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Multifractal scaling of velocity derivatives in turbulence
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We consider the Reynolds-number dependence of various higher-order quantities evaluated at a
single spatial point in an incompressible turbulent flow. In particular, we consider

Ae = ( (Bu /Bx)e), which gives the moments of the velocity derivative distribution, and
I3„=((B"u!Bx")'),which gives the 2nth moment of the energy spectrum E(k). We assume that
multifractal scaling in the inertial range can be extrapolated down to the locally fluctuating Kolmo-
gorov microscale g(a), and we average over the distribution of g(a) using the appropriate mul-

tifractal spectrum f (a). We show that the scaling of Ae and 8„ is the same if n =p —1. For n =1
and p =2, this gives the known result that the average energy dissipation is constant. For n =2 and

p =3, this determines the scaling of the velocity derivative skewness or nf the mean-square second
derivative. These should scale together according to the Navier-Stokes equations, and we recover
this result from the scaling analysis. For n =3 and p =4, the velocity derivative flatness is related
to the sixth moment of the energy spectrum. In the limit of large p, we obtain a new relation be-

tween the exponential tail of the probability distribution of Bu/Bx, and the exponential tail of the

energy spectrum E(k). We compare our results for the skewness and flatness of velocity derivatives
to an earlier result of Meneveau and Sreenivasan [Nucl. Phys. B Proc. Suppl. 2, 49 (1987)], and we

suggest that a multiscaling analysis of the Reynolds-number dependence of E(k) might lead to an

improved degree of universality.

I. SCALING ASSUMPTIONS

The scale-dependent intermittency of the velocity field
in high-Reynolds-number fluid turbulence has been the
subject of intensive study for many years. Recent experi-
mental work' has established that the statistical proper-
ties of the turbulent energy dissipation, E(x)=v(t)u/Bx),
averaged over an inertial range distance r, are universal
and are well described by the currently fashionable mul-
tifractal formalism. In this paper we assume that the
multifractal spectrum f (a) of e is known. We refer the
reader to Ref. 1 for historical and experimental details.

The underlying motivation for phenomenological scal-
ing arguments is to suggest testable relations among ex-
perimental quantities. Twelve years ago it seemed plau-
sible that turbulence might be fractally homogeneous and
describable by a single scaling exponent. We now know'
that this is not true, but that does not mean that all
measurable quantities are independent. Our starting
point is a simple prediction by Meneveau and Sreeniva-
san for the skewness and flatness of the velocity deriva-
tive as a function of Reynolds number. In critically ex-
amining this prediction, we find an analytical result with
a somewhat different structure. The numerical changes
for skewness and flatness are quite small, but the behav-
ior for higher-order moments is different. More impor-
tant is our suggestion that high moments of the probabili-
ty distribution of velocity derivatives are simply related
to high moments of the energy spectrum E(k). This sug-
gests a multiscaling analysis of E(k) similar to that re-
cently applied by Wu et al. to the power spectrum of
temperature fluctuations in free convection.

We start from the 1962 Obukhov assumption that the
1941 Kolmogorov scaling is locally valid, but that the
dissipation fluctuates from one location to another. The

We assume that locally [hu (r)]~ scales as rt' when r is
an inertial range distance satisfying g ((r ((L, where q
is the (fluctuating) dissipation length scale, L is the in-

tegral length scale of the turbulence, and o; is the ap-
propriate scaling variable for a one-dimensional cut
through the three-dimensional dissipation field. The iner-
tial range scaling of D (r) is obtained by averaging over a
with a probability distribution r', where z = 1 f (a), and-
f (a) is again taken for one-dimensional cuts. When this
average is carried out with use of the usual steepest-
descent methods, the behavior of D (r), for 1 ~p ~ 15, is
in good agreement with the directly measured behavior.
See Ref. 1 for details. This strongly suggests but does not
prove that the multifractal analysis, combined with the
Obukhov assumption, describes a genuine property of
high-Reynolds-number turbulence.

