
PHYSICAL REVIE%' A VOLUME 42, NUMBER 12 15 DECEMBER 1990

Integrability anti nonintegrability of quantum systems.
II. Dynamics in quantum phase space

Wei-Min Zhang
Department of Physics, FM 15, -University of Washington, Seattle, Washington 98195*

and Department ofPhysics and Atmospheric Science, Drexel University, Philadelphia, Pennsylvania 19104

Da Hsuan Feng and Jian-Min Yuan
Department ofPhysics and A tmospheric Science, Drexel University, Philadelphia, Pennsylvania 19104

(Received 18 May 1989; revised manuscript received 18 April 1990)

Based on the concepts of integrability and nonintegrability of a quantum system presented in a
previous paper [Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)], a realization of the

dynamics in the quantum phase space is now presented. For a quantum system with dynamical

group 0 and in one of its unitary irreducible-representation carrier spaces l)„, the quantum phase

space is a 2M~-dimensional topological space, where M„ is the quantum-dynamical degrees of free-
dorn. This quantum phase space is isomorphic to a coset space 0/% via the unitary exponential

mapping of the elementary excitation operator subspace of p (algebra of 0), where % ( C 9') is the
maximal stability subgroup of a fixed state in ()A. The phase-space representation of the system is

realized on 9'/%, and its classical analogy can be obtained naturally. It is also shown that there is

consistency between quantum and classical integrability. Finally, a general algorithm for seeking
the manifestation of "quantum chaos" via the classical analogy is provided. Illustrations of this for-
mulation in several important quantum systems are presented.

I. INTRODUCTION

As the understanding of classical nonlinear phenomena
deepens, a natural question is what are the generic behav-
iors (if any) of a quantum system when its classical coun-
terpart (if it exists) is chaotic. Indeed, in the past decade,
the search for the answer to this question has given rise
to one of the most exciting research fields (which has
loosely been termed quantum Chaos '} in theoretical
physics.

The framework of quantum mechanics is the Hilbert
space, in which physical states are represented by state
vectors. To explore the quantum manifestation of classi-
cal chaos, it is natural to choose as starting points the
spectrum and wave functions and explore the classical
pattern manifested in these basic quantum building
blocks. ' However, quantum chaos is not well defined
because many concepts which are essential for the
analysis of classical chaos are meaningless in quantum
mechanics, although in the nearly classical limits, quan-
tum phenomena cannot and should not differ much from
those of classical mechanics. Therefore addressing the
problem of "chaos'* in quantum mechanics certainly
demands a fresh look at the fundamental structure of
quantum theory.

In a previous paper (hereafter referred to as I), start-
ing from the axiomatic structure of quantum mechanics
we presented definitions of quantum dynamical degrees of
freedom and the quantum phase space (QPS) from which
emerges a concept of quantum integrability. Also, a
theorem and its proof are given in I about the relation-
ship between quantum integrability and dynamical sym-

metry. In the present paper, our goals are (I} to con-
struct the explicit structures of QPS; (2) to explore the
dynamical formulation of the quantum system defined on
the QPS, and (3) to study the correspondence of
quantum-classical mechanics. '

A starting point for the search of the manifestation of
chaos in quantum systems should be the quantum-
classical correspondence. To date, most attempts to
study this problem have concentrated in quantizing clas-
sical nonintegrable systems" while not nearly enough at-
tention has been given to studying the classical limits of
quantum integrable and nonintegrable systems even
though this approach may be more general, especially
since many quantum systems do not have classical coun-
terparts.

It is worth noting that even for quantum systems in
which the classical counterparts do not exist, the "classi
cal limits" had been derived via quantum-statistical
mechanics by Lieb' (for spin systems) and Simon' (for
general compact groups). In their derivations, the Lie
group coherent states (from now on referred to as
coherent states) theory developed by Klauder, ' Perelo-
mov, ' and Gilmore' about two decades ago was utilized
to construct the partition functions. Detailed properties
of the coherent states have recently been reviewed' and
will not be repeated here. In the work of Lieb and
Simon, explicit conditions are provided under which the
quantum and classical partition functions are identical,
i.e., by using the coherent states, the quantum partition
function will reach its classical limit if the Q and P repre-
sentations become identical. Hence it was recognized
that the coherent states are indeed the best theoretical
tool to obtain classical limits.
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There are three approaches to studying the classical
limits of quantum mechanics.

The first is due to Schrodinger to construct a quan-
tum wave packet whose time evolution follows the classi-
cal trajectory (i.e., the coordinate and momentum expec-
tation values of the wave packet are solutions of
Hamilton s equations) and satisfies the Schrodinger equa-
tion. This approach is only successful in constructing the
wave packets of a harmonic oscillator and has proven to
be extremely useful in the development of quantum op-
tics. '

The second approach is due to Dirac: to construct a
quantum Poisson bracket such that the basic structures
of quantum and classical mechanics can be put in one-to-
one correspondence. This approach has been partially
realized by Konstant, Souriau, and Kirillov independent-
ly in the 1970s and is now known in the literature as
geometric quantization. ' The geometric quantization
begins with a symplectic geometry (M, co) from which a
quantum system can be constructed via the concept of
coadjoint representations of an algebra g. Still, it is more

important to have an approach which starts from a quan-
tum structure and "terminates" at the classical structure.
For certain quantum systems, Yaffe derived their classi-
cal limits as large X limits by retracing the path of
geometric quantization via the coherent state
theory. ' ' However, generically speaking, a retracing
procedure may inherently possess the difficulty of
nonuniqueness. The reason is that for a given irreducible
representation (irrep) of p, there are in general several
inequivalent symplectic manifolds (although only one for
rank-1 Lie algebras) due to the existence of different
coadjoint orbits. In other words, more than one symplec-
tic manifold can in principle be constructed for a given

quantum system. Hence, to find a one-to-one correspon-
dence between quantum and classical structures via the
retracing approach is still an interesting yet open ques-
tion.

The third is from the Feynman path integral: in the
Feynman path integral, the quantum propagator is an in-
tegration over all possible paths between the initial and
final points in the configuration space. This approach is
based on the underlying classical mechanics and there-
fore concerns naturally the problem of quantum-classical
correspondence. However, it cannot in principle be
directly applied to quantum systems which do not have
classical counterparts. It was Klauder who developed a
new formulation of the path integral on the general phase
space via his continuous states' (i.e., a general family of
coherent states). In such a formalism, the connection of
the quantum and classical mechanics is generically pro-
vided. Indeed, if the phase-space structures (i.e., the sym-
plectic and complex structures) can be explicitly
developed even for systems without classical counter-
parts, such a formalism can be very useful not only in un-
derstanding formal properties but in practice as well.

