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Near a bifurcation point a system far from thermal equilibrium can be described by use of gen-
eralized Ginzburg-Landau equations. We present a systematic method to derive the nonlinear in-
teraction terms of these equations in real space reflecting the selection rules as well as the stabiliza-
tion of different patterns intrinsic in the basic equations of the systems under consideration. Our
work treats the case of periodic instabilities of a homogeneous state in space as well as in time,
where the interacting patterns are represented by traveling-wave trains having arbitrary orienta-
tions in a two-dimensional plane. Numerical solutions of two-dimensional pattern formation and
wave propagation are presented using a system that allows for a backward Hopf bifurcation as is the
case for the convection instability of a binary fluid mixture. The stability of the emerging traveling-
wave structures is discussed in terms of phase-diffusion equations.

I. INTRODUCTION

In the vicinity of a phase transition the spatiotemporal
behavior of a system far from thermal equilibrium can be
described very often by a few relevant variables that in
analogy to the Ginzburg-Landau theory of equilibrium
thermodynamics, are called “order parameters.” The
large number of state variables originally assigned to the
dynamics of the system under consideration and present
in its basic equations of motion can be expressed by the
order parameters in a unique way. The elimination of the
enslaved modes allows a drastic reduction of the com-
plexity of the system.! ™3

The purpose of the present paper is to show the con-
nection of the explicit form of an order-parameter equa-
tion (OPE) in real space, especially of its nonlinearities,
with the structure of a nonlinear expansion of the basic
equations into Fourier modes. If these modes are deter-
mined as being solutions of the linearized basic equations,
e.g., the hydrodynamic equations for the convection in-
stability, the OPE can be derived from first principles. In
some other cases where the basic equations are not com-
pletely known, the OPE can be discussed as a phenome-
nological model for pattern formation, e.g., in chemistry
or biology (for reviews, see, e.g., Refs. 4-6).

The paper is organized as follows. We first establish
general relations between the cubic coupling in Fourier
space and real space, which will be finally used to derive a
partial differential equation allowing for the selection of
traveling or standing waves in a rotationally invariant
form with respect to two dimensions. In particular, we
investigate the case of a Hopf bifurcation of a spatially
structured pattern from a spatiotemporally homogeneous
state. Then we numerically treat this equation for several
cubic coupling models were fronts, pulses, and traveling
waves are formed. We also study effects of a subcritical
bifurcation where the OPE has to be at least of fifth or-
der. A simple physical system showing an oscillatory
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(backward) bifurcation of a spatially periodic state is real-
ized, for instance, by the convection instability of a
binary mixture and examined intensively both experimen-
tally and theoretically in the last ten years (see, e.g., Refs.
7-9). Despite the fact that for this system the validity of
the OPE is restricted and cannot, for instance, describe a
secondary bifurcation of the traveling-wave patterns for
larger Rayleigh numbers as was shown in Ref. 10, the
OPE seems to be able to reflect at least qualitatively the
main features of the instability of traveling waves in the
weak nonlinear regime near the critical point, such as the
selection of traveling waves instead of standing waves or
the behavior of fronts between regions of waves having
different directions of propagation.

If the dynamics is restricted to one spatial dimension
there is a close analogy to the formalism of amplitude
equations first considered by Newell and Whitehead.!!
However, this formalism has the disadvantage that it
cannot be extended to two spatial dimensions in a rota-
tionally invariant form, since each direction of propaga-
tion requires an extra envelope equation of the corre-
sponding wave. To avoid this problem, we shall investi-
gate pattern formation by means of the OPE, where the
order parameter contains the fully spatiatemporal dy-
namics on a fast varying scale. In this sense the work of
Swift and Hohenberg'? can be considered as pioneering.
They regarded a model that can be applied for the
(steady) convection instability. In contrast to this equa-
tion, which reflects mainly effects of a rotationally invari-
ant linear selection and which has the simplest possible
stabilizing cubic term, our models include spatial deriva-
tives in the nonlinearities as well as complex quantities in
the linear part. The latter reflect the coupling, scattering,
and selection of interacting wave trains having different
directions of propagation. Therefore it becomes possible
to describe the formation and the propagation of travel-
ing waves as well as their differentiated interaction in
terms of a nonlinear selection mechanism in real space.
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II. THE ORDER-PARAMETER EQUATION
IN FOURIER SPACE

