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The upper bound is calculated for the average power output of an irreversible heat engine whose

working fluid is viscous and not necessarily uniform in temperature. The calculation is done via the

generalized formalism of finite-time thermodynamics. The working fluid of the heat engine is de-

scribed by partial-differential equations containing parameters in the boundary conditions. With

some restrictions on parameters, the estimated power coincides with the optimal power output for

the classical lumped-parameter (uniform- T) irreversible Carnot engine.

I. INTRODUCTION

In this paper an upper bound on average po~er output
of an irreversible heat engine is obtained. The engine is
"Carnot-like": it consists of the working fluid, the
machine, and two heat reservoirs. The working fluid of
the engine is described by viscous, nonisothermal gas dy-
namics equations. Boundary conditions for these equa-
tions contain switching functions vH(t) and vt (t). These
functions of time t regulate the finite-rate heat transfer
between the working fluid and two heat reservoirs. Phys-
ically, the functions vH and vL imply the existence of two
switching devices between reservoirs and the working
Quid. When 0 ( vH(t) ~ 1 the high-temperature reservoir
and the working fluid are in contact and exchange ener-

gy; when vH(t) =0 there is no exchange between them.
When 0 (v~( t) ( 1 the low-temperature reservoir and the
working fluid are in contact and exchange energy; when
vL (t)=0 there is no exchange between them. The shape
of the working-fluid boundary may vary in time. The ini-
tial and final states of the working fluid in the distributed
parameter model need not be equilibrium states so a
problem arises of the definition of an analogue of a
periodic process. Indeed, even if we start at t =0 from
the initial equilibrium state with zero velocity, constant
temperature, and constant pressure, and smoothly change
the shape of the working fluid, we shall find that for t )0
the velocity is nonzero, and pressure and temperature are
not uniform in space. These imply that for any finite
time t & 0 the working fluid must be in a nonequilibrium
state. We define a weakly periodic process as a process
for which E(0)=E(~) and S(0)=S(r), where E(t) and
S(t) are the total energy and the total entropy of the
working fluid; ~&0 is the period of the process. For
weakly periodic solutions of the equations describing the
working fluid, we show that the time-averaged power
output is lower than or equal to

coeScients. This result is obtained as a corollary of a
more general estimation of power output in the problem
with time- and space-dependent reservoir temperatures
TH ( t, g ) and Tt ( t, g), space-dependent heat-transfer
coefficients aH(g) and aL(g), and time-dependent areas

aH(t) and aL (t) of the contact surfaces AH(t) and AL (t).
The value of P,„ is the same as the value of maximum

average power of the lumped-parameter irreversible Car-
not heat engine, first obtained by Curzon and Ahlborn. '

Successful applications of finite-time thermodynamics
now include the analysis of Carnot-based heat en-

gines, ' ' general endoreversible heat engines, '

internal-combustion engines, ' chemical-reaction sys-

tems, ' separation processes, ' ' light-driven engines, '

electrochemical systems, fuel synthesis, and solar-
driven heat engines. In these publications, simplified
mathematical descriptions of the processes by ordinary
differential equations (lumped-parameter models) were
used, together with the help of mass, energy, and entropy
balances. In this work we describe the simplest heat en-

gine using the more detailed apparatus of partial
differential equations; thus, a distributed parameter mod-
el is used. We obtain estimates of power output using en-

tropy balance, breaking of some constraints by introduc-
ing the set of variables treated as controls, and Lagrange
multipliers. This method is applicable both to lumped-
parameter models and to distributed-parameter models.
For a better understanding, the estimate is obtained first
for a lumped-parameter model with time-varying temper-
atures TH and TL and then for a distributed-parameter
model. The structure of Secs. II—IV is the following: the
beginning of each section is devoted to the lumped-
parameter model, the middle part of each section is de-
voted to the distributed-parameter model, and the final

part is a short discussion concerning the physical mean-

ing of the previous two parts.