The above three approaches are based on the three pic-
tures of quantum mechanics: the Schrodinger picture,
the Heisenberg picture, and the Feynman path-integral
representation. In all these approaches, coherent states
have played an important role. However, coherent states

are only one representation of the Hilbert space while the
phase space of a quantum system which is the basic struc-
ture determining the classical limit must logically exist
independent of representations of the Hilbert space. To
emphasize this point, we will now discuss briefly a pro-
cedure to construct a phase space of a quantum system
by using the coherent state theory. For a given quantum
system (denoted by a dynamical group 0 and its irrep
space 1)~), one can obtain a set of coherent states' ' by
choosing an arbitrary "initial" state ~x)EJA. These
coherent states are labeled by the coset (or phase) space
0/0, where 0, is the maximal invariant (with respect to
~x ) ) subgroup of Q. In principle, different choices of ~x )
may result in diff'erent inequivalent 0/0, for the same
quantum system. In each 0/0, one can find a classical
system. Since these classical systems must physically be
equivalent, diff'erent 0/0, should be related to each other
via additional constraints. If one does not choose a suit-
able ~x ), the resulting classical limit is a constrained clas-
sical system and therefore a complicated one although
the physics may be equivalent.

It is worth noting that there are two exceptional cases
for which 9/9, is unique. One is when 0 is a rank-1 Lie
group [e.g., the Heisenberg-Weyl group, SU(2) and
SU(1, 1)] and the other is when ()„carries a nondegenerate
irrep (see Appendix) of Q. The first case includes a limit-
ing class of physical systems. The second is usually un-

physical. This is because a physical system is generally
restricted by some symmetries and therefore the physical
Hilbert space cannot be a nondegenerate irrep space of Q.

A typical example to demonstrate the above argument
is the finite n-body quantum system. For such a system,
the dynamical group is SU(r), where r is the total number
of single particle levels. For a nondegenerate irrep space
of SU(r), with any weight state as ~x ), the coherent states
possess the phase space SU(r)/C, where C =U(1) '" " is
the Cartan Abelian subgroup of SU(r). However, most
realistic finite many-body system must have bo sons
and/or fermions as building blocks. If the system is bo-
sonic, the physical Hilbert space must be a fully sym-
metric irrep space of SU(r), a degenerate irrep space. In
this case, if one chooses the lowest (or highest) weight
state as ~x ), the phase space is the desired
SU(r)/U(r —1). If the system is fermionic, then the Hil-
bert space is a fully antisymmetric irrep space of SU(r),
again a degenerate irrep space. When we also take the
lowest (or highest) weight state as ~x ), the phase space is
the desired SU(r)/S(U(r n) U(n) —.}However, if one
does not take the lowest (or highest) weight state as ~x ),
then the phase space is SU(r)/C or some other coset
spaces but not SU(r)/U(r —1) or
SU( r ) /S(U( r —n ) U( n ) ) irrespective of whether the
system is bosonic or ferrnionic. In fact, a11 other coset
spaces are equivalent to SU(r)/U(r —1) or
SU(r)/S(U(r )ng U( )nb)y —some additional constraints
which may be given by those coherent state expectation
values of the fully degenerate Casimir operators in a sub-
group chain of SU(r) It is worth n. oting that when r =2
(n =1), the dynamical group is reduced to a rank-1
group and all possible phase spaces are reduced to
SU(2)/U(1) and therefore become unique, as we have
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pointed out earlier.
The above discussion implies that there exists one fun-

damenta1 inherent phase space for a given quantum sys-
tern from which the classical limit can be obtained
without additional constraint(s). Since the coherent state
theory' ' does not provide, although sometimes im-
poses, ' a prior and physical condition to restrict the
choice of ~x ), there must exist an intrinsic quantum
property to determine the inherent phase space. Thus it
is imperative to know what this intrinsic property is and
how it can be used to explicitly construct such an in-
herent phase space. In this paper, the answer to this
question will be given. The system's intrinsic property is
the quantum dyn-amical degrees of freedom (QDDF}
defined in paper I (Ref. 9) and the construction of the in-
herent phase space (QPS) for arbitrary quantum systems
is restricted by the QDDF. The correspondence of
quantum-classical mechanics is then explicitly obtained.
The results, as we have expected, reveal that the QPS is
an inherent geometry (with natural symplectic and com-
plex structures) of the quantum system, and its existence
does not depend on the underlying classical basis. The
primary role played by the coherent states is to provide a
link between quantum phase space and the Hilbert
space. ' Furthermore, we will show how to construct
systematically the canonical form of the quantum phase-

space coordinates for all semisimple Lie groups with Car-
tan decomposition. From such an explicit realization of
canonical coordinates, one can realize and compute the
"classical limit" and thus provide a natural route to in-

vestigation of the quantum manifestation of chaos.
This paper is organized as follows. In Sec. II, the topo-

logical and algebraic structures of QPS, i.e., its dimen-

sion, symplectic structure, and coordinate realization, are
explicitly constructed; from this a unified way to connect
quantum and classical theories can be given. A phase-

space representation of quantum mechanics is then real-

ized via the coherent states of QPS within the Hilbert
space. In Sec. III, based on the structure of QPS and the
phase-space representation, a classical analogy of the
quantum system is obtained. This carries an explicit real-

ization of quantum-classical correspondence. Thus all

the conclusions obtained in paper I are shown to be con-
sistent with the classical theory. Furthermore, in accor-
dance with the working definition of "quantum chaos, "
i.e., the dynamical behavior of a quantum system whose

classical analogy is chaotic, a general algorthim contain-
ing a prescription of manifesting quantum chaos via its
classical analogy can be constructed. This is discussed in

Sec. IV. These discussions can be summarized in the pro-
gram shown in Fig. 1. In Sec. V several basic quantum

systems often used in the study of quantum chaos" are
studied to illustrate the present procedure. Finally, sum-
mary and conclusions are given in Sec. VI.

II. QUANTUM PHASE SPACE

A. The construction
of quantum-dynamical degrees of freedom

In this subsection, we shall briefly discuss the QDDF
concept of I. For a given quantum system, there is al-
ways a dynamical group g. The Hamiltonian H of the
system and its various transition operators [ A I was ex-
pressed in Eq. (3}of paper I [hereafter such equations will
be listed as Eq. (I-3), e.g.] as functions of the generators
IT;, i =l, . . . , nI ofg:

H=H(T, ), A=A(T;) . (I-3)

By definition,

[T„T,]= g C,,"T (I-4)

In Eq. (I-4), C," are the structure constants of the algebra

p of g. The Hilbert space $ of the system can then be
decomposed into a direct sum of the various unitary irrep
(referred to hitherto as irrep) carrier spaces I)~ of g,

(2. l)

g'—= (g', zg',
, z zgI)

g =(g Dg D Dg, )
s s —1

g—:(g.zg. ~ ~g )
(I-5)

gib—
( gi. ~ gA, ~., . . ~ gi. )

s s —]

then for each chain gD g there is a complete set of com-
muting operators ' {CSCO)denoted as S:

In Eq. (2. 1), A denotes an irrep of g (when g is a Lie
group, A is the largest weight of this irrep) and Y~ the
degeneracy of A in I). It can be shown that no correla-
tions exist between various I)~'s. Thus, without any loss
of generality, the study of dynamical properties of the
system can be focussed on one particular irreducible sub-
space I)„ofI).

