I

I

z, '

I

I
'I

where 0, 2 are the angles between the vectors k, 2 and the
x axis [Fig. 1(a)]. The DB solution is singled out by the

We assume that neither angle 8( is close to n./2 (the case
when k, is parallel to the DB, and k2 is perpendicular to
it, was analyzed earlier in Refs. 12 and 13). The scale
transformation

T: EIt, x=—,'&iEtx- (3.3b)

[we write lel instead of e with intention to employ the
rescaled variables (3.3} in the subcritical case 0 & e« 1—
too] brings Eqs. (3.1) and (3.2) into the following form
(where corrections of higher orders in e have been omit-
ted):

(a) B)
aT cos8, +i (sin 8, )q, B, +B,—IB, I B,

—glBp I'B), (3.4a)

BB2

aT

'2
()

+i(»n'8~)q2 B2+B2 IB2I'B2—
—glB, I'B, , (3.4b)

I

I

I

I

I

I

I

I

I

I

I

I

I
2L,

I
s

I

I

I

I

I

I

=iq, cos8„B2=0 at X~—oo,
1

= iq2cos82, B,=0 at X~+ oo,
2

where"

q, =2(k, —I )/v'e,

g (8)—82)—:Ic(8) —82}/a(0) .

(3.5a)

(3.5b)

(3.6)

FIG. 1. Different types of domains boundaries. The vertical
dashed lines depict the domain boundary itself, and the arrows
are the unit vectors nl that determine orientation of different
modes [see Eq. (2.4}]: (a) roll-roll; (b) hexagon —quiescent state;
(c) hexagon-roll; (d) the "resonant" domain boundary roll-
hexagon-roll (01+02 =m. /3 or 81+02 =2~/3).

In this paper, except for Sec. V, we assume g) 1, other-
wise the rolls cannot be a locally stable pattern.

The substitution

sin 0I
BI = Alexp —i qlX, l =1,2

cosO(
J

(3.7)

transforms the boundary problem based on Eqs. (3.4) and
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(3.5) into the system of coupled Ginzburg-Landau equa-
tions:

(A])r=D](A])~x+(1—
I
A]I' —gl A~I')A],

(A, )r —D2(A~)~x+(1 —
I A2I —

gl A] I'»2,
(3.8a)

(3.8b)

complemented by the following boundary conditions:

(A, )x/A, =iQ], A2=0 at X~—~,
(A 2)~/A 2=iQ 2, A, =0 at X~+ oo,

where

(3.9a)

(3.9b)

D] =—cos ]9], Q] =q, /cos—0, (I =1,2) . (3.10) 0.6—

B. %'ave-number selection

First of all, let us find out which conditions are neces-
sary for existence of stationary solutions of the boundary
problem based on Eqs. (3.8) and (3.9). Setting

(3.1 1)

(with real r] and ]p&) brings the stationary version of Eqs.
(3.8) (8/BT=O) into the form

D, r ]'+r, (1 D] K~& —r2] g—r22) =0-,
D2rq'+rq(1 D2K2 —r—

2 gr, ) =0- ,

r&K]+2r]'K] =0 (( =1,2),

(3.12a)

(3.12b)

(3.12c)

FIG. 2. Dynamics of the wave-number selection process. A
typical example of evolution of the profiles of the wave-number
detunings Ki and E2. (1) T= 1; (2) T= 5; (3) T=20; (4) T= 50.

where the prime stands for d/dX. As it follows from
Eqs. (3.12c), the quantities M] r] K]——are constants. On
the other hand, rI vanish at either infinity according to
the boundary conditions (3.9). A simple analysis shows
that these two conditions (M&=const and r&~0) are
compatible only in the case M&=0. The situation resem-
bles the well-known result of classical mechanics: A par-
ticle with nonzero angular momentum cannot reach the
center of an axially symmetric potential.

Thus a stationary DB is only possible if E, =@2=0.
According to Eqs. (3.11) and (3.9b), this means

Q] =Q2=0. This result implies that a stationary DB
performs perfect wave-number selection: k= 1 [see Eqs.
(3.11) and (3.6)]. As is well known, the same effect is pro-
duced by a heat-insulating side wall or a so-called ramp,
i.e., smoothly matching a region with @&0. In all the
cases, the reason for the perfect wave-number selection is
essentially the same. The quantity MI =r KI, which is a
constant, vanishes in a certain asymptotic region (at
X~+ ac in our case), hence it must be zero everywhere,
i.e., K&

—=0.
To investigate dynamics of the wave-number selection,

we have performed numerical integration of the evolution
equations (3.8) with initial data satisfying the boundary
conditions (3.9). As is shown in Fig. 2, the values of ~K] ~

and ~K2~ monotonically decrease in the region where the
DB is formed. At large times, the size of the region adja-
cent to the DB, where the initial values of ]K] 2~ have
been strongly damped, grows -&t (cf. the analysis of
the decay of a DB-like configuration in the one-

D, r", + r, ( 1 —r, gr 2 ) =0, —

Dpr2'+r7(1 r~ gr] )=0 . — —

The boundary conditions to Eqs. (3.13) are

(3.13a)

(3.13b)

r) =1, r2 =0 at X~—~,
r, =0, r2=1 at X~+(x) .

(3.14a)

(3.14b)

Equations (3.13) describe motion of a mechanical particle
with the Lagrangian

I =
—,'D](r] ) + —,'Dp(rp) —U,

U =
—,
'

( r, + r ~ )
—

—,
'

( r, +2gr, r z + r 2 ) .

(3.15)

(3.16)

It is straightforward to see that the Lagrangian (3.15)
coincides with the density of the Lyapunov functional
defined by Eq. (2.6b). The roll patterns (3.14a) and
(3.14b) provide maxima of the effective potential (3.16),

dimensional geometry performed below in Sec. III E).
It can be demonstrated that, if higher terms, such as

A~x~, ~
A~ A~, and A A~, are added to the amplitude

equations (3.8), the selected wave number k, remains
uniquely determined with the only difference that
k, =1+0(e).

So, we have obtained the necessary condition for the
existence of DB: Q, =Qz=0. Let us now prove that a
DB solution exists indeed. In the case Q, =Qz=O, the
stationary versions (8/BT=O) of Eqs. (3.8) take the form
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i.e., minima of the Lyapunov functional (2.6b) [Lagrang-
ian (3.15)]. A DB solution corresponds to a separatrix
trajectory connecting the two potential maxima. A sim-
ple qualitative analysis of the mechanical problem
demonstrates that there always exists at least one separa-
trix trajectory of this type.

dX
,'D (—X) —

—,'sin (2X}=0, (3.20)

According to Eq. (3.19), Eqs. (3.13) in the lowest approxi-
mation reduce to the single equation for the phase vari-
able X(g):

2

C. Analytical solutions

In a general case, the boundary problem given by Eqs.
(3.13) and (3.14) admits only a numerical solution. A typ-
ical example of this solution is shown in Fig. 3. Let us
emphasize that in the "oblique" case (8,% —82, as in the
example shown in Fig. 3) the DB of the roll-roll type ex-
ists as well as in the symmetric configuration (8, = —82)
which seems more "natural. "

The DB solution can be found analytically in certain
particular cases. We first dwell on the case

0&g —1«1 (3.17)

(recall that the rolls lose the local stability at g (1,when
rectangles become a stable pattern). In this case, the
effective potential (3.16) is nearly axisymmetric. Follow-
ing the lines of Ref. 11, we introduce the polar variables

where D(X) =(cos 8, )(sin X)+(cos Hz)(cos X), and the
boundary conditions (3.14) take the form

X(g~ —~ )~0, X(g~+ co )~n/2 . (3.21)

&D (X)—cosHz
+ (cosHz)ln

&D (X)+cosH,
(3.22)

In the symmetric ease 8, = —
Hz —=8 (this case was con-

sidered by Cross" ), the function X(g) defined implicitly
by Eq. (3.22) is reduced to the well-known sine-Gordon
kink.