II. DESCRIPTION OF THE MODELS

where TH ) TL are the constant temperatures of the
system's two reservoirs, constants aH and aL are areas of
contact with hot and cold reservoirs, respectively, and
Q.z )0 and eL )0 are the constant heat-transfer

The lumped-parameter irreversible Carnot heat engine
is described by the ordinary differential equation

dF. dV
dt

=vHaHaH(TH —T)+vL aLaL(TL —T) p, (1)—
dt

where T = T(E, V) and p =p (E, V) are the temperature
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and the pressure of the working fiuid, respectively (these
equations of state are assumed given); E and V are, re-

spectively, the energy and the volume of the working
fluid; functions V(t), utt(t), and ut (t} are given. These
functions are called admissible parameters, if
V(0) = V(r), 0 ~ vtt(t) ~ 1, and 0~ vt (t) ~ 1, and there
exists a solution of (1) satisfying the condition
E(0}=E(~).

The average power output of this engine has the form
P=(1/r) fg(dV/dt)dt He.re r &0 is the period. Using
E(0)=E(r) and (1) we get

BE B+ [(e+p) —
U;, u;+q ]=0,

Bt B

Bp B+ (puj )=0,
Bt B

(3)

' + (n, ui+p5;i —Ui)=0,

and the boundary conditions

[(e+p)(u DJ ) —U,, u,—+q, ]v,

i,j =1,2, 3, gEQ(t),

+ u (t, g)a(()[Tz ( t, g) T]=0, —

P= —f [vttattatt(Ttt —T)+vLat at (TL —T)]dt . (2)
7 0

Problem 1: to find an upper bound for the average
power (2) based on the solution of (1) with given admissi-
ble parameters.

The distributed-parameter irreversible heat engine un-
der consideration is described by the conservation equa-
tions for energy, mass, and momentum densities:

boundary of the working fluid, v(t, g) is the outer normal
vector at the point (EBQ(t), and u(t, g) is a switching
function regulating heat transfer between the working
fluid and two heat reservoirs. This function is assumed to
consist of only the time-dependent switching function
utt(t) at the surface of contact with the high-temperature
reservoir, only the time-dependent switching function
vL(t) at the surface of contact with the low-temperature
reservoir, and zero at the other points of the working-
fluid boundary. In more precise language v(t, g)=vtt(t}
when g is on Att(t}, which is the high-temperature part
of the boundary BQ(t), u (t, g) =uL(t) when g is on AL (t),
which is the low-temperature part of the boundary, and
u(t, g)=0 when g is on neither of the boundaries corre-
sponding to contact with the reservoirs. Functions
T„(t,g) and a(g} have the form Ttt (t, g)=Ttt(t, g) when

g is on Att(t), Ttt(t, g)=TL(t, g) when g is on At(t),
a(g) =att(g} when g is on Att(t), a(g) =at (g) when g is
on AL (t), where Ttt(t, () and TL(t, g) are given tempera-
tures of the reservoirs, and att(g) &0 and aL (g) )0 are
heat-transfer coe%cients.

Functions Dl(t, g) (j =1,2, 3), vtt(t), and ut(t) are
called admissible parameters if 0 ~ vent(t) & 1, 0 ~ ut (t) ~ 1,
and a solution exists for (3) and (4), satisfying the condi-
tions E(0)=E(r), S(0)=S(r), and p(t, g))0. Here
E(t)=

Jn~, ~s(t, g)dg is the total energy, S(t) is the total

entropy of the working fluid, and the integral is taken
over the volume of the working fluid Q(t).

The average power outputs has the form
T

P= ' f' —f pDvda dt.
0 . BQ(t)