Since the dynamical groups of most quantum systems
are Lie groups, only such groups wi11 be discussed here.
Suppose g is l-rank, n dimensional, and has A, subgroup
chains {g', g, . . . , g ):

Quantum System QPS S: IQ,'l[Q,', Q ]=O; i,q=l, . . . , dI, (2.2)

which will completely specify a basis set of

)
"Quantum Chaos" ~: (Classical Analogy +

Q;~r &=);~) (2.3)
FIG. l. g and l)~ are the dynamical group and the Hilbert

space, respectively. For details, see Sec. II. The dimension d of the set S is



7128 %'EI-MIN ZHANG, DA HSUAN FENG, AND JIAN-MIN YUAN 42

d =I+ =d .n —l

2
(2.4)

Clearly d depends only on I and n and is independent of
a [the subgroup chain index of Eq. (1-5)]:

d =d for +=1, . . . , A, . (2.5)

Moreover, S is the sum of two subsets: a fully degen-
erate (FD) operator set SF and a nonfully degenerate
(NFD} operator set Sg, :

S =S +SF N

The FD operator Q &SF is defined by the relation

Q;~) )=c~} ), V~} )~l},

(2.6)

(2.7)

where c is a constant independent of the subscript of Q;.
Obviously, only the operators Q which do not satisfy Eq.
(2.7) span the NFD set Sg.

It must be stressed that the dimension of Sz is also in-

dependent of a but depends on I}~. For example, let I}„be
the carrier space of the nondegenerate irrep of 9, the set
SF' contains I Casimir operators of 0, and then the dimen-
sion M~ of Sz is

n —I
M =d —1=

A (2.8)

B. Structure of quantum phase-space p

From geometry, the global property of a manifold is its
dimension. If the manifold has suScient physical impli-
cations, its dimension should be related to an intrinsic
physical property, for example, the number of dynamical
variables. In the preceding subsection, the number of the
QDDF was obtained. Therefore, for a quantum system
with M „ independent QDDF, the corresponding QPS
should be a 2MA-dimensional topological space without

any additional constraints. In this subsection, a realiza-
tion of this space will be given.

To explicitly demonstrate this point, let us first illus-
trate it with a simple but nontrivial example: the SU(3)
quark mode1 ~ According to the coherent state theory, we
know that if we choose an arbitrary weight state as the
"initial" state ~x ), the coherent states will provide a
phase space SU(3}/U(1)U(1) which is a six-dimensional
compact manifold. When one restricts ~x ) to be the
lowest (or highest) weight state, the coherent states will

which is obviously independent of a. For degenerate ir-
reps of 0, although M~ (n —l/2, it nevertheless is still
independent of a (see Appendix). Thus it is shown that
for a given quantum system within a specific 1}A the num-

ber of NFD operators is unique. According to the
definition in paper I: Suppose S:I Q~ ~ [Q„Q~ j=0,
j =1, . . . , N ) is CSCO of a quantum system. A basis set

I ~a ) ) of its Hilbert space I} can be completely labeled by
M quantum numbers (a„i = 1, . . . , M) which are related
to the eigenvalues of the NFD observables [ Q, ,

i =1, . . . , M (M~N)), a subset of S. Then M is defined
as the number of QDDF. The above discussion shows
that this definition of QDDF is unique. iq &=F(X,')io&, Vie&e(}, (2.9)

where F(X, ) is a polynomial of IX; I and ~0) ( CI}A) is a
reference state. The requirement of the choice of ~0) is
that one can use a minimum subset of p to generate the
entire I}A from ~0) via Eq. (2.9). Such a minimum set of
operators I X, ( is called the set of elementary excitation
operators of QDDF. Then we find that if 9 is compact,
the state ~0) is the lowest (highest) weight state ~A, —A)
(~A, A) ) of 1}A; if 9 is noncompact, it is merely the lowest

bound state of 1}A. We shall refer to ~0) in this paper as
the fixed state.

Based on the above construction, we can conclude that
the number of tX, I is identical to the number of QDDF (a
proof is given in the Appendix}. Physically, this must be
true since the elementary excitation operators are defined
to be the QDDF. Thus IX, I (QDDF or elementary exci-
tation operators) and its Hermitian conjugate [X; ) in (}A

form a dynamical Uariable operator subspace/i of p..

/z. tX, ,X„ i =1, . . . , M~j . (2.10)

With respect top, there exists a manifold li whose dimen-

provide a SU(3)/U(1)U(1) phase space for the nonde-
generate irrep, and SU(3)/U(2) phase space for the degen-
erate irrep. The latter is a four-dimensional compact
space. A natural question to ask is how the QDDF can
select from either SU(3)/U(l)13IU(1) or SU(3)/U(2) to be
the QPS. From paper I, we see that for the baryon octet,
which is a nondegenerate irrep space, the number of
QDDF is 3: hypercharge, isospin, and its z component
and therefore the QPS is a six-dimensional manifold, i.e.,
SU(3}/U(1)U(l}. For the baryon decuplet, which is a
degenerate irrep space, the number of QDDF is two be-
cause the hypercharge Y and the isospin T are not in-

dependent: T = Y/2+ 1. Thus the QPS is a four-
dimensional manifold, i.e., SU(3)/U(2). However, by not
choosing the lowest or the highest weight state as ~x ), we
will obtain for the baryon decuplet SU(3)/U(1)U(1) as
its QPS via the coherent state theory. The coordinates of
this QPS must be constrained by ( T ) = ( Y) /2+1 and
therefore are not independent, where (T) and ( Y) are
the expectation values of the isospin and hypercharge
operators in the coherent states of SU(3)/U(1)U(1).
This shows that the QDDF dictates the global property,
i.e., dimension, of the QPS.

Next we will construct the QPS from the QDDF for an
arbitrary quantum system. Since the number of QDDF is
defined from the CSCO and the Hilbert space structure
(or more precisely, from 9 and 1}A), the mathematical
structure of QPS should also be related to 0 and I}A.

Furthermore, the realization of the QDDF must be
operators in quantum mechanics. We shall call these in-
dependent QDDF the elementary excitation operators of
the system. Thus the first task is to seek explicitly the
elementary excitation operators.

For a given system, the elementary excitation opera-
tors can be obtained from the structure of 0 and I}A as
follows. Let IX,"I be a subset of the generators of 0 such
that any states ~% ) of the system can be generated as fol-
lows:
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sion is twice that of the number of the QDDF. To explic-
itly explore the structure of this manifold, we realize it by
a unitary exponential mapping of the dynamical Uariable
operators subspace ji

lows: the metric g, of 0/% is

8 inK(z, z*)
az az*

(2.15)

M~ M~

g (g, X, —H. c. }~A=exp g (g;X; —H. c. )

where K(z,z') is the so-called Bergmann kernel of SIP
and can be explicitly expressed as

(2.1 1)
K(z,z') =g f2 (z}f2 (z) . (2.16)

[/, i]c/, [A,p]c/t, [/t, /~]cA . (2.12)

where g;, i =1, . . . , M~ are complex parameters. It can
be proven that the element 0 is a unitary coset represen-
tative of 0/&, where %' (CQ) is generated by the
subalgebra A=p —p. Thus Eq. (2.11) shows that p is iso-
morphic to the 2M„dimen-sional coset space 9/%.
From now on }2 is denoted as 0/%.