The boundary problem (3.20),(3.21) admits the analytical
solution

&D (X}+cosH,
(cosH, )ln

&D (X)—cosH,

r
~

= r cosy, r2 = r sing . (3.18) X =tan 'exP[(g —go)/eosH] . (3.23)

g=(g —1)'~ X,
and the function r (g) is almost constant:

(3.19a)

It is easy to see that r and y are functions of the slow
coordinate

The linear density of the Lyapunov functional (3.15) for
the DB (its "surface energy"), determined by Eqs. (3.18)
and (3.19), is given, in terms of Eqs. (3.18) and (3.19), by
the following expression:

7= f dX [L (X) L( Oc )]—
'2

r(g)=1+(g —1)R(g), R(g)=O(1) . (3.19b) =(g —1)'~~f dg ,'D (X) + ——,'sin (2X)

(3.24)

Insertion of Eq. (3.22} into Eq. (3.24) yields

7= —,
' [g (8, —Hz) —1]' (cos 8, +cosH, cosHz+cos 82)

0.5—
X (cosHi+cos82) (3.25)

According to the definition adopted in Fig. 1(a), it is as-
sumed here that 8, 2~ & n/2, 8,%82..

Another exact solution can be obtained in the case
8, = —82—= 8, g=3:

1 X
r, =— 1 —tanh

&2cosH
(3.26a)

1 X
r2 =—1+tanh

2 &2cosH
(3.26b)

In this case, the Lyapunov functional density is

P=(&2/3)cosH . (3.27)

FIG. 3. The domain-boundary solution of Eqs. (3.13), (3.14)
in the case D, = —', Dz =

—,', g =2 [this corresponds to the well-

known Swift-Hohenberg model (Ref. 43), in which g(0) does
not depend on H, i.e., g (0}—:2].

In conclusion, let us note that, due to scaling proper-
ties of the underlying boundary-value problem based on
Eqs. (3.13) and (3.14), in a general case the functional
density can be represented in the form
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9'(8„82)=f(g (8, —02),cos02/cos0, )cos8, . (3.28) V(8„0,)+V(0„02)(P(8, , 02) . (3.33)

D. Stability of the domain boundary

1. One-dimensional perturbations

To proceed to the investigation of stability of the roll-
roll DB, we first dwell on one-dimensional perturbations
independent of the y coordinate. Taking a perturbed
solution to Eqs. (3.8} in the form

Al = [r&(X)+r&(X,T)]exp[iql(X, T)] (3.29)

(1=1,2), and linearizing the equations in r& and qual, one
arrives at the following eigenvalue problem for the insta-
bility growth rate cr (r&, @l-e '):

Here f (g, x) is a function possessing the property
f (g,x)=f (g, 1/x)x induced by the symmetry of the
underlying problem with respect to the replacement
8,~~82. For the symmetric DB (0,= —02 = 8)
9=f(g (28), 1)cos8.

16g ——8 (9g (28)+7,
2

(3.34)

provided dg/d 0 (0 [the inequality (3.34) is a corollary of
the one (3.33)].

2. Two-dimensional perturbations

The inequality (3.33) implies that a layer of rolls with a
new wave vector with the orientation angle 03 intervenes
between the rolls with the ones Ol and 02 (it is implied
that the two newly formed DB's are parallel to the origi-
nal DB}.

This question can be answered explicitly in the special
case (3.17) admitting the analytical solution for DB's. If,
for instance, we deal with the explicitly tractable case
(3.17), we conclude, using the explicit formula (3.25) for
the Lyapunov functional density, that the symmetric DB
(8, = —02 =—8) is stable against the decay into a pair of
new ones unless

0rl =Dl'r l +(1—3rl gr2)rl 2grl 2r2r

crr2=D2r 2'+(1 —3r2 gr, )r2 2gr2—r, r—, ,

0'"lq'1 1("lq' l + "lq'1}

+r2%2 2(r2q 2+ 2q 2 }

(3.30a)

(3.30b)

(3.31a)

(3.31b)

The eigenvalue problem for the instability growth rate
of two-dimensional perturbations can be obtained from
Eqs. (3.30) and (3.31) if one changes cos8&d/dX (recall
Dl =—cos Ol) to

8 . i}—=cos8& +sin8,
axl

where the prime again stands for d/dX. As we see, the
equations for the amplitude and phase perturbations
decouple. Stability of a DB which provides a minimum
of the Lyapunov functional (3.15) against the amplitude
perturbations is provided by the inequality (2.6a), i.e., by
the existence of the Lyapunov functional. However, it is
known that, generally speaking, this fact does not
guarantee the stability against phase perturbations: It is
possible that a boundary problem endowed with the
Lyapunov functional has no stable stationary solution at
all. The well-known example is the one-dimensional GL
equation,

[1=1 for Eqs. {3.30a) and (3.31a), and i=2 for Eqs.
(3.30b) and (3.31b)], where Y= ,'&Qe~y, c—f.Eq. (3.3). For
the particular type of the two-dimensional perturbations
of the form f (X)exp(iq Y) we obtain the equations

'2

0 r, = cos0 +iq sinOl rl +(1—3r l gr2 )rl-'dx

2gr] rpr2 (3.35a)
T 2

o r2 = cos82 +iq sin82 r2+(1 —3r2 gr l )r2—
dX

a, =W„„+W(I—~a~2), 2grpr ) r ) (3.35b)

with the boundary condition A (x ~+ oo ) = —A (x~—~ ) = 1. The only stationary solution to this bound-
ary problem is the kink A =tanh(x/&2), which is, how-
ever, unstable against phase perturbations. Therefore,
below we perform analysis of the stability of the DB solu-
tion against phase perturbations.

Multiplying Eqs. (3.31) by r&@l and integrating yields

ol= Dl f

rl(qual)

d—X f rl@ldX (3.32)

(/=1,2). Evidently, the eigenvalues (3.32) are negative,
which guarantees the stability against the phase perturba-
tions.