We consider a system described by an infinite number
of order parameter £(k,¢) that denote the amplitudes of
|
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plane waves with the two-dimensional wave vectors k. If
the system is isotropic in real space, the linear part of the
OPE may only depend on k2, i.e., the unstable modes lie
on a ring in Fourier space with radius k.. The OPE for
those amplitudes reads

£k, =Mk DEK, D+ [ dkidkydksT(k,, ks ky)E(k,E(K,)E (k;)8(k —k; —k, +kj3)

+ [ dk,dk,dksdkdksA(ky ko ks, ks)E(k) E(kyE(ks)E* (ky)E* (ks)8(k) —k,—k; +Ke+ks) (1)

where & denotes the delta function. Here we assumed in-
version symmetry for the order parameter, which results
in only odd powers of £ in (1). We include nonlinearities
up to fifth order in £, since we want to discuss also the
case of a backward bifurcation leading to a positive cubic
coefficient ' for certain mode couplings. We now make
the basic assumption that the mode amplitudes £ near
threshold are excited essentially only in a narrow circular
band in 2D k space, i.e., on a ring with radius k. and
width Ak. Introducing polar coordinates k and ¢ we
may express the two-dimensional vector k solely by its
orientation @. Then the first § function in expression (1)
requires a coupling of the four wave vectors k, k;, k,, and
k3, forming a rhomb. Therefore the cubic part in (1) may
be written as

(e 8k [ dg'(f 10— 5@ €@
+folo— @ X @+ mE(@ (@ +7)] ,
)
where
file—¢")=T(¢' 0,0 ) +T (@, ¢",¢") ,
[lo—@")=T(¢', 7+ ,p+m).

(3)

Due to the condition of isotropy in real space, the func-
tions f; may only depend on the relative angle between k
and k'. If we assume that I" contains scalar products of
its arguments k;, we may approximate f, by a Taylor
series with respect to cos(¢ —¢’) along
N N/2

[1B)= 3 a,(cosp)", fr(B)=3 b,,(cosB)*" . 4)
n=0 n=

0

Because of the symmetry with respect to ¢'+—¢'+7 in
the second expression under the integral (2), odd powers
of cosf3 cancel in f, and only even powers have to be tak-
en into account.

III. THE ORDER-PARAMETER EQUATION
IN REAL SPACE

Now we wish to derive the analog to (1) in real space.
If we make the assumptions of the last section which
finally led to (2), we end up with a partial differential
equation without any nonlocal expressions. Let W(x,?) be
the inverse Fourier transform of the order parameter
&(k,t). In the linear part of the OPE we allow for a vari-
ation of the wave vector in a band centered at k.. It can

-
be approximated in real space by

Mg, A)=e+iw. —gikZ+AP—iy(k2+A) . (5)

For a steady bifurcation (o, =7y =0), (5) is reduced to the
linear part of the well-known Swift-Hohenberg equation'?
which was numerically treated in two spatial dimensions
in Ref. 13 as a model of the convection instability. The
angular dependence of the third-order term may be ap-
proximated by spatial derivatives, or, with regard to a ro-
tationally invariant formulation of the problem, by
powers of the 2D Laplacian. If we consider for the cubic
term the general expression

p* A"(—LA—kZ)"\l/2+\I/ s B (—1A—K2)"|w|?

2 (3 ¢ 2 o3 ¢

n=0kc n=1kc
(6)

and if we assume again a finite bandwidth excitation of
the mode amplitudes, the relation between 4,,B,,a,,b,
of formulas (4) and (6) may be established as follows:

N
ay=24,+ 3 (—1)"B

n=1

n o

a,=2A4,+(—1)"B,, n=123,...

N (7)
bo=3 (—1)4, ,

n=0

b,=B,, n=2,46,....