It must be pointed out that 0/8' is a complex homo-
geneous space with a natural topology. The complex
structure is embedded by Eq. (2.11). The homogeneity
can be easily verified. To be concrete and without loss of
generality, we shall confine our attention to just sem-
isimple Lie groups whose p satisfies the usual Cartan
decomposition p =4+/t:

Mn dz. dz;*
dp(z, z')=g[det(g;/)] ff (2.18)

where the coefficient g is a normalized measure factor
given by the condition f „/gp(z, z*)=1. Furthermore,
there is a closed nondegenerate 2-form to on 0/& which
is given by

The function f&(z) in Eq. (2. 16) is an orthogonal basis of
a closed linear subspace I2 (0/&) of I (0/gf) (the
square integrable Hilbert space with domain 9/&):

f (z)fz (z)K '(z, z')dp(z, z")=5
0'//'

In Eq. (2.17) dp(z, z') is the 9-invariant measure on
9i&

In most practical applications, 0/% does satisfy the
decomposition of Eq. (2.12). Thus a group transforma-
tion

co =i Ag g, dz, h dz ' (2.19)

B
C D ~~

gA~z'=( Hz+8 )/Cz +D ) (2.13)

acting on 0/& is a homomorphic mapping of 0/% onto
itself with the explicit form given by "'

and the corresponding Poisson bracket is then

1 ~ „"r}fdg r}fr}g

az, az,* az,*az,
(2.20)

In Eq. (2.20), f and g are functions defined on 9/& and
g;/g/ =5;t, . By introducing the canonical coordinates
(q,p) of 9/A':

In Eq. (2.13), z' and z ( E 0/%) are complex k Xp ma-
trices (k and p are the dimensions of 4 and/t, respective-
ly) and are related to ri, as

(q+ip ) = Y(z}
1

&2' (2.21)

z= '

for noncompact 9'.

for compact 9tan(q'q)'"
)
1/2

tanh(~'~)'"
7l

(
t )1/2

(2.14)

to= g dp, hdq, , (2.22)

where g is a function of some inherent physical parame-
ters (such as spin, particle number, and so on), the 2-form
co and the Poisson bracket of Eq. (2.20) can be
transformed into the standard classical form:

Here g represents the nonzero k Xp block matrix of the
operator g,. A& (ri, X, -H.c.) in the faithful matrix represen-
tation.

Thus the Riemannian structure of the homogeneous
space 9/% can be constructed ' and the results are as fol-

[f «=i afag- afag
Bq; Bp,- Bp;Bq;

When 0 is semisimple, the explicit form of Y(z) is

(2.23)

Y(z)= .

z sin(pter)'/2

(I+z z)' (ri g)'
z sinh(g g)'

(I & )I/2 (
't )1/2

=7l

for compact 0

for noncompact 5',
(2.24)
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which is the independent matrix block in the faithful ma-
trix representation of the coset representative II [Eq.
(2.11)] in the faithful matrix representation. In other
words, the canonical coordinates (p, q) of the coset
representative of 0/A in terms of its faithful matrix rep-
resentation provide a natural canonical form for the coor-
dinates on 0/&. It is worth pointing out that normally
it is very difficult to construct a flat local coordinate on
the nontrivial space 0/gf' which will preserve the global
properties of 0/&. However, the above systematic pro-
cedures of constructing the canonical coordinates on
0/& are generic and they may preserve the global prop-
erties (topological invariants) of Q/&.

The above discussions reveal that for a quantum sys-
tem (in terms of 9 and I)„), there is always an inherent
quantum phase space which can be constructed from the
intrinsic property: the quantum-dynamical degrees of
freedom. In fact, it gives rise to a geometrical structure
in a quantum system. Just as classical mechanics can be
built from a geometrical structure, ' ' so can quantum
mechanics. It is also interesting that the geometrical
nonintegrable phase, which was extensively discussed by
Berry to be an important quantum property, can also be
naturally obtained from the nontrivial structure of the
quantum phase space in certain cases.

C. Phase-space representation of quantum systems

Based on the structure of 0/% constructed previously,
the next question is, how can one describe the quantum
dynamics on the QPS? To this end, it requires the ex-
istence of a phase-space representation for a given quan-
tum system. Such a representation can be found if there
exists an explicit mapping

f g( Q/3v), Q'( 0/&) I (2.25)

such that

A ~~K(p, q ), l
qI) ~~f(q +ip) (2.26)

where A is given by Eq. (I-3), 5(p, q)Eg(Q/A), and

f(p, q)&Q (0/%). For a quantum system with a QPS
0/&, this mapping is uniquely realized by coherent
states. ' ' The coherent states of 9 and I)A, which are
defined on 0/&, can be constructed by choosing the fixed
state l0) as its "initial" state

MA

=exp+ (g, X,. —H. c. )l0) (2.29a)

M~
=K' (z, z*)exp g z, X, l0)

=E—'~ (z,z")llA, Z&, (2.29b)

M~

K(z,z')=(0 exp X z, 'X, exp X z, X, 0)i=1 i=1

A, z &
=

I ( 01A, II & I
=g f~h (z)fAh (z)

fAh(z) = ( Akll Az ) (2.31)

where lAA. ) is the basis of I)~. A very important and
well-known property of Eq. (2.29) is that the coherent
states of Eq. (2.29) are overcomplete:

or

A, A

diaz

A, A =I
5'/h'

(2.32a)

A, z dp~ z A, z =I (2.32b)
f'/'h'

where dp(z) is given by Eq. (2.18) and
dpH(z, z*)=K '(z, z')dp(z, z*) is the measure of the
0 (0/&).