If the DB is stable against small perturbations, it may
be metastable in the sense that its decay into a pair of
other DB's lowers the Lyapunov functional density X In
other words, it is necessary to find out whether there ex-
ists, for given 0& and 02, an angle 03 for which

'2
d

car, g~ =r, cos0~ +iq sinO]
dX

+2r', cosO] cosO& +iq sinO,
dX

(3.36a)

d
cosO q s 02 cp

dX

d+2r 2cos02 cos02 + Iq sin02 yz ~

dX
(3.36b)

f re(@t) dX
al = —

q sin OI cos OI
rI y ldX

(3.36')

For the phase perturbations we obtain from Eqs. (3.36),
similarly to Eq. (3.32},
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„,sin(28&)
2gr)rpr p . = r) )

sin 28,
(3.38a)

i.e., the phase perturbations do not give rise to an insta-
bility. As for the amplitude perturbations, among them
most "dangerous" are the long-wave perturbations,
which give rise to a periodic distortion of the DB at a
large scale (in the y direction). At q~0, this mode of
perturbations goes over into a shift (Goldstone) mode
with the zero instability growth rate. Let us look for the
long-wave distortion mode in the form

r&(X) =r/'(X)+ iq sin(28& )r
&
"(X)+ . (3.35')

The eigenvalue o must be real because the operator on
the right-hand side of Eqs. (3.35) is Hermitian. In accor-
dance with this, we search for o in the form

o. =q o' '+ (3.37)

with a real cr' Inse. rtion of Eqs. (3.35') and (3.37) into
Eqs. (3.35) leads to the following equations for the func-
tions r

&
"(X):

cos 8,(r ',")"+(1—3r, grz)r ',"—

cos 8&(r z")"+(1—3rz g—r f )r ~z"

„,sin(28, )
2frprir

sin(28&)
(3.3gb)

Equations (3.38) must be supplemented by the boundary
conditions

—(1)——(1)—
r& =r& =0 atX ++00

(we consider modes localized in the X direction trans-
verse to the DB). The linear operator adjoint to that in
the left-hand side of Eqs. (3.38) has the evident zero
mode, viz. the row (sin(28, )r', ,sin(28~)rz). It is easy to
see that the resolvability condition for the nonhomogene-
ous equations (3.38), requiring orthogonality of the
right-hand side column ( r", , r~'——) to the zero-mode
row, is fulfilled. At the second order in the small wave
number q, the resolvability yields the following equation
for the instability growth rate cr' ' [see Eq. (3.37)]:

o' '= — J dX[(r', ) +(rz) ] J dX[(r', ) sin 8&+(r~) sin 8z+r', (r ',"}'sin (28&)+r'z(r ~z" }'sin (28z)] .

(3.39)

In particular, for the symmetric DB (8& = —8z—=8), &g —1X &g —1 Yr=(g —1)T,
cos0 ' cos0

(3.43)

J dX[r', (r ',")'+r'(r '")']
cr'z'= —sin 8—sin (28) " +„ + r

to deduce the following evolution equation for the phase
function g:

(3.40)

We have calculated the instability growth rate o' ' for
the above-mentioned cases 0 & g —1 &( 1 and
9&= —Hz=0, g=3, in which the DB solution can be
found in the explicit form. For the solution given by Eqs.
(3.26) we find from Eqs. (3.38):

X,=X+—
—,
' sin(4X ) + 2 tan 8[sin( 2X )X&X„—cos( 2X )X&„]

+(tan 8)X„„. (3.44)

On the background of the DB solution (3.23), we take a
perturbation X(g)exp(iqg+crr) which leads us to the ei-
genvalue problem

r ( 1 )( g)
1

z [ —tanh(g/2) —
g cosh(+ (sinhg)ln2—cos 0

o X=
X&&

—cos(4X )X+2iq tan8[sin(2X )X&X
—cos(2X)X&]

+ ( sinhg )ln( 1+cosh() ], (3.41a) —(tan 8)q X, (3.45)

r ~~"(()= r', "((), (—=Xv 2/cos8 .— (3.41b)

Insertion of Eqs. (3.26) and (3.41) into Eq. (3.40) yields

with the boundary condition X((~+ca )~0. We find
the following solution describing a long-wave distortion
of the DB:

o' '= —(4m —39)sin 8(0, (3.42)

i.e., the DB given by Eq. (3.26) is stable against the long-
wave distortions.

In the analytically tractable particular case (3.17) (we
again confine ourselves to the symmetric DB,
8, = —8z ——8), we employ the representation (3.18) and
introduce the notation

X=sech( iq ( tan8)(sech(—)ln(cosh() + .
, (3.46)

cr = —
—,'(q tan8) + . (3.47)

cf. Eqs. (3.36), (3.37), (3.41}, and (3.42). So, Eq. (3.47)
tells us that the DB solution (3.23) is stable.
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K. Domain boundary with a small "re8ection angle"

1. General analysis

Ea~
a(0)

' ]/2

exp[i( —
—,'q'x+qy)] at x~+ao .

The case when the angle between the vectors k& and k2
is small [see Fig. 1(a)] requires a special analysis. If this
angle becomes & i/e, the combinational wave vectors

(3.53)

Since the boundary condition (3.53) is periodic in y, we
may search for periodic solutions:

k =k, +(m —1)(kz —k, ), (3.48) a (x,y +2m/q) =a (x,y) .

k(=n+q(, l =1,2 (3.49)

where n is a unit vector, q( are small. The aforemen-
tioned amplitude function is governed by the NWS equa-
tion [cf. Eqs. (2.5}]

r

a, = 4
a

Bx i

where

E a2
+e a —a.(0)~a~ a, (3.50)

2

J

a=cos8 + sin8
clx i Bx c}y

a = a a= —sin8 +cos8
ay, ax ay

'

and 8 is the angle between the mean vector n [see Eq.
(3.49)] and the x axis. The boundary conditions to Eq.
(3.50) must be accorded with the definition (3.49):

Va
a

~iq at x~ —~,
Va

~iq2 at x ~+~,
(3.51)

m being an integer, get to the instability range (2.3) or
close to it. In this case, representation of a pattern in the
form of the linear combination (2.4) of two families of the
rolls (N=2) becomes irrelevant. Instead of this, one
should base analysis on the single amplitude function
a(x,y, t), the Fourier transform of which comprises all
the modes with the close wave vectors k [see Eq. (3.48)].
So, we assume that the wave vectors k, and k2 can be
represented in the form

Symmetries of Eq. (3.50) guarantee existence of a periodic
solution with the properties

a ( —x,y) =a '(x,y),
a (x,y +n /q) = —a (x,y) .

(3.54)

2. Decay of a "one dime-nsional" domain boundary

In a vicinity of a dislocation, the description of the dy-
namics of the system based on the amplitude equation
(3.50) is irrelevant. However, the dynamics of disloca-
tions, and dislocation-induced wave-number selection
have been studied in detail in works quoted in Sec. I.
That is why in the present work we confine ourselves to
the dislocationless case, when the y components of the
wave vectors k, and kz are equal: (q, )» =(qz )» =q» [see
Eq. (3.49)]. The substitution

' 1/2

a= B(X}e ' (3.55)
E

Ic(0)

X =
—,i/ex, T =Et (3.56)

[cf. Eqs. (3.3b)] transform the boundary problem based
on Eqs. (3.50) and (3.51) to the following form:

According to Eqs. (3.54), the function a (O,y) is real, and
it has at least two zeros per period at some points yo and
ye+a/q. At these points, dislocations in the system of
rolls are located: going round a dislocation gives rise to a
change 2n. of the phase of the complex amplitude a (x,y).

where V stands for the gradient.
The description of DB can be reduced to an e6'ectively

one-dimensional problem in the only case when the vec-
tor (k, —kz) is parallel to the x axis. In the opposite case
the problem is essentially two-dimensional, and the DB
is, as a matter of fact, a linear array of dislocations. "

To illustrate the latter assertion, let us consider the
simplest case when the vector (k, —kz) is parallel to the y
axis (instead of the x axis);

BT= cos8 + ig» sin8
a

ax

E . a——i/e —sin8 +ig cos8ax

+1 B —iBi'B,

1 a8 2i—q at X~—~,8 ax v'

2 2

(3.57)

8=0, (q, ) = —(qz):—q «1,
(q&) =(qz)„=—

q /2+O(q ),
(3.52a)

(3.52b)

where the vectors q, and q2 are defined according to Eq.
(3.49) [Eq. (3.52b) provides k, =kz= 1]. In this ease
xi =x and yi =y in Eq. (3.50), and the boundary condi-
tion (3.51) takes the form