(7) enables usto express the fully angular dependence in-
trinsic in (1) of the mode coupling between wave trains
with given arbitrary orientation via the local form (6) in-
cluding only rotationally invariant expressions of spatial
derivatives. The only restriction in our derivation is the
reduction of the excited band to its critical value k,
therefore our model can describe only qualitatively side-
band instabilities where the instability mechanism is due
to the growth of a disturbance having a different absolute
value of the wave vector and not of the orientation in real
space.

The fifth-order term in (1) can be expressed by the
same procedure in a local form, however due to the cou-
pling of six wave vectors there are three free angles in the
corresponding expression in Fourier space allowing for a
much more complex behavior of mode coupling.

IV. NUMERICAL SOLUTIONS: FRONTS

In our numerical simulations we chose for the cubic
nonlinearity the lowest truncation with respect to powers
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of A, which still enables us to differentiate the coupling
strength between waves having different directions, i.e.,
Ay, B,,70 in (6). Therefore we establish the complex
OPE for a spatiotemporal instability having the wave-
length 27 and the frequency w,:

W(x,t)={e—g2(1+A) +i[ow,—y(1+A)]}W(x,1)
+ A W(x, )| W(x,t)|*— B, W(x,t)|V¥(x,t)]?
+C|W(x,1)|*W(x,1) . (8)

For the sake of global stability, we added a fifth-order
term having a stabilizing sign (ReC <0). This allows us
also to include subcritical bifurcations where 4, or B,
can act in a destabilizing way. The angular-dependent
part of the cubic term simplifies to

f1(B)=2A4,—B,—Bcosp .

In one spatial dimension, the ratio of the real parts of 4,
and B, determines the selection of traveling or standing
waves. The one-dimensional coupled equations for their
amplitudes (see Ref. 14) 5 and & read

n=[e+vd, +D3,, +(A4,—B)Inl*+24,¢*
+C(6l¢1* 2 +3151*+n)]y

E=[e—vd,+Dd, +(A,—BIEIP+24,4Inl?
+C (65122 +3Inl*+ 181918 .

Since we are interested in pattern formation in two spa-
tial dimensions, we shall not consider (9) further but
focus our attention on (8). We performed a numerical
treatment of (8) in a circular as well as in a quadratic lay-
er using a pseudospectral method and a semi-implicit
time integration scheme. For the order parameter ¥ we
assumed the boundary conditions

¥=9,¥=0, (10)

where n is oriented vertically to the boundary. First we
examined the case where all nonlinear coefficients in (8)
were real valued and C = —1. As an initial condition, we
used patterns where only small (singular) centers of the
layer have a nonvanishing wave function, whereas ¥ was
set to zero on the rest of the layer. Due to the rotation
symmetry of our equations, the pattern development
starts always with circular or spiral rings, depending on
the initial distribution in the centers. These rings have
the wavelength A, =27 and travel with the phase velocity
Uph =@.. The envelope of each center thereby propagates
radially until it encounters an obstacle such as the wall or
another wave front. We studied this evolution both sub-
critically as well as supercritically. The cross-coupling
term A, becomes important in the moment where two
wave trains confront at any part of the layer. Here we in-
vestigated the influence of the self-coupling term 4,— B,
for the case of a small negative cross coupling. Figure 1
shows the situation for a negative self-coupling of the
same magnitude as the cross coupling. The waves can
penetrate after collision and no formation or stabilization
of a front between counterpropagating wave trains can be
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seen. This changes dramatically if the self-coupling ex-
pression becomes positive (Fig. 2). Now a front is created
between the centers. However, the front is not stable and
moves towards the initially somewhat smaller region.
The same behavior is obtained for a cubic OPE having
stabilizing (negative) self- as well as cross-coupling
coefficients. If A4, is increased further, the emerging
front has a larger slope and turns out to be stable against
fluctuations or nonsymmetric initial conditions (see Fig.
3). Next we performed time series for the same parame-
ter values for very large aspect ratios, starting now with
different kinds of centers (Fig. 4). The *‘ring type” has
azimuthal symmetry; the “spiral type” has an angular
dependence according to exp=Xig in the initial states.
The time series presented in Fig. 4 shows the emergence
and stabilization of fronts between several domains of ra-
dially traveling waves. Note that there is no essential
difference between the dynamics of circular rings or spa-