In this paper we are concerned with single-point quan-
tities, such as

P
C) El =lim r ~D (r),
(3x r ~0

(2)

and

(
8"u 0 'D&(r)= lim = J k "E(k)dk .

o fr~" o

dissipation fluctuations are described by a multifractal
distribution. We consider the pth-order velocity struc-
ture function:

D (r) = ( [u (x + r) u(x)]~—) = ( [hu (r)]P) .
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~(~ )
~4/(a+ 3) (4)

To evaluate /I~, we combine Eqs. (1), (2), and (4), and in-

tegrate over the appropriate probability distribution to
obtain

The A are the moments of the probability distribution
of the velocity derivative, and the B„are the moments of
the (one-dimensional) energy spectrum E(k). In all of
our equations, we are interested only in the scaling ex-

ponents, and we neglect numerical prefactors. To calcu-
late these exponents, we take local Kolmogorov scaling
seriously and assume that we can extrapolate the inertial
range scaling down to the local dissipation scale g(u).
This can, in turn, be expressed in terms of the average
dissipation scale qk through

x (p) = —',y,„(p)—p . (12)

Substituting Eqs. (6), (8), and (10) into Eq. (12), we obtain

where Q is the value of q which solves the transcendental
equation (10) for a given value ofp. We want to study the
scaling of A with the Taylor microscale Reynolds num-
ber R&. The quantity of direct physical interest is the ve-

locity derivative skewness, flatness, or generalized
hyperflatness defined by

A

(g p/2

Since R& is proportional to v ', and g& is proportional
to v, the scaling exponent x (p) is given by

P K (5)
x (p) =3(2g —p) =-,'(g —1)[1—D(g)], (13)

where

y(p)= f (a) —1 — +pp(x
3+ex 3

To do the integral in Eq. (5), we use steepest descent to
find the value of a, which maximizes the exponent y (p),
and we assume that A~ scales as gz raised to this max-
imum value of y(p). The exponent y(p) is maximum
when

(3+a) —(p/3) =f (a) — +p —1 .df pa
dc' 3

(7)

q=, f(a)=qa —(q —1)D(q) .
d
dc'

(8)

Consider first the special case of p =2, where we are
evaluating the mean-square velocity derivative. Combin-
ing Eqs. (7) and (8) in this case, we find that

As is usual with this formalism, ' we make the Legendre
transformation from the [a,f (a)] representation to the
[q,D(q)] representation through

where Q and D(Q) for a given p must be found from the
experimental D(q) curve and the solution of the tran-
scendental equation (10). The same procedure can be
used to calculate the mean-square values of higher
derivatives, B„.The analogs of Eqs. (5) and (6) become

Bn d& 9g (14)

where

r(n) = f (a)—1 — +2n4 2'
3+Ex 3

(15)

t (n) =
—,
' [r,„(n)—n]+ 1 . (16)

If we maximize r(n) with respect to a, and transform
from the [a,f (a)] representation to the [q,D(q)] repre-
sentation using Eq. (8), we find that the value of q which
maximizes r (n) is the solution of the same transcendental
equation (10) which we obtained previously, provided
that we make the substitution of n =p —1 in Eq. (10).

In the 1941 Kolmogorov theory, B„diverges as the
( —,
' )n —1 power of R~. We therefore define a new scaling

exponent t(n) by

q =q, = =1, a=a, =f (a, ) .=d = (9) The scaling of B„with Rz is then given by

The maximum value ofy(2) from Eq. (6) is just —', , so that
the mean-square velocity derivative scales as gz . This
is the expected result since gz scales as v . Thus the
mean-square velocity derivative scales as v, which is
equivalent to the mean dissipation being independent of
viscosity, as expected. The value of a for which this
occurs is approximately 0.87, and has been discussed else-
where.

R (3/2)n —1B R i(n)
n (17)

With some algebraic manipulations, we find that the ex-
ponent t (n) is related to the exponent x (p) through

t(n)=x(n+1}, (18)

where x(p) is the solution of Eq. (13). This completes
our formal results, which relate the moments of the ve-
locity derivative distribution to the moments of the ener-

gy spectrum.