1 aB 2i—q at L~+~,
B BX v'e

(3.58)

B=—A exp[ —ig (tan8)X], X=X'cos8 (3.59)

where g»
—=2q» /v'e The last term i.n the square brackets

on the right-hand side of Eq. (3.57) may be neglected un-
less 8 is close to m/2 (the case of 8 close to m./2 is ana-
lyzed in Sec. III E 3). Then the change of variables
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transforms Eqs. (3.57) and (3.58) into the form (3.66b), we arrive at the nonlinear phase diffusion equa-
tion:

~iK+ at X'~+ ~,
A

where

(3.60)
K,= [D (K)K ]--,

w~ere

D(K)=(1—3K )/(1 —K )

(3.67a)

(3.67b)

—:Qi n, K+ =—Q2 n, Q) p=2q& 2/v'e . (3.62)

At last, setting A =r exp(itp) and E=—y„brings Eqs.
(3.60) and (3.61) to the final form:

r&=r», ».+r(1—K —r ),2 2

Kr=[r (r K)»]»

K~K+ at X'~+ao .

(3.63a)

(3.63b)

(3.64)

As is well known, all stationary solutions of the system of
equations (3.63) can be found analytically (see, e.g. , Ref.
34). The only stable solutions are

r =1—K, K =const (K &1) (3.65)

(the stability requires' K & —,
' ). There are no stationary

solutions satisfying the boundary conditions (3.64) with
K+%K . It is easy to see that traveling-wave solutions
do not exist either. Indeed, insertion of

r =r(X' cT), K =—K(X' cT), —

into Eq. (3.63b) yields the equation

K&+2(rr/r)K+cK =const, g:—X' cT, —

r(1 —K —r )=0,
K =K +2(r 'r-E)- . --

(3.66a)

(3.66b)

Inserting the solution of Eq. (3.66a), r =1—K, into Eq.

which is incompatible with Eq. (3.64) of K+ AK
So, the one-dimensional boundary problem based on

Eqs. (3.63) and (3.64) has no DB-like stationary solutions.
Numerical simulations demonstrate that a DB-like ini-
tial configuration spreads and smooths down at large
times, provided the initial state contains no unstable re-
gion with K & —,'. In the course of the system's evolution,
the function r(X') vanishes nowhere, hence the quantity

f +"dX'K(X'), proportional to a total number of con-

vection rolls in the system, is conserved according to Eq.
(3.63b). It is relevant to note that, if the initial
configuration contains unstable regions (with K ) —,

' ), the

unstable pattern will be supplanted by a stable one with
change of the total number of rolls.

The process of spreading and smoothing down of an in-
itial DB-like configuration can be described analytically
in the so-called geometric optics approximation ' if a
characteristic size 5 of the initial profile ro(X ) and
Ko(X' ) is large (as compared to the roll's size k, ' equal
to unity in our designation). Let us introduce the new in-
dependent variables =—=L'5, v.:—T5, and expand a solu-
tion in powers of 5. At the lowest order one obtains from
Eqs. (3.63) the following equations:3 '

[D (K)K,'],'+ —,'zK,'=0,
K~K+ at z~+ ~ .

(3.69)

(3.70)

At z~+~ the self-similar solution demonstrates the
asymptotic behavior

K K+ -z 'exp[—z /4D (K+ )]—.
In the limit E+ « 1, Eq. (3.69) may be linearized:

K,', +-,'zK,'=O .

(3.71)

(3.69')

The solution of the linear boundary problem based on
Eqs. (3.69') and (3.70) can be found right away:

K (z) =
—,'(K+ +K )+ ,'(K+ —K )sgn(z—)erf(2z),

where erf(x) is the standard integral of probabilities.
Numerical solutions of the full nonlinear boundary

problem (3.69) and (3.70) for the case K = —K+ [in this
case E ( —z) = —K (z) ] are shown in Fig. 4. According to
Eqs. (3.71) and (3.67b), the approach of K(z) to K+ at
z~+~ becomes faster with the growth of K+. At
K+ =1/i/3 (recall this is a boundary of the stability
range for the solutions K=const), the graph K (z) be-
comes broken (see Fig. 4): It is easy to obtain from Eq.
(3.69) that at the breaking point (Z =Z, , see Fig. 4)

is the nonlinear diffusion coefficient. Note that the stabil-
ity condition D(E))0, i.e., K &

—,', for the stationary
solutions K=const ensuing from the approximate phase
diffusion equation (3.67) coincides with the stability con-
dition following from the exact equations (3.63).

Let us consider evolution of a profile K (:-)of the form
K(:-)=K at "&=,K(:-)=K+ at =)=+, and some
smooth function interpolates between K+ and K (we
assume K+ &

—,
' ). A straightforward calculation with Eq.

(3.67a) gives

„" f 'K' d= -= -2f—'D(K)K?=d:

+ ', f —D "(K)K-d:" . (3.68)

As D "(K)=—4(1 —K ) (3+K ) &0 [see Eq. (3.67b)],
the right-hand side of Eq. (3.68) is negative. Equation
(3.68), together with the evident fact that the size
(:-+—= ) of the transient layer grows with time, tell us
that a mean value of K- in the transient layer decreases
monotonically, i.e., the DB-like pattern (transient layer)
smooths down indeed.

An asymptotic stage of spreading of the DB-like pat-
tern governed by Eq. (3.67) is described by a self-similar
solution of the form K =K(z), z:"/v'r. Th—is solution
is determined by the boundary problem
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The DB solution (3.80) is stable. Its stability against
one-dimensional perturbations is a well-known result of
the theory of the CH equation. ' To study two-
dimensiona1 perturbations, one needs a two-dimensiona1
generalization of Eq. (3.78) for the phase qr. This equa-
tion can be deduced, in the geometric optics approxima-
tion, from the full two-dimensional amplitude equation
obtained from Eq. (3.73) by means of the substitution

Q» ~ i—(B/8 Y), Y:—2&ay [cf. Eq. (3.72)]. The resultant
phase evolution equation is

2
0T+Vxxxx 9 YY VYvxx VxvxY IXVXX

(3.81)

Analysis of two-dimensional perturbations in the form of
long-wave distortions of the DB can be readily performed
in the framework of Eq. (3.81}. As a result, we find that
the perturbations decay —exp( —

Q T), Q being a small
wave number of the perturbation.

Our general conclusion is that, as a rule, stationary
DB's are not possible in a system of almost parallel rolls.
The symmetric DB configuration shown in Fig. 5 and de-
scribed analytically by the solution (3.80) is the only ex-
ception.

IV. DOMAIN BOUNDARIES BETWEEN HEXAGONS
AND ANOTHER PATTERN

la, =a„&0, a2=a3=0 at x = —oo,

la& =a„WO, a, =a3=0 at x =+oo .
(4.4)

B. "Hexagon- quiescent-state" and "hexagon-roll"
domain boundaries

1. Preliminaries

In the subsequent analysis we confine ourselves to the
case when all the wave numbers ki (I= 1,2,3) far from the
DB are equal to k, =—1. In this case, the amplitudes al in
Eqs. (2.5) may be assumed real. The scale transformation

In either case @~~0, a DB between hexagonal patterns
based on resonance triads with different orientations is
possible too, but we will not consider this type of DB as it
gives rise to cumbersome systems cf equations and does
not seem to be of a substantial practical interest.