T= 200

T= 100

FIG. 1. Numerical solutions of (8) for real nonlinear
coefficients and a negative self-coupling 4,—B,. The initial
condition consists of two domains with nonzero values for W
and W =0 for the rest of the plane. The circles are spread out in
the form of propagating rings. Where they collide, they
penetrate each other.
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tials, both types expand with about the same velocity and
have the same properties with respect to their ability of
forming stable regions and fronts between them. This
fact corresponds to the degeneracy of the propagation of
plane waves in a 2D medium with respect to their orien-
tation.

V. NUMERICAL SOLUTIONS:
TRAVELING WAVES AND PULSES

We now investigate the case where the cubic and quin-
tic coefficients have nonvanishing imaginary parts. In
earlier publications'> we gave solutions of (8) with cubic
coefficients that allow for the supercritical formation of
traveling waves for the case of a binary mixture having
idealized vertical boundaries. These wave trains were un-
stable with respect to long-wavelength instabilities, the
Benjamin-Feir instability,'® and a chaotic spatiotemporal
behavior emerged already at onset. Here we wish to
focus our attention on the propagation and stabilization

T= 200

FIG. 2. Same as Fig. 1, but for slightly positive values of
Ay—B,. Now the fronts are formed in the colliding regions,
which are not stable but move towards the center with a some-
what smaller initial amplitude.
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of subcritical 2D pulses, in analog to recent analytical
and numerical 1D results!”!® of the slowly varying ampli-
tude truncation of (8) where pulses were stabilized for a
considerably large parameter region. However, com-
pared to the wavelength of the underlying periodic pat-
tern enveloped by these pulses, the amplitude is not slow-
ly varying in space and the envelope equation cannot be
regarded as an approximation of (8). In fact, the stable
pulses found in Ref. 18 have the extension of about one
critical wavelength 27 of (8). A numerical calculation of
(8) using the complex coefficients where stable pulses
have been found in Ref. 18, namely e=—0.1, 4;=3+1,
B, =0, C =—2.75+i shows immediately that pulses be-
ing stable in the second-order truncated amplitude equa-
tion begin now to travel in the opposite (e.g., left) direc-
tion of the phase velocity of the underlying (right)
traveling-wave structure (y =0). We may say that the in-
clusion of higher derivatives in the amplitude equation as
well as the direct solution of the OPE allows still for the
existence of pulses that, in contrast to the second-order

FIG. 3. Same as Fig. 1, but for large positive 4,—B,. The
front between the centers is stabilized.
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T=170

FIG. 4. Same as Fig. 3, but for a spatially more extended sys-
tem. The initial conditions are now rings and spirals with az-
imuthal dependence exp*ig. Smaller domains are unstable
with respect to larger ones. The domain walls at T =170 are
stable. All domains consist of circular or rotating spiral wave
traveling towards the lateral wall.

truncation examined in Ref. 18, propagate generically in
one direction. This behavior is even more complex in
two spatial dimensions. Since the problem has to be for-
mulated rotationally invariant, we apply the OPE (8) us-
ing again the complex coefficients of Ref. 18 in a non-

ko4

T= T=130

FIG. 6. Subcritical time development of three pulses in a
large layer. Cubic destabilizing term without spatial deriva-
tives. ¥=0.3. The pulses are unstable and form after some
transient spirals that do not penetrate. A,=3+i, B,=0,
C=-—2.75+i, e=—0.1. Due to the fast frequency w., the
spirals are rotating counterclockwise (bottom left and top) or re-
verse (bottom right).

linear representation first without any spatial derivatives.
It seems that transversal instabilities that can be con-
trolled by the dispersion y now play a crucial role (the
following section). We first set ¥y =—0.3. As an initial
condition we chose a pulse that consists of a short train

FIG. 5. Subcritical time development of a pulse in two dimensions, with a cubic destabilizing term without spatial derivatives. For
negative v, the pulse stays localized. 4,=3+i, B,=0,C=—2.75+i,e=—0.1. Top, y = —0.3; bottom; y =0.3.
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T=270.0 T =2500.0

FIG. 7. Same as Fig. 5 but with spatial derivatives in the cubic term. y =0.6. The fronts are reflected by the boundaries 4,=0,

B, =—-3—i,C=—2.75+i,e=—0.1.