II. FORMAL RESULTS

(Q —1)D (Q) =2p —1 —3Q, (10)

For an arbitrary value of p, the extremum condition of
Eq. (7) can be simplified using the Legendre transform re-
lations of Eq. (8). Making the appropriate substitutions,
a and f (a) can be eliminated to obtain

III. VELOCITY DERIVATIVE SKEWNESS
AND FLATNESS

The exponent x (3) describes the divergence of velocity
derivative skewness with R z. The exponent r (2) de-
scribes the mean-square second derivative, which is the
fourth moment of the energy spectrum E(k). From the
Navier-Stokes equations plus the assumption of local
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isotropy, we have the well-known relationship that lim [x (p)/p]=3(1 D—„)/(3+D„) . (24)

dD2(r)
D3(r)= ——', (s)r +6v (19)

where the structure functions D„(r ) are defined by Eq.
(1), and ( E ) is the average rate of energy dissipation per
unit mass. Expanding Eq. (19) in a power series in r, the
term linear in r cancels identically, and the term propor-
tional to r expresses the balance between the production
and dissipation of the mean-square vorticity. In particu-
lar, the relation

t(2)=x(3), (20)

and the universal exponent p is experimentally deter-
mined' to be approximately 0.25. Because D(p/2)=1
for small values of p, the solution of Eq. (10) for small
values of p is well approximated by Q =p/2. If this ap-
proximation were substituted into the left-hand side of
Eq. (13), we would obtain a null result; but if it is substi-
tuted into the right-hand side, we obtain an excellent first
approximation:

x (p) =—34(p —2)[1 D(p/2)] . — (22)

Equation (22) is the same result presented earlier by
Meneveau and Sreenivasan, and is in reasonably good
agreement with experiment for the dependence of veloci-
ty derivative skewness and flatness on Reynolds number.

IV. HIGHER-ORDER MOMENTS

In the limit of large p, Eqs. (21) and (22} are no longer
good approximations. We assume that the limit of D(q)
as q~ ~ exists and has the nonzero value D . In that
limit, the solution of Eq. (10) is

Q =(2p —I+D„)/(3+D„)=2@/(3+D„). (23)

Substituting into Eq. (13), we obtain

which we obtained in Sec. II from phenomenological
scaling arguments, is consistent with this dynamical re-
sult. The mean-square second derivative and mean-cube
first derivative must scale in the same way as a conse-
quence of the Navier-Stokes equations.

The exponent x (4}describes the divergence of velocity
derivative flatness with Rz. The scaling relation that we
have obtained, t (3)=x (4), states that the sixth moment
of the energy spectrum contains the same scaling infor-
mation as the velocity derivative flatness. This relation
has no dynamical basis, but it is an intuitively appealing
conclusion which has been suggested before. ' lt is, in
fact, simply a consequence of dimensional analysis. The
1941 Kolmogorov dimensional arguments are assumed
correct but must be applied to the locally fluctuating dis-
sipation.

To evaluate the skewness and flatness numerically, we
note that the 1962 Kolmogorov lognormgl approxima-
tion" is a good approximation when q is not too large.
This approximation is most conveniently expressed as

(21)

It is very difficult to measure D „reliably or even to es-
tablish its existence; but a nonzero value suggests that the
probability distribution of Bu /Bx is asymptotically ex-
ponential for large values of the velocity derivative. This
result has some approximate experimental support, ' but
it remains controversial as to whether or not it is accu-
rately true. Within our scaling picture, the exponents
x(p) are simply related to the exponents t(n), which de-
scribe the scaling of the 2nth moment of the energy spec-
trum E(k). To obtain t(n) proportional to n for large n,
it is natural to assume an asymptotically exponential
form for E(k) at large k, a result for which there is con-
siderable theoretical support.

V. CONCLUSIONS

Our principal conclusion is that the scaling of powers
of the velocity derivative c}u /Bx is simply related to the
scaling of higher derivatives. This is a natural conse-
quence of Kolmogorov dimensional analysis, but depends
in an essential way on the fluctuations of the local dissi-
pation length scale t)(a). At the level of the velocity
derivative skewness, this conclusion agrees with a well-
known dynamical consequence of the Navier-Stokes
equations. For higher-order quantities, the result has no
direct dynamical support. With use of the available ex-
perimental data for the multifractal spectrum of the dissi-
pation, the skewness and flatness are predicted to in-
crease with R& as the 0.15 and 0.38 power, respectively,
in reasonable agreement with experiment. See Ref. 3 for
details.

