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Critical exponent for viscosity
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We have measured the critical exponent y characterizing the divergence of the viscosity

ri ~
~
T —T, ~

~ for carbon dioxide and xenon. The values of y for both fluids fall within the range

y =0.041+0.001 and are consistent with the range y =0.042+0.002 spanned by our earlier data for
four binary liquid mixtures. This agreement is the strongest evidence that pure fluids and binary

liquids are in the same dynamic universality class; however, the results for y are inconsistent with

the recent theoretical value of 0.032.

The viscosity g is believed to diverge asymptotically
near the critical temperature T, as

The widely accepted hypothesis, that pure fluids near
liquid-vapor critical points and binary liquid mixtures
near consolute points fall within the same dynamic
universality class, leads one to expect the same values of y
at both types of critical points. ' In contrast, previous
measurements of y have found smaller values for pure
fluids than for binary mixtures. Here, we report mea-
surements near the critical points of both carbon dioxide
and xenon, which show that the apparent critical ex-
ponent y is in the range of y =0.041+0.001. This range
falls within the larger range y =0.042+0.002, spanned by
our earlier results for four binary liquid mixtures; thus,
the present data are consistent with the hypothesis that
binary liquid mixtures and pure fluids are in the same dy-
namic universality class (see Fig. 1)."

Theoretical values of y come from several sources. An
early calculation using the mode-coupling theory to
single-loop order gave the result ' that
y =(8/15tr )v=0.034, where v=0. 630 is the exponent
for the correlation length g. In a more recent two-loop
calculation, Bhattacharjee and Ferrell found that
y =0.032, and they estimated that the error in this result
is "of the order of 1%." Thus this value of y is incon-
sistent with the present experimental value, within esti-
mates of the combined uncertainties. Bhattacharjee and
Ferrell also found that y =0.34 from a dynamic
renormalization-group calculation to order e; however,
they argued that the e expansion for the viscosity is less
reliable than the mode-coupling theory.

The agreement among the experimental values of y, as
displayed in Fig. 1, is remarkable given the varied experi-
mental problems one encounters in determining y for this
wide range of fluid systems. One advantage of studying y
with pure fluids is that the noncritical background viscos-
ity has a comparatively small temperature dependence,
which can be accurately characterized. This is very im-
portant, because the small value of y conspires with ex-
perimental problems to limit the observable increase in
the viscosity near T, to 20—40%, as shown in Fig. 2. In

pure fluids, the smaller relaxation time ~ permits the con-
ditions of low frequency (co~&&1) and low shear rate
( jr « 1), required for measuring the hydrodynamic
viscosity, to be more easily met than with binary liquid
mixtures. In contrast with binary liquids, the measure-
ment of the critical-point divergence of g in pure fluids is
affected by gravity-induced stratification within about
t & 10, where t =

i T —T, ~
/T, is the reduced tempera-

ture. The stratification is unavoidable on Earth and re-
quired us to use a much more elaborate model to analyze
the pure fluid data than was needed for the binary liquid
data. The model for pure fluids included four additional
features: (1) an accepted scaling equation of state to
model the stratified density, (2) an established relation be-
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FIG. 1. The viscosity exponent y for four binary mixtures
and two pure fluids. The abcissa B, defined by Eq. (7), measures
the slope of the noncritical viscosity at T, . The various fluids,
chosen partly for their diverse noncritical viscosities, have ex-
ponents that agree with each other better than with the theoret-
ical values of Ref. 7. The label (ME+ CY)„denotes the
methanol and cyclohexane data taken at constant volume. The
other mixture data are near atmospheric pressure, and the CO2
and Xe data are taken on their critical isochores. Other non-
standard abbreviations are IBA for isobutyric acid, 2BE for 2-
butoxyethanol, NE for nitroethane, and 3MP for 3-
methylpentane.
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FIG. 2. The viscosities of four binary mixtures and two pure
fluids near their critical points. The measured viscosity ex-
ponents are shown in Fig. 1.
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tween the density, the temperature, and the correlation
length, (3) a parametrized function relating the viscosity
to the correlation length which incorporates the cross-
over from critical to noncritical behavior, and (4) a hy-
drodynamic model to calculate the response of the
viscometer to the stratified fluid. Only the last two
features are discussed here.

It is now generally accepted that the viscosity very
near T, has the "multiplicative" form of

a=no(Qok) "

where y —=vx„or, in terms of the reduced temperature t
and on the critical isochore,

(3)

The amplitude of the divergence includes the noncritical
background go, a characteristic wave vector Qo, and the
correlation length amphtude go.