At last, in the case e) 0 the "resonant" DB between
two systems of rolls, the angle between the wave vectors
of which is 2m./3 or m. /3 [Fig. 1(d)], can be considered. In
this case, the resonant interaction generates a strip of
hexagons sandwiched between the two roll patterns [see
Fig. 1(d)], so that the resonant DB is, as a matter of fact,
a bound state of two DB's of the hexagon-roll type. The
corresponding boundary conditions are

A. Formulation of the problem

a CK a
ai —= A, , T:

a 0 ir(0) 2 &(0)
(4.5)

In this section we consider DB's in the system
governed by Eqs. (2.5) in the presence of the resonant in-
teraction, i.e. , at aAO. As is well known, ' in this case
the hexagonal pattern is stable at lel & a (including nega-
tive e}, and the stability range of the hexagons overlaps
with those of both the rolls (at e) 0) and the quiescent
state (at E & 0).

In accordance with this, at e & 0 a solution of Eqs. (2.5)
singled out by the boundary conditions

aI=O at x =+Oc, l =1,2, 3
(4.1)

lal l

= la2l = la3l:—a&WO at x = —oo,

la, l—:a„&0, a~ =a3 =0 at x =+ oo .
(4.2)

The DB of a more general form is possible in a pattern
composed of four systems of rolls [N=4 in Eq. (2.4)],
provided three of them are related by the resonance equa-
tion k, +k2+ k3 =0. The DB solution satisfies the bound-
ary conditions

corresponds to DB of the hexagon —quiescent-state type,
see Fig. 1(b) [recall it is implied that k, +k2+k3=0 in
Eqs. (2.5)].

At E)0, the DB of the hexagon-roll type [Fig. 1(c)] is
specified by the boundary conditions

brings Eq. (2.5) into the form

(A))r=Di(A&)xx+[l' —A I
—g(A2+ A3)]A,

+A233, (4.6)

and two other equations are obtained from Eq. (4.6) by
cyclic permutations of the indices (1,2,3}. Here we have
introduced the notations

1+&I+4y(1+2g)
2(1+2g)

A, = A„=y'

A)=32=33—= A~=

32= 33=0,

(4.8)

(4.9)

It is well known' '' that, within the framework of Eqs.
(4.6), the stability ranges of the solutions (4.8) and (4.9)
are, respectively,

1 g+2
4(1+2g)

(4.10)

DI =(ki )„, y =air(0)/a, g =ir(n. /3)/a(0) . (4.7)

Equations (4.6) and (4.7) have been deduced earlier in
Ref. 14. In the same work, the problem of finding the
DB of the hexagon-roll type has been formulated, but not
solved.

The homogeneous hexagonal and roll patterns are
given, respectively, by the following evident solutions to
Eq. (4.6):

lal I

= la2l =la,
l
=a„&0, a&=0 at x = —cn,

a, =az=a3=0, la4l—=a„&0 at x =+oo .
(4.3)

(4.11)

(recall we assume g —1)0, otherwise the rolls are unsta-
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ble). As it follows from Eqs. (4.10) and (4.11), the two
stability ranges overlap indeed in the region

(g —1) ' y&(g+2)(g —1)

On the other hand, in the region

—
—,'(1+2g) '&y &0

(4.12a)

(4.12b)

both the hexagons and the quiescent state, corresponding
to the trivial solution A

&

= A2= A3=0, are stable.

D) =cos 0,
D2 =

—,'(cos8 —&3sin8)

D3 =
—,'(cos8+ &3sin8)

(4.13)

An immobile DB between the hexagons and the quies-
cent state is possible at a single value of the parameter y.
Indeed, the stationary versions (8/BT=O) of Eqs. (4.6)
are nothing but equations of motion for a mechanical sys-
tem with the Lagrangian [cf. Eqs. (3.15) and (3.16)]

2. Hexagon-quiescent state

Now we proceed to x-dependent solutions of Eqs. (4.6).
Let us designate 8, —:8 ( ~8~ & m /2), then

tional quadratic term taking account of the resonant in-
teraction ) our numerical computations have demon-
strated that V(8) =0.011 is practically independent of the
angle 0.

If y&y„Eqs. (4.6) with the boundary conditions (4.1)
have a solution in the form of a DB moving with a con-
stant velocity e: AI=AI(g), g—:X cT—. The functions
A&(g) are determined by the equations

D& AI'+cA &+ A ~[y —A
&

—g(A2+ A3)]+AzA3 0

(4.17a)

(and two other equations obtained by the permutations of
the indices), which are the aforementioned mechanical
equations of motion supplemented by the dissipative
terms (friction forces) cA/. It is straightforward to see
that the DB moves to the right if L ( —~ ) & I.(+ ~ ),
and to the left in the opposite case, i.e., in accordance
with the relation (2.6a), a pattern with the smaller value
of the Lyapunov density supplants that with the larger
density. This situation is similar to the motion of a front
of an off-equilibrium phase transition of the first order
(see, e.g. , Ref. 41). Equations (2.7) and (2.6b) give rise to
the following general expression for the DB's velocity:

3

L = Q ,'DI(A(') ——U,
1=&

(4.14)
0. 5

3
~yA2 ~ A4 g(A2A2+A2A2+A2A2)

+A]A2A3, (4.15)

the prime standing for d/dX (the coordinate X plays the
role of time). The immobile DB corresponds to a separa-
trix trajectory of the mechanical system which connects
the local maximum of the effective potential (4.15) corre-
sponding to the hexagonal pattern (4.8) and the trivial ex-
tremum 3

&

= Az = A3 =0 corresponding to the quiescent
state. Evidently, this separatrix cannot exist unless the
values of the potential U at the two points are equal. A
straightforward calculation demonstrates that it is possi-
ble at

2

9(1+2g} (4.16)

The physical meaning of this result is clear: As well as in
the roll-roll problem, the effective Lagrangian (4.14) coin-
cides with the density of the Lyapunov functional (2.6b).
The DB may be immobile only if the Lyapunov densities
for the two patterns matched via the DB are equal. At
last, for the homogeneous patterns L = —U according to
Eq. (4.14).

The linear density of the Lyapunov functional (2.6b)

V(8}—:J dX[L (X) I. ( m )]— 0.06 0.06 004
I

002

for the immobile DB may be found numerically, as we
could not find any analytical solution of the problem
(4.1), (4.6), (4.13). For instance, in the case g:—2 (which
corresponds to the Swift-Hohenberg model with an addi-

FIG. 6. The velocity of the domain boundary between hexa-
gons and the quiescent state at 0=0 and two different values of
g: (1) g= 1; (2) g= 2.
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c=(L,—L, ) g f dX[(Ai)x]',
t

(4.17b)

where L, and Li stand for the Lyapunov densities (La-
grangians in the equivalent mechanical problem) of the,
respectively, "less favorable" (supplanted) and "more
favorable" (supplanting) patterns matched via the moving
DB. In particular, at small ~y

—y, ~
one may calculate

the denominator in Eq. (4.17b) using the form of A&(x) at
y=y, . Evidently, in this case c=constX(y —y, )

+0[(y —yi) ] (the Onsager regime).
In Fig. 6 we display dependences c (y } obtained by nu-

merically solving Eq. (4.17a). We have depicted the
dependences for 8=0, but our numerical results demon-
strate that a dependence c(8) at a fixed y, i.e., the
effective anisotropy of the DB, is extremely weak: When
8 changes inside its range of definition —ir/2 ~ 8 ~ ir/2, c
changes by not more than 0.3% of its mean value.