We see that the coherent states (2.29) provide a bridge
linking the Hilbert space to the quantum phase space
0/&. Thus the phase-space representation of a quantum
system can easily be constructed by closely following the
procedure of Klauder's continuous representation
theory. '

1. Phase-space representation

of operators and wave functions

The phase-space representation of a wave function can
uniquely be defined as

(2.30)

is the Bergmann kernel of Eq. (2.16). For a semisimple
Lie group, the parameters Iz, I are explicitly given by Eq.
(2.14). The state llA, z ) in Eq. (2.29b) is an unnormalized
form of lA, A) and f„h(z) in Eq. (2.30) is the orthogonal
basis of the/ (0///):

gl 0=&IIbl 0=&l A,
II&™eh', g«, b EW n&a/. e. f(q +ip )

=f(z) = ( VllA, z ) . — (2.33)

(2.27)

It is obvious that A is just the maximal stability sub-
group (or isotopy group) of l0), i.e., any h E & acting on
l0) will leave l0) invariant up to a phase factor:

(2.28)

while lA, Q) are the coherent states which are isomorph-
ic to 0/&: (f, f, ) —J *, (z)f, (z)diJH(z, z*)( ~ . (2.35)

The relationship between q+ip and z is already given by
Eq. (2.21). It can be shown that the uniqueness of f (z)
requires the following identity to be satisfied:

f(z)= I K(z, z" )f(z')dpH(z', z'*) . (2.34)
f'/'h'

The scalar product of any two such functions, f, (z) and

f2(z), is
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m(p, q)—=m(z, z*)=&A,n~A A, n) . (2.36}

The operator function S(z,z') acting on f (z) and the
phase-space representation of the product A, A 2 have the
standard forms' ' " '

In Klauder's continuous representation theory, '

K(z, z'*) is called the reproduced kernel. Clearly fA&(z)
of Eq. (2.31) satisfies conditions of Eqs. (2.34) and (2.35).
It can be shown that the closed subspace 0 ( 0/%) [f(z)
of Eq. (2.34) with Eq. (2.31) as a basis set] is isomorphic
to I)A. Furthermore, with Eq. (2.33) one can directly gen-
eralize (which we will show later) the so-called Husimi
representation ' to arbitrary dynamical Lie groups.

The phase-space representation of an arbitrary opera-
tor A can also uniquely be expressed by its coherent state
diagonal element (i.e., the g representation, ' or more
generally, the covariant symbol "d' of A):

Hence the phase-space representation of the commuta-
tion relations of T, and T, divided by ih, is identical to
the Poisson bracket of their phase-space representation.
This is an important result to provide a universal classical
analogy of any quantum system and is a starting point for
realization of Dirac's approach. More about this will
be discussed in the next section.

However, when A is a nonlinear function of T, , the
first-order quantum correlations are included in general
in its phase-space representation. Thus the algebraic
structure is in general not preserved when we replace the
commutator of two arbitrary operators by the Poisson
bracket of their phase-space representation. Hence the
preservation of the algebraic structure in the phase-space
representation can be achieved only by having additional
conditions (i.e., classical limit, see the next section).

and

(mf )(z) = f (z')Z'"(z', z'")m(z', z";z,z')
9/'

X K' (z,z" }dpH(z', z" ) (2.37)

A, A ~~~(9(,9I2)(z, z*)

9f, z, z*;z',z'*
0'/'6'

3. Phase-space distribution

As we have pointed out previously, the phase-space
representation of the wave function is given by Eq. (2.33).
In fact, the behavior of the wave function can also be de-
scribed in terms of the density operator p (except for a
phase factor):

X9(,(z', z'*;z,z*)dp(z', z'*) (2.38) p=~e&&e~, ~e) cl}, . (2.42)

where PI(z, z*;z',z'*) is an analytical continuation of
m(z, z*) to I a/a) X( V/&):

sI(z, z*;z',z'*)=
& A, ni A ~A, n' } . (2.39)

This means ' ' that there exists a one-to-one correspon-
dence between operator A and its phase-space represen-
tation K(z,z').

An important property of the phase-space representa-
tion of the operator is its algebraic structure, which is the
necessary condition to obtain the classical limit of a
quantum system and study explicitly the dynamical pro-
cess from quantum to classical mechanics. We shall now
discuss it.

Z. Algebraic structure on 9' on 9'/gf

i'['Z, , X, )
= g C,",Z„

k=1

where

(2.40}

Z, =
& A, n~ T, ~A, n) and T; C $r . (2.41)

Since the QPS possesses a natural symplectic structure,
one can always define the Poisson bracket of the phase-
space representation of physical operators on this space.
However, one must ascertain whether the Poisson bracket
of the phase space represen-tation of two arbitrary physical
operators satisftes the same algebraic structure of these
operators. The answer is as follows: if the operator A is
the generator T, of 9, then the commutation relations of
Eq. (I-4) in the phase-space representation will (for expli-
cit examples see Sec. V) preserve the same algebraic
structure under Poisson bracket:

Thus the phase-space representation of the wave function
can be discussed in the same way as operators:

p(z)= & A, n~p~A, Q)

=(&A, nlrb&I'= I f(z)I'/K(z z') . (2.43)

(AT; )~9 (p(, ),qT; Fy,

p(p, q), +}Ci), .

(2.44)

(2.45)

This gives rise in general to a one-to-one correspondence
between classical and quantum frameworks for various
0/& as Dirac required. Since the canonical coordi-
nates (p, q) [see Eqs. (2.21) and (2.24)] have been sys-
tematically constructed, the above results also generalize
the weak correspondence principle in field theory to a
general quantum system.

If the system is in the state ~%}, then Eq. (2.43) is the
phase-space distribution of the system. In fact, p(z) of
Eq. (2.43) is a generalization of the so-called Husimi rep-
resentation (extending the Husimi representation to a
general quantum system with a nontrivia1 phase space

Let us now summarize the above discussion for this
subsection. It shows that the normalized constant of Eq.
(2.30) can provide an explicit form of the Bergmann ker-
nel of the phase space 0/& [from which the symplectic
structure of 9/& can directly be calculated by Eq. (2.15)]
and the phase-space representation of a quantum system
discussed above has a complete classical framework:
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However, although the above one-to-one correspon-
dence is generic for various quantum systems, it pertains
only to kinematics. Whether a similar explicit correspon-
dence can exist dynamically and can be found is still a
question which will be discussed next.

III. CLASSICAL ANALOGY
OF QUANTUM DYNAMICS

A. Correspondence principle and classical analogy

It is desirable that a quantum theory should contain a
prescription for going over to the classical limit and for
relating the quantum observables to those of the corre-
sponding classical systems. However, for a realistic
quantum system it is not always possible to find a one-to-
one correspondence between (}A and L (R ), where
L (R ) is the square-integrable Hilbert space on R and
N is the number of the classical degrees of freedom. This
is because for such a system, (i) its quantum states are
usually restricted by symmetries (or statistics) and only a
part of the physical space I) A covers a subspace of
L (IR }, and (ii) there exist in general additional internal
quantum degrees of freedom (spin and so on) such that
the remaining parts of I}A lie outside of L (R ), as shown
schematically in Fig. 2. These are the consequences of
the so-called superselection rules of quantum
mechanics. ' ' ' This fact indicates that the usual
manner of studying the dynamical correspondence from
classical to quantum is in practice not straightforward.