To correctly match the purely noncritical viscosity
rto(T) far from T, to the asymptotic form of Eq. (3) re-

quires a "crossover function. " For our analysis, we used
a crossover function 0 derived by Bhattacharjee et al. ,
who included the effects of the noncritical contribution to
the fluctuation decay rate, as measured by a characteris-
tic wave vector qc, and cut off the relevant mode-
coupling integrals at the finite wave vector qD. Their ex-
pression for the viscosity,

'9='tjoexp[xq~(lc(o rtDko 4) I (4)

has the required asymptotic forms of 1n(Qog), close to
T„and 0, far from T, . Recently, Olchowy and
Sengers' '" improved H to allow an accurate and con-
sistent description of thermal diffusivity, as well as viscos-
ity. Because the two crossover functions are equivalent
for descriptions of the viscosity, ' we used the simpler
form of Bhattacharjee et al.

The present torsion-oscillator viscometer, shown in
Fig. 3, is an improved version of the viscometers used for

FIG. 3. The CO2 bob, shown sectioned, suspended by a
drawn quartz fiber. The xenon bob differed by having a 0.7-mm

sample space and a central internal stiffening post.

our earlier measurements on binary liquid mixtures. '
All of these viscometers had three important features for
nearly critical samples: (1) precise temperature control
( ( 1 mK), which is necessary for acquiring data near T, ,
(2) low frequencies ( —1 Hz), and (3) small oscillation am-
plitudes to achieve low shear rates (O. l —1 s '). The low
frequency and shear rate also ensured that viscous heat-
ing was negligible.

The sample volumes, contained within the "bobs" of
torsion oscillators, were thin and horizontal to reduce the
effects of gravitational stratification. Both bobs were
filled to a density p within 0.3% of the nominal critical
density p, (Refs. 14 and 15), so that, at t =10 s, the max-
imum error in the critical-point enhancement of the
viscosity caused by pAp, was less than 0.07%.

As with the binary liquid viscometers, the thermostat
was comprised of three evacuated, nested, aluminum
shells. The heater on the bob was not used during the
viscosity measurements. Thus the thermally isolated bob
acted as a passive fourth thermostat stage with good tem-
perature stability. During the measurements closest to
T„the residual temperature gradient across the sample
was approximately 200 @Km ', three orders of rnagni-
tude smaller than the adiabatic gradient that would be
present across a convectively stirred sample.

%'e made decrement measurements by using a capaci-
tance bridge to monitor the freely decaying torsion oscil-
lations. The output of the bridge was assumed to be of
the form

0= Oosin(cot)e

The initial amplitude Oo was typically 1 mrad, and the
frequency m/2m was about 1 Hz. The oscillation peaks
were measured for 500 periods and then fit by an ex-
ponential to obtain the decrement D. The rms scatter in
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D was typically +0.3%.
Decrement measurements were made while the bob's

temperature slowly relaxed toward the programmed tem-
perature of the inner shell. Near T„very slow sweep
rates were required to avoid hysteresis attributed to the
stratification of the fluid with a time constant of approxi-
mately 10 s. The results of the slowest negative sweep
rates ( —0.3 pK/s for xenon and —0.05 pK/s for CO2,
equivalent to —1.6 K/y) were identical to the results of
the slowest positive sweeps that started in the two-phase
region.

The measured decrements were corrected for the losses
Do unrelated to the sample's viscosity. For the CO2 de-
crements, we either assumed that Do was constant and fit

only to data within t &t,„=0.01, or we corrected Do
for temperature-dependent outgassing of the thermostat.
(Details of the corrections appear in Ref. 4.) For the xe-
non measurements, we recorded the residual pressure in
the thermostat, and used these data to make corrections
to Do based on the measured pressure dependence of Do.

For a homogeneous sample, the relationship between
the viscosity and the decrement can be expressed
as a function of the viscous penetration depth,
5 =(2rilpco)', and the bob's radius R and half-height h.
For this function, we used a simple analytic working
equation accurate to O(5/R), which Grouvel and Kes-
tin' obtained from an exact solution. ' Our numerical
studies confirmed the accuracy of the analytic approxi-
mation; however, the nonlocal nature of the O(5/R)
formula required its careful use when dealing with
gravity-induced inhomogeneity near T, .

We accounted for the effects of stratification by first us-
ing the "restricted cubic model" ' equation of state to
obtain the vertical profile of the density. From the asso-
ciated parametric variables, the correlation length as a
function of height was also calculated, ' in turn, yield-
ing the vertical profile of the viscosity through Eq. (4).
We then used the O(5/R) working equation to compute
the average of the decrements expected if the bob were
filled homogeneously with fluid having the viscosity and
density found at the bottom and top of the bob. The
small contribution to the decrement, resulting from the
variation of g and p with height along the side wall, was
then accounted for by an integral incorporating a simple
0 (5/R ) formula.

The noncritical background viscosity go was represent-
ed by the Ansatz

ed as an adjustable parameter in fitting the xenon decre-
ment data. For the CO& decrement data, one fit was
made with qD fixed, and two fits were made with qD ad-
justable.