Here ~&0 is the weak period. Using the condition
E (0)=E (r) and (3) and (4), we get

p(uj D)vj =0, —

[m;(u D~) —U; ]v~ =0, i—,j =1,2, 3, (EBQ(t),

where

BttI Btt; Btti

(4) 1P=—f f utt att ( Ttt —T)da
0 A~

+ ULaL Tz —T a t.
A~

is the viscous stress tensor, and

0gj= K

is Fourier's heat-transfer law. Here and further, summa-
tion is understood over the repeated indices. In (3},
s(t, g), p(t, g), and rr; (t, g) are the total-energy density, the
mass density, and the momentum density, respectively.
Functions u;(t, g) =m, lp, i =1,2, 3, are velocity com-
ponents; T and p are the temperature and the pressure; A,

and p are given viscosity coefficients such that
3A, +2p )0; K )0 is the thermal conductivity; 5; =1
when i =j and 5,"=0 when i', i,j =1,2, 3. The equa-
tion system (3) is closed with the help of equations of
state T=T(e,p), p =p(e, p), and e =r, m;m; /(2p), —
where e is the internal energy density. In (4), D, (t, g)are.
the given boundary velocity components, BQ{t) is the

Problem 2: to find an upper bound for the average
power (5} based on the solution of (3) and (4), with given
admissible parameters.

Consider the illustrative example of a working fluid in
a cylinder with the axis oriented along coordinate g&', the
motion of a piston is x (t). We assume that the bottom of
the cylinder is in contact with the high-temperature
reservoir; all other points of the cylinder's boundary con-
tact the low-temperature reservoir (the environment).
The heated surface Att(t) has constant area att=m. r,
where r is the radius of the cylinder. The rest of the
system's surface AL (t) varies in time. Its area is
at (t)=mr +2mrx(t). The workin. g fluid occupies the
volume g=(g„gz, g3): 0 g, x(t), gz+g r . The ve-
locity component at the moving boundary of the piston is
D

&
( t, g) =dx /dt for g&

=x ( t), g&+ g r3 ~. This function
is zero at other points of the working-fluid boundary
BQ(t). The boundary velocity components Dz and D3
are zero. If the thickness of the walls of our engine were
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to vary in space, the heat-transfer coefficients aH(g) and

aL (g) would vary accordingly.
Lumped-parameter or system-averaged models are

applicable to real engines when the speeds of their pistons
are low compared with the speed of sound in the working
Auid. The distributed-parameter model is required for
real engines when the speed of the piston is comparable
to the speed of sound. The most important type of real
engine for which this formulation may be useful is, of
course, the Stirling cycle engine.

We shall not solve these first two problems directly,
but transform them to a more convenient form with the
help of entropy balance.

III. ENTROPY BALANCE
AND CONSTRAINT BREAKING

The entropy of the working fluid in the lumped-
parameter model is a given function of energy, volume,
and the amount of material: S =S(E,V, N).
Differentiating this function in the solution of (1) and us-

ing the equations of state BS/BE =1/T and
BS/BV=p/T and the facts that N(t)=const and T &0,
we get the entropy balance

dS ueaHaH( TH T)+ uLaLaL( TL

dt T
(6)

We express Tin (6) as a function of S, V, and N, as is usu-
al in energy representation. With this, Eq. (6) becomes
closed; i.e., we have one equation for one unknown func-
tion S(t}. From E(0)=E(r) and V(0)= V(r), it follows
that S(0)=S(r). Instead of solving Problem 1 directly
we shall solve the heirarchy of problems:

Problem 1': find an upper bound of (2) based on the
solution of (6) with given admissible parameters.

Problem 1": maximize (2) subject to the constraint
that the integral of (6) over a cycle be zero, provided the
temperature T is always positive.

In order to get the solution of Problem 1', which is
equivalent to Problem 1, we break the constraint
T=T(S, V, N) in (6) and consider temperature T(t) &0
as a control. The right sides of (6} as well as of (2) are
now independent of the state variable S and we obtain the
so-called averaged optimal control Problem 1". ' Ex-
plicitly the constraint is

uHaHaH(TH —T)+uLaLaL(TL T)
dt =0.

7 0 T

The solution of the optimization Problem 1" or its upper
bound solves Problems 1 and 1', because the real solution
T(t) of (6) for given admissible parameters satisfies (7)
and is positive, so it belongs to the set of admissible con-
trols.

The entropy of the working fluid in the distributed-
parameter model is determined by a function
so =so(e, n) =S (E, V, N) IY, where e is the internal energy
density E/V, and n is the molecular number density
N/V. In the solution s(t, g), p(t, g}, n(t, g) of (3) and (4),
the entropy of the working fluid has the form

dS uHaH( TH —T)
dQ

dt AH T

where

ULaL( TL T)
+fda +tr(t},

AL T
(8)

BT
(i( ), i

T~ Bg';

$0 Bu.