2 r cosy
v'3 g —1'

1/2
2 r sony

3 g 1
(4.19)

X.2

3(g —1)
(4.20)

It is easy to find that r =1+0(g —1) [cf. Eq. (3.19b)].
At 0=0, the equation for y and the corresponding
boundary condition take the form

(the rolls parallel to the DB) and 8=ir/2 (the rolls per-
pendicular to the DB), where the angle 8 is defined in
Fig. 1(c). In both cases it follows from Eqs. (4.13) that
D i D 3 hence Eqs. (4.6) admit the reduction A i = A

&
.

To transform Eqs. (4.6) into a more suitable form, we em-
ploy the substitution

2(1+3g)+ [2(1+g)]y=y2=
4(1+2g)(g —1)

(4.18)

3. Hexagon-roll

This DB is specified by the boundary conditions (4.2).
The DB is immobile at

dy . 1 —&3cosy=sing
(4—3 cos y)'

y~cos '( I /&3) at Z ~—oo,

y —+0 at Z~+ao

(4.21}

(4.22)

[cf. Eq. (4.16)]. At y=yi and small (g —1) [cf. Eq.
(3.17)] a corresponding analytical solution of the station-
ary version of Eqs. (4.6) can be obtained in the cases 8=0

[cf. Eqs. (3.20) and (3.21)]. The solution of the boundary
problem (4.21) and (4.22) can be written in the implicit
form [cf. Eqs. (3.22) and (3.23)]:

&3—1 4+3 cosy+(4 —3cos y)'~ &3+1 4—3cosy+(4 —3cos y)'~
Z —

ZQ = ln + ln
4 1+cosy 4 l —cosy

——' ln
2

—cosy+(4 —3 cos y)'
3

&3cosy —1
(4.23}

Quite analogously, in the case 8= ir/2 the equation for y is [cf. Eq. (4.21)]

x
dZ v'3

—( 1 —&3cosy }tany,

and its implicit solution is [cf. Eq. (4.23)]

(4.24)

Z ZQ—
3

4
[(&3—1)ln(1+cosy) —(&3+1)ln(1—cosy)]+ ln cosy—

2 v'3 (4.25)

We have developed numerical analysis of the boundary
problem determining the DB hexagon-roll in the general
(nonintegrable} case. The numerically computed depen-
dence of the DB's linear density 9'(8) of the Lyapunov
functional (2.6b) upon the angle 8 is weak (Fig. 7). At
yWyz, the dependence of the velocity c of the moving
DB upon the angle 8 is sufficiently weak too (see Figs. 8
and 9}.

At last, it is possible to consider the DB hexagon-roll
of a more general type, when the superposition (2.4) in-
volves four different wave vectors k&, three of them being

resonantly coupled. Numerical analysis of the corre-
sponding system of coupled Ginzburg-Landau equations
analogous to Eq. (4.6) has yielded a noticeable qualitative
result: In the case yWyz the DB's velocity c proves to be
appreciably smaller than in the problem involving three
modes. Another noteworthy qualitative result of the nu-
merical analysis is the fact that, among the three reso-
nantly coupled amplitudes, only the one with the largest
diffusion coefficient D, defined according to Eq. (4.7)
varies monotonically, while the others may have a max-
imum (Fig. 10).
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0.0g t

O. GQO

-0.2-

FIG. 7. The linear density of the Lyapunov functional for the
DB hexagon-roll vs its orientation angle 0 at y =y2, g —=2. I

9

C. Pinning of a domain boundary by the small-scale structure

l. General analysis

FIG. 9. The dependence of the velocity c of the DB
hexagon-roll upon the orientation angle 0 for different values of
y: (1) y = 1; (2) y =2 (in both cases, g =—2).

The previous consideration has been developed in the
framework of Eqs. (2.5) for the envelope amplitudes ig-
noring a direct influence of the underlying small-scale
structure of the roll or hexagonal pattern. As is known,
the small-scale structure may give rise to exponentially
weak nonadiabatic effects which cannot be accounted for
by the amplitude equation that governs large-scale modu-

lation of a pattern. In Ref. 14, Pomeau has conjectured
that the nonadiabatic interaction of a moving front (DB)
with the small-scale structure may give rise to pinning of
the DB by the structure via a process of adjusting the
structure's wave number. It is also relevant to mention
Ref. 42, where the problem of pinning of a DB-like front
by an underlying small-scale structure was discussed for
patterns produced by oscillatory convection.

In this subsection we will demonstrate that the pinning
of the moving DB's involving the hexagonal pattern is
possible indeed, provided the DB is nearly perpendicular

-0.4

FIG. 8. The velocity of the moving DB hexagon-roll vs the
parameter y at g=2. The curves 1 and 2 pertain, respectively,
to 0=0 and 0=~/2. To illustrate how weak is the orientation
dependence of the velocity, in the inset we show the difference
5=

[cia�

/2i —c(0i]10 vs y in a vicinity of y =y, .

FIG. 10. A typical example of a numerical solution for the
DB interpolating between the hexagons based on the wave vec-

tors k &, k2, k3 ( k
&
+k2+ k3 =0) and rolls based on a different

wave vector k~; y=1, g:—2, 8=m/6. The angle between the
wave vector k4 and the x axis is vr/3.
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0 =~r 0 ,'(v'+—1}'q+ (4.26)

where V stands for the two-dimensional Laplacian. As
above, e is the small overcriticality (we assume it posi-
tive), and y-e/a [see Eqs. (4.7)], where a is the small
resonance coupling constant (the case y —1 is of main in-
terest). The DB between hexagons and rolls is described
by the expression

to any of the wave vectors kl on which the hexagons are
based. This pinning requires no change (adjusting) of the
underlying wave number.

A direct analysis of the pinning effect starting from the
hydrodynamic equations of the convection theory is ex-
tremely tedious. That is why we will base our analysis on
the phenomenological Swift-Hohenberg (SH) model
modified by adding the quadratic term into the equation
of motion. Then we will demonstrate that an estimate
for an exponentially small strength of pinning obtained
for the modified SH model has quite a general character
and does not depend on details of nonlinear coupling of
modes.

In an appropriate notation, the modified SH model
takes the form

where

go=2&@ g A, (&e[x —g(Et)]}cos(k& r), (4.29)

cf. Eq. (4.27), gi is a contribution from higher-order
corrections to the amplitude equations, which is a series
in powers of e', and g takes its origin in nonadiabatic
effects and, also, takes account of a small difference on y
from y2. Direct insertion of Eq. (4.29) into the underly-
ing evolution equation (4.26) leads to the following linear-
ized equation for g:

ey 2f ,' ( V —+—1) p+ 2&epop

ago dg
d

~(r r2—)40
r} dt

(4.30)

where G is an expression containing a fast dependence on
r of the type cos(k„r), which is a source of the nonadia-
baticity. An explicit form of G is rather cumbersome.
The linear operator of the left-hand side of Eq. (4.30) has
the zero eigenmode Bi)'jo/Bg, hence the resolvability of Eq.
(4.30} requires the orthogonality of its right-hand side to
this eigenmode:

/=2' e g A&(&Ex, et)cos(k& r}+O(e),
l=l

(4.27) '2
aq, „aAf dx dy=e(y —y )f go dx dy

(4.28)

where the amplitudes AI are governed by the coupled
Ginzburg-Landau equations (4.6) [with regard to Eqs.
(4.5)] with g

—=2. For the time being, we confine ourselves
to the case 0=0, i.e., D, =1, D2=D3= —„and A2= A3.
The DB is immobile at y =y &

= —
4', and at

y=yz=(7+3&6)/10. Of course, the expression (4.27) is
not an exact solution to Eq. (4.26), even if the amplitudes
A& are exact solutions to Eqs. (4.6). Let us look for a
corrected solution at small ~y

—
yz~ in the form

0=0o+ i)' i+ ijl

aq,+ f G(x,y) dx dy .