(one critical wavelength) of traveling waves to the right
and that is localized using a Gaussian envelope vertical to
its wave vector. Figure 5 (top) shows a time series of the
first 200 time units. The pulse is getting wider in the x
direction but does not essentially change its central posi-
tion. In the y direction, wave trains perpendicular to the
initial waves are generated on the edges of the primary
waves via a transverse instability. In contrast to solu-
tions for ¥ =0.3 (see Fig. 5, bottom, and Fig. 6) the pulse
is still localized in two dimensions.

The creation of secondary-wave trains and the destabil-
ization of a pulse for positive y is more evident if spatial
derivatives in the cubic expression are included that ac-
count for a faster propagation in the direction of the
wave vector of the primary waves (Fig. 7). The secon-
dary waves are formed after t =5 and form themselves
tertiary waves and so on leading finally to a sort of spiral-
ing. All wave fronts move to the outside and are reflected
by the sidewalls. We mention that these states are
strongly time dependent and the system shows no tenden-
cy to settle down to a stationary state in the time limit of
our simulations. The series in Fig. 8 is for a much larger
aspect ratio where the influence of the sidewalls becomes
less important. The annihilation of counterpropagating
wave trains in the bulk now becomes clearly visible. This
is due to the fact that counterpropagating waves couple
with a vanishing cubic coefficient by our choice of 4,
and B,. Confronting waves therefore bifurcate supercrit-
ically and are consequently damped for negative €. This
annihilation is in accordance with the numerical 1D cal-
culations in Ref. 18, where colliding pulses erase each
other for certain parameter values.

Figure 9 shows the stabilization and very slow propa-
gation of a sharp 2D pulse starting with the same initial
condition as in Fig. 8 but for negative y. Finally, Fig. 10
shows the evolution for the same parameters for a larger

aspect ratio starting with a random dot pattern. Narrow
wave trains are formed at 7 =130 and travel in a radial
direction direction towards the center of the layer where
they erase each other. This is accordance with calcula-
tions based on the linearized problem (8) together with
the boundary conditions (10) and is caused by a phase

FIG. 8. Time development in a large circular layer. Wave
fronts that collide erase each other and vanish. Same
coefficients as in Fig. 7.
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N

N

T= 25.0

FIG. 9. Formation of a pulse via a transversal instability of a wave front with a cubic destabilizing term including spatial deriva-

tives. y=—0.6.

shift between the real and imaginary parts of the order
parameter near the sidewall.'

VI. PHASE INSTABILITIES

The region of stability of a traveling-wave solution
with wave vector k in (8) can be achieved using the tech-
nique of phase equations.?’ The ansatz

W(x,t)=[Q; +8Q(x,t)]exp{i[ Q) —kx +D(x,1)]} (11)

inserted in (8) leads, after linearization with respect to ¢
and 8Q followed by an adiabatic elimination of 8Q, to a
diffusion equation for the phase of the form

FIG. 10. Same as Fig. 9, but with a random initial condition
in a large aspect ratio.