T Bg;

Bu; Bu+" y '+
2T „, Bg, Bg,

dg.

The function cr(t) &0 is the total entropy production in
the working fluid. Instead of solving Problem 2 directly
we shall solve a second little heirarchy.

First we address Problem 2': find an upper bound of
(5) based on the solutions of (8) with given admissible pa-
rameters. Equation (8) is not closed: we have one in-
tegral equation for many unknown functions, so it may
have many solutions for given admissible parameters.
The upper limit of Problem 2' solves Problem 2, because
the real solution of (3) and (4) with admissible parameters
satisfies (8). Note that Problems 2 and 2' are not
equivalent.

In order to get the solution of the Problem 2' we break
the constraint T=T(e,p, rr) and consider temperature
T = T(t, g) & 0 as the control and o (t) & 0 as a given func-
tion. We shall get an estimation of (5) by solving the
averaged optimal control Problem 2": we maximize (5)
with constraint

uHaHaH( TH —T)
dQ

O AH T

uLaLaL( TL T}
+fda dt =5 (9)

A~ T

over the set of admissible control T )0. Here

5= —— o.(t)dt ~0 .
0

The constraint (9) depends on the nonpositive parameter
6. The upper bound in Problem 2"„which is valid for
every 5 ~ 0, solves Problems 2 and 2'.

In order to get estimates of power output we should
now solve averaged optimal control problems. These
problems are much easier than general optimal control
problems. With some additional constraints on admissi-

S(t)= f so s—, dg,
0( f) 2P pyy

where m is the mass of one molecule of working fluid.
DifFerentiating the total entropy in the solution of (3) and
(4) and using the equations of state 1/T =Bso /Be,

p/—T =Bso/Bn, and p/T =so —e/T+(plT)n and the
fact that T & 0, we get the entropy balance
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ble parameters these problems could be solved analytical-
ly. But here we again do not solve them directly. In-
stead, we follow the still easier course and get upper lim-
its for these problems with the help of Lagrange multi-
pliers. The surprising fact is that final estimations are not
rough.

IV. AVERAGED PROBLEMS
AND LAGRANGE MULTIPLIERS

Let P,„=supP over the set of admissible controls of
the corresponding problems 1"and 2".

For Problem 1",the lumped-parameter model,

P,„max — vH(t)aHaH(TH —T) 1+
T

+vL(t)aLaL(TL —T) 1+— dt
T)0 V 0 T T

(10)

In (10), A, & 0 is a given Lagrange multiplier, and T(t) )0 is the control. Here we again break the constraint (7) in Prob-
lem 1" and get a range of estimates (10), depending on A, . Maximizing the first term of the integrand with T we get the
optimal argument

A, TH—(t)

and the optimal value of this term

fH(t, A, ) =vH(t)aH(t)aH [+TH(t) & A]— —

From the same maximization of the second term in (10) we get

f'2 =Q A, TL(t)—

and the optimal value of the term

fL(t, i)=vL(t)aL(t)aL[QTL(t) —&—A]2 .

It is evident that

P,„&—f [fH(t, A)+ fL(t, A), ]dt . ,

7 0

Minimizing the right part of this inequality with the variable A, &0 we get the condition for the optimum R and the lim-
iting value of the power Pm, „. The solution has the form

P,„=uHaHaH[QTH —
( k)' ] +uLa—LaL[QTL —( —R)' ]

( uHaH+H+ TH +vLaL+L +TL ) ~( vHaH+H+ uLaL+L ) '

Here

fH(t, A, ) =—f fH(t, A, )dt, fL(t, k) = —f fL(t, A)dt . ,

When reservoir temperatures are constant, areas of contact aH and aL are constants, uH(t) =1 for 0 t tH, uH(t) =0
for tH & t & r, vL (t) =0 for 0 & t & tH, and uL(t) =1 for tH & t & w, it follows from (11) that

aH aH aL aL tH ( r tH )I~-
,„(tH)= ( TH — TL )

aHaHtH+aLrtL(r tH )