In this paper, we have constructed the classical-like
framework (i.e., quantum phase space) of a given quan-
tum system (specified by 0 and lj~). In this framework,
the 2M~-dimensional quantum phase space 0/& does
possess all the necessary structures of a classical mechan-
ics and therefore it is always possible to establish a classi-
cal dynamical theory in 0/A. In other words, one can
describe a dynamical system whose motion is confined on

FIG. 2. An illustration of the difference between classical
and quantum systems. I. (R~ ) (the circle part) is the square-
integrable Hilbert space on IR, and l) {the elliptic part)
represents a physical state space of a realistic dynamical system.
For example, consider two electrons in a one-dimensional po-
tential. The physical Hilbert space consists of the spatially sym-
metric and antisyrnmetric parts (shaded part inside the circle) of
I. (IR ) and spin antisymmetric and symmetric parts (shaded
part outside the circle).

0/& and is determined by the following equations of
motion:

dS(q, p) =
I 91{q, p},O(q, p) I; q,p E 9/% .

t
(3.1)

dpi t)o(q, p)
dt Bp;

(3.2)

In Eqs. (3.1) and (3.2), @(q,p) is the Hamiltonian of the
system and S(q,p) is a physical observable. The
correspondence principle implied here is to find suitable
conditions such that the quantum-dynamical Heisenberg
equation can be written as Eq. (3.2). Based on the phase-
space representation described in the preceding section
[Eq. (2.44)], such a process is manifestly clear: if under
suitable conditions the phase-space representation of the
commutator of any two operators is equal to the Poisson
bracket of the phase-space representation of these two
operators, i.e.,

(3.3)

then the phase-space representation of the Heisenberg
equation

diH = .~[~0»H]dt i%
(3.4)

can directly be given by Eq. (3.1), and is therefore
equivalent to Eq. (3.2). In Eqs. (3.3) and (3.4), AH is the
Heisenberg operator, i.e.,

UgU
—

1 U iHl jA0 (3.5)

while A is time independent (in the Schrodinger picture).
Correspondingly, the coherent state in the left-hand side
of Eq. (3.3) is time independent. However, the observ-
ables in the right-hand side of Eq. (3.3) are the expecta-
tion values of the Schrodinger operators in the time-
dependent coherent state (by regarding the coherent state
parameters as time dependent; detailed discussions will

be given later). Then, the classical theory is available in
the above formulation. This formulation provides a
quantum-classical correspondence. Based on the QPS
which we have constructed, we shall refer to the phase-
space representation [i.e., Eq. (2.44)] with dynamical
equations of motion [Eq. (3.2)] as a classical analogy or
semiquantal dynamics of the quantum system. Here QPS
maintains most of the important quantum properties,
such as internal degrees of freedom, Pauli princip/e, sta
tistical properties of microscopic particles, and dynamical

symmetry. Thus, although the equation of motion is for-
mally "classical, " the phase-space representation is based
on the quantum framework of 0/%.

The classical analogy of the quantum system discussed
here in fact gives rise to the following three types of solu-
tions.

Equivalently, Eq. (3.1) can be replaced by the Hamilton
equations

t)g(q, p)
dt Bp,-
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1. The exact quantum solutions

According to Eq. (2.40), no additional requirement is
needed for the generators of 9 to satisfy Eq. (3.3). Hence,
when the Hamiltonian is a linear function of T;, Eq. (3.4)
can directly be reduced to Eq. (3.1). We can show this by
using Eq. (3.5) and taking the expectation value of Eq.
(3.4) in the time-independent coherent state which will
arrive at

U(t" t')—=exp H(t" t'—)
1

iA
(3.8)

then its phase-space representation is

11(p"q";p'q', t" t '—
)

0/& as follows: Since the formal solution of Eq. (3.4) is

the time evolution operator

(
d~H

Q
d(AQ'(t)i A ~AQ'(t))

dt dt

AQ" exp H t"—t' AA'
iA

(3.9)

d 5(q, p)
dt

= .
' (AQI[~„,H„]IA»

iA

Using the overcomplete relation [Eq. (2.32)], we can for-
mally express Eq. (3.9) in terms of a path integral:

S(p "q";p'q', t" t')—

= [K(q,p), o(q,p) ), q, p E Q/& . (3.6)
= J Zp(p, q)exp —S[p(t),q(t)]

p'q'
(3.10)

This is just Eq. (3.1). In deriving Eq. (3.6), we have made
use of Eq. (2.40). The observables K{q,p) and O(q, p) here
are the expectation values of the Schrodinger operators A

and 0 in the time-dependent coherent states:

where

pl ( I ( fit
di [p(t»q(t)l (3.11)

U '~AQ)=U 'Q 0-) =Q'(t)h(t)~0) =~AQ'(t))e'+

with

h(t)~0) = ~0)e'"'"'"'

(3.7a)

(3.7b)

is the functional measure of the path integral and

S[p(t),q(t}]=J dt AQ ih AQ——O(p(t), q(t))
Bt

(3.12)

Bol(q,p)

ap

Bo&(q,p)

Bq;

(3.2')
dp;

dt

where Ot(q, p) denotes the phase-space representation of
a linear Hamiltonian function of T, . In this case the solu-
tion of classical analogy [Eq. (3.2')] is an exact quantum
solution. Furthermore, the quantum wave packet is just
the coherent state of Eq. (3.7) and will not spread in time
in QPS. This is a generalization of Schrodinger s quan-
tum states of a harmonic oscillator's classical motion
with minimum uncertainty to other quantum sys-
tems. ' ' ' Clearly, in such cases, the classical and
quantum motions are in one-to-one correspondence. It is
worth mentioning that in this case the system is always
integrable.

2. The mean geld soluti-ons

Since O(q, p) is the phase-space representation of the
Hamiltonian operator H, then whether Eq. (3.3) holds
true or not, the solutions of Eq. (3.2) will indeed provide a
general result of the quantum mean-field dynamics of Eq.
(3.4). This can be shown by the stationary phase approxi-
mation of the path integral ' defined in the phase space

The realization of Eq. (3.7) is based on the fact that the
Hamiltonian is a linear function of T;. In this condition,
U of Eq. (3.5) is a group element of 9 and Eq. (3.7) can
then be derived directly and exactly by using the Baker-
Campbell-Hausdorff (BCH) formula. ' Equation (3.6) is
the equivalent of Hamilton's equation:

dq;

dt

is the system's action functional. Again, O(p(t), q(t)) in

Eq. (3.12) is the expectation value of the Schrodinger
operators H evaluated for the time-dependent coherent
states. An application of the variation principle to Eq.
(3.12) (i.e., the stationary phase approximation of the
path integral):

56[p(t},q(t)] =0

will give the Hamilton equation of Eq. (3.2)

B@(q,p)
dt Bp;

dp~ Bo(q,p)
dt Bq,

where

@(p(t),q(t)) = ( AQ~H~ AQ)

(3.13)

(3.2')

(3.14)

is the well-known mean-field approximation or mean-field
dynamics. Thus the commonly used mean-field dynamics
is merely a special case of the classical analogy.