These considerations were embedded into a fitting pro-
gram that was used to find the best values of the parame-
ters in Eq. (4) describing the temperature dependence of
the viscosity. Figure 4 shows the decrement data and
fitted description for xenon.

The four free parameters in our model were T„y,qD,
and Do, , where Do, was the part of Do not already ac-
counted for. In practice, we fitted the quantity In(qD(o)
to avoid unphysical negative values for qD. We also tried
fixing In(qD(o) at —0.43 (qD'=0. 23 nm) for CO2, the
value determined by the thermal conductivity data. ' '"
Although the fitted value of qD was about five times
lower than the value determined by thermal conductivity,
this had little effect on y. Table I summarizes the results
of the various fits, and the insensitivity of y to the fitting
procedure is clearly shown. We accounted for correla-
tions between fitting parameters when deriving the error
estimates ( lo denotes a 68% confidence level). Also, the
assumption of normally distributed errors was verified by
calculating the minimum y for various values of y fixed
near the best-fit value.

For both fluids, the absolute viscosity far from T, was
consistent, within the experimental errors, with the non-
critical viscosity measured elsewhere. ' (The experi-
mental errors b,g/g were +0.015 for CO& and +0.008
for xenon. )

In Fig. 4, the fitted model for the xenon data is used to
illustrate the effects of gravity. The dashed curve is an
extrapolation of the xenon fit in the reduced gravity,
10 g, where the decrement data at the smallest values of
t would fall on a straight line of slope y/2. However, in

0.0025—

&o(~ S»=choo(~)+noi(p) . (6)

For goo(T), we used the correlations based on kinetic
theory developed by Kestin, Ro, and Wakeham. ' For
qo, of CO2, we used the description obtained by Iwasaki
and Takahashi. For go& of xenon, we combined the
correlating function of Jossi, Stiel, and Thodos with the
data of Reynes and Thodos.

The total viscosity was represented by the crossover
form of Eq. (4). Although the data determining qc and go
were available for both CO2 and xenon, the careful
thermal conductivity measurements required to deter-
mine qD were not available for xenon. Thus qD was treat-
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FIG. 4. The decrement of the torsion oscillator filled with xe-
non as a function of the reduced temperature. The 1g curve is
the best fit to the data, and the upper curve shows the decre-
ment expected if the xenon experiment were repeated in low
gravity. To first order, the asymptotic slope is y/2. Because the
asymptotic region is unavailable in lg, determination of the
viscosity exponent y strongly depends on the theory of crossover
between the noncritical and critical regions.
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TABLE I. Results of four fits to the data, including lo error
estimates. The upper bound of the fitting range is t,„.The
fitted viscosity exponent is y, and the fitted cutoff wave vector is

qD.

Fluid

CO2
CO2
CO2
Xe

tmax

0.01
0.1

0.1

0.1

y (X10)
40.79+0.68
41.66+0.29
40.96+0.21
40.50+0. 16

ln(qD (0)

—1.99+2.59
—1.65+0. 15
—0.43 fixed
—1.75+0.05

1g, the decrement data never reach their asymptotic
slope! Therefore, a correct model including the effects of
both gravity and crossover was necessary for determining
the viscosity exponent.

There have been few other pure Quid viscosity mea-
surements made on the critical isochore near T, . These
include measurements on xenon and ethane by Strumpf,
Collings, and Pings, on CO2 by Bruschi and Torzo,
and on He and He by Agosta et al. . The results from
these groups fell into the range of 0.031 &y &0.038.

Previous measurements of y for binary liquids have
varied widely. Values from 0.032 to 0.042 were listed in
the recent review of Ref. 2, for example. Although much
of this variation has been later eliminated by accounting
for shear effects, either by limiting the temperature range
of the data, as was done by Calmettes, or by applying

corrections to the data, as was done by Nieuwoudt and
Sengers, our recent low-frequency, low-shear-rate mea-30

surements have been the only ones not requiring shear
corrections close to T, . Figure 1 shows the agreement
between the binary liquids and pure fluids by plotting y
versus the noncritical slope parameter B, defined by

C

Ip

d Yap

dT

We conclude from our study of four binary liquid mix-
tures and two pure fluids that the viscosity exponent y
has a universal value:

y =0.042+0.002 .

The authors have benefitted from the critical com-
ments and stimulation of J. K. Bhattacharjee, R. A. Fer-
rell, R. %. Gammon, G. Morrison, H. Meyer, J. M. H.
Levelt Sengers, 6. A. Olchowy, J. V. Sengers, and R. A.
Wilkinson. We are grateful to U. Narger and D. A. Bal-
zarini for providing their recent results on the critical
density of xenon. This work has been supported in part
by NASA under Contract No. C-86129D.

This value differs from theory by 30%%uo and has an error of
only 5%%uo. We urge that a theoretical effort, commensu-
rate in scale with the present experimental effort, should
be made in an attempt to resolve the discrepancy.
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