It should be noted, however, that this conclusion is
controversial, and that the experiments are not universal-
ly accepted. In a recent paper, Kraichnan' has proposed
a model in which nearly exponential tails to the velocity
derivative distribution occur without any multifractal
properties, and with a skewness and flatness that are in-
dependent of Reynolds number. We have no theoretical
reason to disagree with the Kraichnan model, but in our
opinion the overall experimental support for a multifrac-
tal picture is sufFiciently strong and sumciently universal
that it should not be ignored. This does not imply, of
course, that our brute-force extension of the multifractal
scaling picture to very small scales need be correct. In a
subject where there is very little firmly based theory,
however, it is likely to be useful to make explicitly test-
able predictions from whatever phenomenological
theories are available, especially when these theories al-
ready correlate a considerable body of experimental data.

Unfortunately, high moments of the distribution of
Bu /Bx and of the energy spectrum E(k} are notoriously
difficult to measure accurately, and these are the basic in-
gredients of our scaling analysis. At a more general level,
however, our analysis suggests that the simple 1941 Kol-
mogorov scaling for the energy spectrum E (k) as a func-
tion of k and R& should not quite work. A formalism, in
which various moments scale independently, is essentially
the same as the recent multiscaling formalism introduced
by Wu et al. in the analysis of the frequency spectrum of
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temperature fluctuations in free convection. This sug-

gests that a similar analysis be attempted for the energy
spectrum E(k) in incompressible turbulence. The hope is

that data from moderate Reynolds numbers in the labora-

tory and in computer simulations could be collapsed onto
a single curve along with the high-Reynolds-number data
from atmospheric experiments. If this could done, it
would have the important implication that the detailed
shape of the spectrum in the dissipation range would con-
tain the same physical information usually available only
from the inertial range. This would allow the more accu-

rate low-Reynolds-number data, for which no inertial
range exists, to be used in a more physically significant
way.

ACKNOWLEDGMENTS

I would like to thank K. R. Sreenivasan and Charles
Meneveau for many stimulating conversations on this
subject. I would also like to thank the New York Univer-
sity Physics Department for their hospitality.

Present address: Physics Department, New York University, 4
Washington Place, New York, NY 10003.

'C. Meneveau and K. R. Sreenivasan, J. Fluid Mech. (to be pub-
lished).

2M. Nelkin and T. L. Bell, Phys. Rev. A 17, 363 (1978).
C Meneveau and K. R. Sreenivasan, Nucl. Phys. B (Proc.

Suppl. ) 2, 49 (1987).
4X. Z. Wu, L. Kadanoff, A. Libchaber, and M. Sano, Phys. Rev.

Lett. 64, 2140 (1990).
5A. M. Obukhov, J. Fluid Mech. 13, 77 (1962).
A. N. Kolmogorov, as described in L. D. Landau and E. M.

Lifshitz, Fluid Mechanics, 2nd ed. (Pergamon, New York,
1987), Chap. III.

7C. Meneveau and M. Nelkin, Phys. Rev. A 39, 3732 (1989).
8K. R. Sreenivasan and C. Meneveau, Phys. Rev. A 38, 6287

(1988).
L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd Ed.

(Pergamon, New York, 1987), p. 140, Eq. (34.21).
10J. C. Wyngaard and Y. H. Pao, in Statistical Models and Tur-

bulence, Vol. 12 of Lecture Notes in Physics, edited by M.
Rosenblatt and C. Van Atta (Springer-Verlag, Berlin, 1972),
p. 384.

"A. N. Kolmogorov, J. Fluid Mech. 13, 82 (1962).
12B. Castaing, Y. Gagne, and E. J. Hopfinger, Physica D (to be

published).
' R. H. Kraichnan, Phys. Rev. Lett. 65, 575 (1990).