It should be mentioned that in the local canonical
coordinates expression of the path integral on 0/&, the
requirement of the canonical transformation invariant of
the integral measure may add a surface term to the action
in Eq. (3.10). This term will not have any effect in the
mean-field dynamical equation of Eq. {3.2) since it van-
ishes under the variation of the action of Eq. (3.13) and
therefore will not be discussed here. However, it must be
considered carefully when one is concerned with the full
quantum-mechanical problem.
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3. The "classical" limits

If the following factorization condition of the phase-
space representation is found:

(AQi ABiAQ) =5(p, q)8(p, q) (3.1S)

dqi

dt

dPl

dt

ao, (q,p)

Bp;

BSj,(q,p )

Bq;

(3.2'")

In fact, additional requirements must be imposed in order
for Eq. (3.16) to hold. For example, one such require-
ment is for A~O. But this is not in the usual limiting
procedure quoted in textbooks, but in the sense that
y~ ao, where g is a parameter related to the structure of
I) [see Eq. (2.21)]. What one normally means by iri~0 is
that there is some quantity in the system which must
have the same dimension as A and should be large in com-
parison to A. However, there does not exist a general cri-
terion to search for such a quantity. Here we have ex-
plicitly provided such a quantity, i.e., y, and it emerges
naturally from the system's geometry. Such a quantity
was discussed by YafFe but without explicitly construct-
ing it. In a forthcoming paper, we shall provide a sys-
tematic procedure to calculate y and show that when

the quantum correlations must explicitly ap-
proach zero for which Eq. (3.16) is satisfied. In such a
case, the quantum system truly approaches a classical
limit. However, for some systems, y cannot approach
infinity and therefore has no classical limit.

The time evolution of the phase-space distribution p(z)
[Eq. (2.43)] is

[@(z,z')p(z', z) —p(z, z')Q(z', z)]dt i A s'ye

Xdp(z', z") . (3.17a)

This is the integral form of the quantum Liouville equa-
tion. In the classical limit, if it exists, the dynamical
equation of r(z) is reduced to

dp(p q) =[O.(p q} p(p q)) . (3.17b)

This is the Liouville equation in a classical theory.
Now, let us analyze the classical analogy defined by

Eqs. (3.2') —(3.2'"}. The classical analogy consisted of
three cases, i.e., the exact, the mean-field, and the "classi-
cal" limit cases. They are defined by Eqs. (3.2'), (3.2"),
and (3.2"'), respectively. Indeed, when the Hamiltonian
is a linear function of T;, we have

and is applied to the Hamiltonian function

O(p(r), q(r))~o, (P(r), q(r)) =H(XK(P(r), q(t))), (3.16)

then the mean-field dynamics is reduced to what we call
the "classical" limit:

therefore all three cases are equivalent in this particular
situation. Thus the classical analogy is reduced to only
Eqs. (3.2") and (3.2"') and the latter is obviously only an
approximation of the former. The difference between
Eqs. (3.2") and (3.2'") is the quantum correlation b,@:

bO=g —O, . (3.19)

B. Integrability and dynamical symmetry

In I, quantum integrability is defined as follows: a
quantum system with M~ independent degrees of free-
dom is integrable if and only if one can simultaneously
measure accurately the M~ NFD observables in the ener-

gy representation. In other words, there exist Mz —1 in-

dependent NFD observables: [C, , i =1, . . . , M~ —1),
which commute with each other and H:

[C, , C ]=0 and [C, ,H]=0 . (3.20)

By Eqs. (3.16) and (2.40), it is easy to show that in the
"classical" limit of classical analogy we have

For any quantum system, if the quantum fluctuation is
fixed, its dynamical evolution should follow the trajec-
tories determined by Eq. (3.2") and not Eq. (3.2'"). For
integrable systems, the global (topological) structures of
the trajectories determined by O and g, , are not very
different. However, for nonintegrable systems, the global
structures of the trajectories determined by O and g, can
be, and generally are, completely different. ' The quan-
tum dynamics, however, is definitely closer to O than g, .
Primary attention thus far is focused on obtaining the
solutions for @, and its corresponding requantization
problem in the study of both classical limit and "quan-
tum chaos. " Since 6O is now an explicit function of
dynamical variables and is consistently included in the
semiquantal dynamical equations, we can use Eqs. (3.2")
and (3.2"'} to explicitly examine the difference between
the classical and the semiquantal dynamics and to investi-
gate how quantum correlation can alter the classical
dynamical structure. This will provide a direct and
dynamical quantum manifestation of chaos in the semi-
quantal sense. In Sec. V we will give an explicit example
to illustrate this very important point which has, in fact,
not been noticed in the study of "quantum chaos. "

It is also worth pointing out that the above "classical"
limit is different from the well-known Ehrenfest theorem
which is derived by imposing an ad hoc factorization an-
satz. In Ehrenfest's theorem, there is no systematic
way to take the Pi~0 limit. On the other hand, a
coherent state with designated fixed state [Eq. (2.9)] is it-
self a wave function with certain built-in minimum uncer-
tainty and therefore is a state, best describing a "classi-
cal" particle. The factorization introduced via the
coherent state will naturally reduce the mean-field ap-
proximation to the classical equations.

We are now in a position to show rigorously the con-
sistency of quantum integrability in I with the classical
theory and the relation between dynamical symmetry and
integrability in classical mechanics.

@i(p(&),q(&)) =g(p(&), q(&)) =O, (p(&),q(r)), (3.18) [(K, , K, j =0 and [5,, @)=0 . (3.21)
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Together with Eq. (3.2"'), Eq. (3.21) also formally defines
the classical integrability, and it is in this sense that the
definition of quantum integrability is completely con-
sistent with the classical theory.

We will now discuss the relation between the integra-
bility and dynamical symmetry. This is straightforward
within the context of the classical analogy. In the classi-
cal analogy, the group structure of the system is defined

by Poisson brackets. Since the algebraic structure of T;
in the phase-space representation is preserved [see Eq.
(2.40)], the concept of the dynamical symmetry in I is
also naturally preserved in the classical analogy. There-
fore the theorem on integrability and dynamical syrnme-

try is also operational for the classical theory. To be
more explicit, we will first show that if the Hamiltonian
has the symmetry R, then its phase-space representation
also has the same symmetry. This is because if

RHR ' =H (3.22)

s.e.,

O(p»e) =O(p' q') (3.23b)

where

R 'lAQ& =R 'nlo& =n'h lo& = lAn'&e'"'" (3.24)

Furthermore, although the algebraic structure of two
functions of generators in the phase-space representation
may not be preserved, the phase-space representation of
an invariant operator C(T; ) can usually be expressed in
the following form:

& Anl c(T; )I An & =s(x)c( & Anl &; I
An & )+c(x) (3.25)

where s(X) and c(X) are functions of X, the physical pa-
rameter. In the "classical" limit, s(X) approaches unity
and c(X) goes to zero. Explicit examples of Eq. (3.25)
have been given for SU(2), ' SU(6), SO(8), and Sp(6)
cases. Equations (2.40) and (3.25) show that if C is an
invariant operator, then its phase-space representation is
also an invariant observable [obeying Eq. (3.21)]. This
means that the symmetry and dynamical symmetry of the

system are also preserved in the classical analogy. This
also indicates that the integrability of the system is
preserved even in the general classical analogy (not only
the "classical" limit). Therefore the relationship between
integrability and dynamical symmetry in classical analo-

gy is the same as in the quantum case.