(4.31)

In terms of the rescaled variables

X:—t/Ex, = i/Eg, T=et,
and after insertion of the explicit form of go [see Eq.
(4.29)] and G, Eq. (4.31) can be written as follows:

"„== f '"dx
2

dA) dA2

dX dX

2

)
20r 3 3+I+20r + ~ f + "dXG (X) tt(=+X)

00

(4.32}

Here

dA,
G, (X)—= —(3A, +4A, A~+4Ai)

dX

dA2
+2A2(A, + A~)

dX

and a particular form of higher G„ is immaterial.
The crucial fact is that the integral in the last term of

Eq. (4.32) is exponentially small as its integrand is a
quickly oscillating function. Indeed, let us consider the
analytical continuation of the function Gi(X) for com-
plex X, and designate X, a singularity of this function

exp[ —
( ImX, ) /&e]cos[(:-+ReX, ) /&e ],

and Eq. (4.32) takes the form

(4.34)

d dc ImX,
(y —y2)+ const X expdT dy

Xcos
:-+ReX,

v'p
(4.35)

where dc/dy is taken from the amplitude equations at

nearest to the real axis (at real X this function has no
singularities). Then the integral is proportional to
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y =y2,
' see Eq. (4.17b). It is important that the parameter

ImL„although being a function of y, is independent of
the small parameter e, so that the expression (4.34) is, in
the general case, exponentially small in I/&e.

Thus Eq. (4.35), which is nothing but an equation of
motion of the DB in the case of small ~y

—
y2~, coincides

with the overdamped equation of motion of a particle in
the sinusoidal potential relief with an exponentially small
modulation depth. Evidently, the DB is trapped by the
relief provided

As is seen from the expression (4.39), the particular
case g —1 « 1 is, as a matter of fact, the most important
one, because in this case the smallness of e may be at least
partially compensated by that of (g —1). In the limiting
case g —1~@, the pinning range is not exponentially
small at all. Note that, according to Eqs. (4.5), (4.20),
and (4.23), in this case a characteristic size (width) of the
DB is comparable with the period of the underlying
small-scale structure. So, a more careful analysis is re-
quired to find an accurate estimate for the pinning range
in this case.

ImX,
~y

—
y2~ (constXexp v'e (4.36) 3. Absence ofpinning of oblique domain boundaries

2. An explicit example

Now it is obvious that the final result (4.36) is quite
general, and it can be directly applied to any model for
which IrrW, can be found explicitly. The same estimate
gives the pinning range for the DB between hexagons and
the quiescent state, with the difference that e must be re-
placed by ~e~ and yz by y, .

An explicit form of the DB between the hexagons and
rolls is known for the case 0&g —1«1, 0=0 and is
given by Eqs. (4.19)—(4.23) (the second exactly tractable
case, 8=m/2, does not suit us, see below). It is easy to
find that the singularity Z, of the analytically continued
solution (4.23), nearest to the real axis, has the imaginary
part

ImZ =
s 4

(4.38)

[at this point, cos[y(z, )]=—2/v'3]. Taking account of
the rescalings (4.5), (4.7), and (4.20), we find that Eq.
(4.38) gives rise to the following estimation for the pin-
ning range [see Eq. (4.36)]:

1/2

Our final conclusion is that, on account of the nonadia-
batic effects, the DB between hexagons and rolls is immo-
bile not at the single value y =y2, but in the exponential-
ly narrow range (4.36).

As a matter of fact, this result can be obtained in a less
forrnal way if one notes that the Lyapunov functional for
the model (4.26) contains the "potential energy"

Vl—:J dx dy( —,'&el' —
—,', lb ) . (4.37)

Inserting the lowest-order approximation $0 for the DB
solution [see Eq. (4.29)] into Eq. (4.37), we immediately
see that the interplay between the slowly varying en-
velope amplitudes 3I and the quickly oscillating func-
tions cos(ki r) generate the same exponentially small in-

tegral which amounts to the expression (4.34). Thus the
effective trapping potential directly originates from the
"potential energy" (4.37) as its part amenable for the in-
teraction of the large-scale DB with the underlying
small-scale periodic pattern.

So far, we confined our attention to the case when the
DB was strictly perpendicular to any of the three reso-
nantly coupled wave vectors kI. To consider the general
case of an oblique DB, it is convenient to employ the ap-
proach to the pinning problem based on the potential en-

ergy (4.37). If the angle 8 between the wave vector and
the x axis is small (recall the DB is orthogonal to the x
axis), the multiplier cos(kI r) in Eq. (4.29) will give rise to
the ones cos(8y) or sin(8y) [recall that, according to Eq.
(2.2), k, = 1] in the integrand for the "energy" of interac-
tion of the DB with the small-scale pattern. Taking into
account the integration over y, we conclude that the full
interaction energy for the oblique DB contains a small
factor -(8k, l) ' in comparison with the case 8=0,
where I is an overall length of the system in the y direc-
tion [it is implied 8-(k, l) ]. Thus the pinning takes
place at the angles j8~ S(k, l) '. Of course, we imply

k, l ))1, i.e., the overall size of the system is much
greater than the internal scale -k, ' of the periodic pat-
tern.

D. A domain boundary near a sidewall

A sidewall creates natural conditions for appearance of
the DB between hexagons and rolls. Let the wall be 1o-

cated at x=0, i.e., an amplitude of a convection pattern
must vanish at x=0. Let us consider the case 0&y &yz
[see Eq. (4.18)], when the hexagonal pattern quenches the
rolls. As is well known, the sidewall always selects the
roll pattern perpendicular to the wall, i.e., with the wave
vector k=(0, k). The incompatibility of the bulk hexago-
nal pattern with the near-wall roll pattern is the reason
for appearance of the DB.

To consider this situation in more detail, let us suppose
that the orientation angles of the hexagons relative to the
DB are 0, =~/2, 02= —03=m/6. Evidently, matching
this bulk pattern to the near-wall rolls can be accom-
plished by the DB of the roll-hexagon type located
sufficiently far from the wall and parallel to it (Fig. 11).
This fact was first detected in numerical simulations of
the model (4.26) performed in Ref. 40. A corresponding
analytical result can be obtained in the case

(4.40)

~y
—

y2~ (constXexp 3(g —1)

(4.39)

when the rolls are close to equilibrium with the hexagons.
To do this, let us note that the system can be formally ex-
tended to the unphysical region x & 0 as follows:
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FIG. 11. The domain boundary (depicted by the vertical
dashed line) matching the bulk hexagonal pattern to the near-
sidewall rolls.