&(x,1)=(vp3, +D 3, + D3, )P(x,1) (12)
with the diffusion constants

2a,(ay +kBiQy)

D, =2g*3k*—1)+ - ,
18 QX Ay +2C'QI—KkBy) ' T*
(13)

D, =2g4k*—1)—yy, , (14)
and the drift velocity

vp=2yk +2y,(B1kQ, —a,)—2BkQ, . (15)
We used the abbreviations

Ay +2C"Q;—k’BY

YK 2C 02— kB

a,=—2g%k(k*—1),

Ag=Ay+iA]
etc. for B,,C. Q} is the larger root of the equation

e—gX1—k?*+(A,—BkHQF+C'Q¢=0. (16

The zeros of the diffusion coeflicients DD, mark the
onset of the longitudinal and the transversal instability,
respectively, in the e-k plane (see Figs. 11 and 12). For
negative y the wave vector having the largest linear
growth rate is unstable due to the transversal instability
for both coefficient settings and the region of stability
shrinks to zero with decreasing y. It seems possible that
this instability leads to a collapse of the wave front and to
the formation of pulses after which the phase diffusion,
Eq. (12), is no longer valid. For positive y the stability
region of a traveling wave is much larger and the numeri-
cal results show finally a pattern that fills the whole layer
and that is far from being localized (see, e.g., Fig. 6).
During the propagation shown in Fig. 6, the waves that
emerge at the fronts have a considerably smaller wave-
length than those in the regular centers of the spirals and
fall probably in the longitudinally unstable region of the
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FIG. 11. Stability diagram for a traveling wave with wave vector k of (8). The coefficients were g =1, 4,=3+i, B, =0,
C=-—2.75+i, y=1 (left), and y = —1 (right). In the shaded areas, both diffusion coefficients in (12) are positive and the traveling-
wave solution is stable. Dashed curve, longitudinal instability; solid curve, transversal instability; dashed vertical line, critical k.

phase. Far behind the front the wavelength expands into
the stable region of Fig. 11, left.

VII. CONCLUSION

We have presented a method to calculate the nonlinear
expressions of the order-parameter equations including
rotationally invariant derivatives in two spatial dimen-
sions. These equations can reflect the main features of
mode coupling and selection of the basic equations of the
problems under consideration, e.g., convection in binary
mixtures or reaction diffusion problems. However, if the

e A %

1 .-1.00

variation of the envelopes of the plane waves vary on a
short length scale compared to the critical wavelength of
the underlying patterns, the approximation of the reduc-
tion of the excited band to a ring in Fourier space is no
longer valid and new effects can occur, such as the longi-
tudinal breakdown of a continuous roll pattern to some
isolated localized traveling fronts. This happens if the
cubic coefficients have nonvanishing imaginary parts and
the spatial derivatives near a front can create modes out-
side the critical ring.

On the other hand, if the dispersion is assumed to be
negative, a continuous roll pattern collapses, probably
due to a transversal phase instability into 2D pulses.

%///

>

e )

1 -1.00

FIG. 12. Same as Fig. 5, but with the coefficients 4=0, B, —3—i, C=—2.75+i, y =1 (left), and y = —1 (right).
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T= 100 T= 200

FIG. 1. Numerical solutions of (8) for real nonlinear
coefficients and a negative self-coupling 4,—B,. The initial
condition consists of two domains with nonzero values for ¥
and W =0 for the rest of the plane. The circles are spread out in
the form of propagating rings. Where they collide, they
penetrate each other.



T= 100 T= 200

FIG. 2. Same as Fig. 1, but for slightly positive values of
Ay—B,. Now the fronts are formed in the colliding regions,
which are not stable but move towards the center with a some-
what smaller initial amplitude.



FIG. 3. Same as Fig. 1, but for large positive A,—B,. The
front between the centers is stabilized.



T= 5.0 T= 350 T =100.0 T=200.0

FIG. 5. Subcritical time development of a pulse in two dimensions, with a cubic destabilizing term without spatial derivatives. For
negative vy, the pulse stays localized. 4,=3+i, B,=0, C=—2.75+1i,e¢=—0.1. Top, y = —0.3; bottom; y =0.3.



T= 30.0 T =160.0 T=270.0 T =1500.0

FIG. 7. Same as Fig. 5 but with spatial derivatives in the cubic term. ¥ =0.6. The fronts are reflected by the boundaries 4,=0,
Bi=—=3—i,C=—2.75+i,e=—0.1.



T= 5.0 T=15.0 T= 250 T= 700

FIG. 9. Formation of a pulse via a transversal instability of a wave front with a cubic destabilizing term including spatial deriva-
tives. y=—0.6.