Maximizing (12) with tH: 0 & tH & r, we get the limiting value of the power

Q~Q'HQL QL

, (&TH —&TL)'
aH+H+ aL+L )

(12)

which coincides with the result of Curzon and Ahlborn. The optimal tH in (12) is

tH —7 QaLtzL l(+aHlxH +QQL &L ).
For Problem 2", the distributed-parameter model,

P,„max —f f uHaH(TH —T) 1+—da + f uLaL(TL —T) 1+—da dt —A5
A,

(13)
0 I

where A, &0 is a Lagrange multiplier, and T(t, g) )0 is a control. Here we break the constraint (9) in the Problem 2"
and get a range of estimates depending on A, . The term A,5 in (13) may be omitted, because the conditions A, &0 and
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6 0 immediately imply A.6 0. Maximizing the first term of the integrand with T we get the optimal argument
A—, TH(t, g) and the optimal value of this term

gH(t, g, z) =v„(t)aH(g)[&TH(t, g) v—' X—]' .

From the same maximization of the second term in (13) we get f'2 =Q A, T—t (t,() and the optimal value of the term

gL(t, (,A)=u. LaL (g)[QTL (t, g) v' ——
A, ]

it is evident that

,„&—f ' f fH(t, g, A, )da+ f gL(t, g, l)da dt,

where fH =aHgH and ft =at gL . Minimizing the right part of this inequality with the variable A, & 0, we get the condi-
tion for the optimum R and the limiting value of the power. The result formally coincides with expression (11),but the
averaging is carried out over the surface area as well as over time. Here

fH= —f f fH(t, (,A)da dt, ft = —f f ft(t, ),A)da dt .
aH 0 aI

For constant temperatures of reservoirs, it follows from (11) that

(14)

where

yH= —f 'vH(t) f„,,
aH(()d(, yt =—f 'uL(t) f, ,

aL(g)dg .

When the reservoir temperatures are constant and the working fluid cannot contact two reservoirs simultaneously,
that is, uH(t) = 1 for 0 & t & tH, vH(t) =0 for tH & t & r, vL (t) =0 for 0 & t & tH, and vt (t) = 1 for tH & t & ~, it follows from
(14) that

P,„(t )= (QT„QT )', —pHpL tH ( r tH )lr
HtH+

where

(15)

p = f f a (g)dg, p = f f at(g)dg .

Maximizing (15}for fixed pH and pL with t„: 0 & tH & r,
we get the limiting value of the power

(16)

Estimate (16) is a direct generalization of the result' for
the engine with constant contact surfaces and space-
varying heat-transfer coefficients. For engines with vary-
ing contact surfaces it is better to use (15) than (16).

Let us give an example of calculating pH and pL for the
working fluid in a cylinder like the previous example but
with variable hot area. Assuming that the thickness of
the walls does not vary in space, we have

'a
P„=aH~2~r x (t}dt +aPH~r'

H

and

pt —aL err

where aH is a heat-transfer coefficient for the walls, aH is
a heat-transfer coefficient for the piston, and ex& is a
heat-transfer coefficient for the cold end of the cylinder.
Methods for obtaining these coefficients are studied in the
theory of heat transfer.

Expressions (11) and (14) for the distributed-parameter
model may be used to estimate the power output of real
Stirling cycle engines. For such engines we assume that
uH(t)=vL(t)=1 for 0& t &r. Information needed for
such analysis is the shape of contact surfaces AH(t) and

AL(t), the heat-transfer coefficients aH(g) and at(g),
and the temperatures of reservoirs TH(t, g) and Tt (t, ().

This method can also lead to limits of efficiency with
given average power output and to limits based on other
criteria of performance. For example, the efficiency of a
system of fixed mean power may be estimated. This
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problem has an analytic solution for constant-T reser-
voirs but must be solved by computation for the
variable-T case. These results will be presented in a com-
putationally oriented extension of this work.
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