AI( —x) = —AI(x), I =2, 3 (4.41)

which guarantees that the boundary conditions Al(0) =0
are satisfied. If the system contains the DB roll-
hexagon at a large distance g from the wall, Eqs. (4.41)
imply that another DB (its mirror image) is located at
x = —g. One can analyze interaction of the two DB's fol-
lowing the lines of the approach developed in Ref. 45.
They repel each other (an eff'ective interaction potential is
exponential), while the "pressure" of the bulk hexagonal
pattern tends to press them to each other. The effective
equation of motion for the system of two DB's takes the
form

d dc
(y —y2)+const Xexp( —2Ag), (4.42)

dr dy

where dc/dy is taken as for a solitary DB [see Eq.
(4.17b)], and the constant A, 2 is a minimum spatial rate of
damping of disturbances on the background of the roll
pattern. The linearized equations (4.6), together with
Eqs. (4.5) and (4.7), yield

suit, we obtain the DB of the quiescent-state —hexagon
type parallel to the wall. Note that the orientation of the
hexagons relative to the DB may be arbitrary in this case.
The equation of motion for the DB and the expression for
its equilibrium position go take the form of Eqs. (4.42)
and (4.44) with y2 substituted by y, and A. 2 substituted by
another constant A, „which, as well as A, 2 [see Eq. (4.43)],
is —~e~'~2. An explicit formula for A. , can be obtained,
but it is rather cumbersome.

E. Resonant domain boundary "roll-roll"

Let us consider DB between two systems of rolls in the
case when y) y„and the angle between their wave vec-
tors is equal to m/3 or 2~/3. In the region of their over-
lapping, the resonant interaction will give rise to a third
system that constitutes a resonance triad with the origi-
nal ones. Thus we will have a layer of hexagons
sandwiched between the rolls. If the parameter (y —y2),
proportional to the pressure exerted by the bulk roll pat-
terns upon the hexagonal layer, is sufficiently small, the
DB may be regarded as a bound state of two DB's of the
type roll-hexagon which repel each other; cf. the situa-
tion considered in the preceding section. The effective
potential of the repulsion is again exponential
-exp( —Xg), where g is distance between the two DB's,
and A, is a minimum spatial rate of damping of distur-
bances on the background of the hexagonal pattern. If
the DB is oblique, an expression for k in terms of e, a,
and orientation angles is very cumbersome. This expres-
sion takes on a simple form in the case g —1((1 in two
symmetric configurations shown in Fig. 12: If any wave
vector kI is perpendicular to the DB (91 =0),

k= —,
' [(g —1)e]'

and if k& is parallel to the DB (0& =m/2),

k=[—,(g —1)e]' '

cf. Eq. (4.43). Finally, at small (y —y2), the equilibrium
distance between the DB's is [cf. Eq. (4.44)]

4= [ [(g —1)y 2 +3 2]«3y2 l (4.43)

where y2 is given by Eq. (4.18). In particular, in the lim-
iting case g —1 ((1 the exponent A, z becomes anomalous-
ly small —(g —1)' according to Eqs. (4.43) and (4.18).

As follows from Eq. (4.42), in the stable stationary
state the DB takes the equilibrium position

ko 2g
ln( Y2 y)

1

2

(4.44)

Evidently, at y & y2 the DB detaches from the sidewall
and quenches the hexagons in the bulk of the system.

An analogous situation takes place at y &
& y & 0 [see

Eq. (4.16)], when the subcritical hexagonal pattern
quenches the quiescent state which is, however, sustained
by the boundary conditions at the wall (x=0). As a re-

FIG. 12. The resonant domain boundary between the rolls:
(a) 0,=0; (b) O, =m/2.
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'ln(y —y )

At y c y2 the intermediate hexagonal phase quenches the
roll pattern.

and Eqs. (5.1b) and (5.1c) take the form

V. DOMAIN BOUNDARY BET%'EEN RECTANGULAR
PATTERNS

As was mentioned above, the roll pattern is unstable in
the case when there is an angle 0 such that the nonlinear
coupling parameter g(8)=z(8)/a(0) lies in the range
g (8) & 1. In this case a rectangular pattern ' (its particu-
lar form is a square pattern' ' ) sets in. This pattern is
given by Eq. (2.4) with %=2. Stability conditions for the
rectangular patterns have been studied in detail in Ref.
21. Here we will consider DB between rectangles with
different orientations. The simplest case is that shown in
Fig. 13, when the wave vector ko is common for both
patterns, ko being parallel to the DB, and ~ko~=

~k&~
=

~k2~ =1. Thus we deal with three amplitudes ao,
a„and a2. After the usual rescaling (3.3b), the coupled
Ginzburg-Landau equations for them take the form [cf.
Eqs. (3.8)]

( Ao)r=(I —
I
Aol' —

gg I
A )

I' —g21 Apl') Ao,

(A&)r Di(Ai)xx

(5.1a)

A2=0, Ao= A) = A (8)) at X = —oo,

A, =0, AD= Aq—= A (82) at X=+~,
(5.2a)

(5.2b)

where A (8&)=[1+g(8,)] ' . In what follows, we will
confine ourselves to the symmetric case 8, =82=8, and
we will assume the amplitudes real and time independent.
In this case Eq. (5.1a) yields

AD= 1 —g(A, +A~)

+(1—
I A, l' —g, l

AOI' —g„l A, l')A, , (5.1b)

(A2)T Dz(A2)XX

+(1—
I Apl' —

gp I
AOI' —

g)21 A ) I'»2,
where g] —=g(8, ), g2=g(82), g,2—:g(8, +82), and, ac-
cording to Eq. (3.10), DI —=cos 8& (1=1,2). In Eq. (5.1a),
where DO=0, we have neglected the fourth derivative
[see Eqs. (2.5)]. The boundary conditions specifying the
DB solution are obvious:

(5.3a)
2

D 1 3 N&z z
( A2)~~+ A2 —A 2

— A, A2 =0,
g2 1+g 1 —g2

(5.3b)

where g(8, )=g(8z):—g, D, =D2=D. As a matter of
fact, Eqs. (5.3) coincide with the stationary version of
Eqs. (3.8), and the results obtained in Sec. II can be ap-
plied to the present problem. In particular, an exact solu-
tion analogous to that of (3.26) can be found at
g)2 3 2g

VI. CONCLUSION

The appearance of, generally speaking, moving DB's
(fronts) between hexagons and rolls (at e )0) or the quies-
cent state (at a&0) is an inevitable consequence of hys-
teretic coexistence of these patterns. Besides, we have
demonstrated that the immobile DB between rolls and
hexagons is necessary to accord the hexagonal pattern (in
the case when it quenches the rolls) with the boundary
conditions at the lateral wall. The same pertains to the
DB between hexagons and the quiescent state in the case
when the hexagons dominate.

Possibilities for experimental implementation of the
DB between rolls with different orientations are less
clear. Nevertheless, linear defects resembling DB's of
this type can be seen in experimental patterns reported,
e.g. , in Refs. 8 and 48 —50. It seems to us that DB's of
different types deserve further experimental investigation.

In conclusion, we would like to mention some un-
resolved theoretical problems which seem physically in-
teresting. One of them is a "triple point, " at which three
halves of DB's of the roll-roll type meet (Fig. 14). It
remains unknown under which conditions this
configuration is in equilibrium, and how it will move in a
nonequilibrium case. Note that this configuration must

ale

FIG. 13. The wave vectors of two rectangular patterns
matched via the domain boundary parallel to the y axis. The
wave vector ko is common for both patterns. FIG. 14. The "triple-point" configuration in a roll pattern.
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occur as a generic one in a large-size system with a disor-
dered initial state (it can be implemented experimentally
if the sidewalls possess the "heat transparency" ' ).
Another interesting problem is evolution of a curved DB.

This problem seems especially intriguing for a DB involv-
ing the hexagonal pattern because, as was demonstrated
in the present paper, the velocity of such a DB is aniso-
tropic (although the anisotropy is, in fact, weak).
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