then, in the phase-space representation, we have

&AnlHlAn&=&AnlRaR-~lAn&=&An lalAn &,

(3.23a)

classical analogy is chaotic. The first definition can be
built firmly on the random matrix theory and it "pre-
dicts" that the Gaussian orthogonal ensemble (GOE) dis-
tribution is a possible generic property of the quantum
counterpart of a classical chaotic system. However,
whether such a definition is unique and whether it is con-
sistent with the classical concept remain open. Further-
more, there is no transparent link of the GOE to any
dynamical properties of the Harniltonian system. The
second working definition is to seek the semiclassical
manifestation of classical chaos in a quantum system,
where "semiclassical" means A'~0 but not equal to zero.
It is well known that the physical measurement of a
quantum system is the properties of the observable opera-
tors in wave functions. Therefore this working definition
demands that one should first study the time evolutionary
semiclassical behaviors of expectation values of operators
in the phase space, followed by the properties of the wave
functions. In the preceding two sections, a generic
phase-space framework and phase-space representation
of the operators and the wave functions have been estab-
lished for an arbitrary quantum system from which a
classical analogy (semiclassically) is derived. In this sec-
tion a general algorithm for seeking manifestation of
quantum chaos via the classical analogy can be provided
even when its classical version is absent. The algorithm
is as follows.

(1) Determine the algebraic structure of the system
from its dynamical properties:

p: T„[T;,T~]= g CJTk, i=1, . . . , n
k=1

The Hilbert space of the system is represented by one of
the irrep carrier spaces I)A of p:

f(T, )lq &el)„, el' &ci), .

(2) Ascertain the integrability of the system by locating
the dynamical syrnrnetry of the Hamiltonian which pro-
vides a stringent test as to whether the Harniltonian can
be expressed as a function of the Casimir operators of a
particular subgroup chain Ã of Q.

(3) Determine the number of quantum degrees of free-
dorn MA from the NFD operators of CSCO S. For any
group chain 9 of 9 with a specific I)„, this number is

unique:

M~=dimension of S, S: [Q; GS, Q. ly &+el@

where c is a constant.
(4) Construct the 2M„-dimensional QPS 0/%:

MA

9/&Bn=exp g (q;X; —H. c. )

IV. A GENERAL ALGORITHM
FOR SEEKING "QUANTUM CHAOS" where

Thus far, there does not exist a generally accepted
definition of "quantum chaos. " However, two working
definitions are often used: One is the so-called level-

spacing distribution ' and the other is the study of the
semiclassical dynamics of the quantum system whose

is an elementary excitation operator. In practice, instead
of seeking X;, it is simpler to find & for the fixed state
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(5) Calculate the phase-space representation of Hamil-
tonian operator H, i.e., evaluate the expectation value of
H in the coherent states:

O(q, p) =
& An aH~An &

where

M~

~A, Q&=exp+ (i);X; —H. c. )~0& .

should be reduced to the coherent states [Eq. (2.29)].
Furthermore, the equation of motion for step (7), i.e., Eq.
(2.46), can provide an understanding of the dynamical
process for the classical reduction of wave functions and
the patterns of classical trajectories in wave function. To
focus the main motivation of this paper, the dynamics of
step (7) will be discussed in detail in the next paper.

V. EXAMPLES

The generalized coordinates and momenta (q;,p, ) are re-
lated to z; or ri; [cf. Eq. (2.19)].

(6) Solve Hamilton's equations [Eq. (3.2")]:

dq;

dt
a@(q,p)

dp, ao(q p)
dt aq;

(7) Explore the phase-space distribution of the wave
function [Eq. (2.43)]:

p(q, p) =
I & AIII + &

I'= If (q,p) I'/K

where ~%& is the solution of the Schrodinger equation
and K is the Bergmann kernel of 0/& [Eq. (2.30)].

Remarks (i) S.teps (1)—(5) do not involve any approxi-
mation or assumptions„and therefore the structure of the
quantum theory is completely preserved. Thus a connec-
tion of the fundamental framework between quantum and
classical mechanics is made. (ii) Step (6) provides a gen-
eric classical analogy of a quantum system. If no replace-
ment of &(qp) = & ABASH(T, )~AQ & by H(&AQ~T, ~AQ&)
is made, in other words, keeping the first-order quantum
correlations in the equation of motion, then the above
Hamilton's equations of the classical analogy give a semi-
quantal solution in which many important quantum
properties (e.g. , internal degrees of freedom, Pauli princi-
ple, statistical properties of microscopic particles, sym-
metry, dynamical symmetry, and minimum uncertainty
relation) are strictly preserved. In fact, these solutions
merely correspond to the usual mean-field dynamics. For
most complicated quantum systems in solid-state physics,
atomic and molecular physics, and nuclear physics, the
quantum dynamics of such systems are only well investi-
gated at this level. Only under the "classical" limit A~O
in the sense y~ ~, are the semiquantal solutions reduced
to the classical cases. Thus, comparing with the semi-
quantal and classical solutions in step (6), one can dynam-
ically and quantitatively carry out the effect of the quan-
tum correlations to the classical trajectories, and there-
fore provide a way to test the manifestation of "quantum
chaos" in the sense of the second working definition. (iii)
Step (7) provides a generic form of one of the three [Q
(Husimi), P, and Wigner] phase-space distributions of
wave function in coherent state (phase) space. ' This
phase-space distribution has widely been used to reveal
the classical invariant structure in wave functions and
has become the hottest topic in the study of "quantum
chaos. " The classical analogy presented in this paper
shows that under "classical" limit the wave function

To illustrate the general procedure and the conclusions
we have reached in the preceding sections, let us consider
several fundamental examples in quantum physics. It
should be emphasized that these examples, which are by
no means exhaustive, will serve only to illustrate the
theoretical underpinnings of the study we have intro-
duced here.

A. Harmonic oscillator system (H4)

It was shown in I that as in the classical case the quan-
tum harmonic oscillator which has a dynamical group H4
is a one-degree-of-freedom system. Here we shall study
its phase-space structure, phase-space distribution, and
classical analogy.

(I) QPS structure. Since the dynamical group is H4
with algebra h4: I a, a, a a,I I and the corresponding
Hilbert space is the Fock space V: [ ~n &, n =1,2, . . . I,
the QPS can easily be constructed. By Eq. (I-ll), the
fixed state is just the ground state ~0 &. Also, according to
Eq. (2.9), the elementary excitation is a . This result is
consistent with the definition of the number of QDDF. '

Then the QPS is constructed from the unitary exponen-
tial inapping of the subspacefi: I a, a I of h„:

Q(z) = exp(za —z*a ) C H4/U(1)C3I U(1) (5.1)

dzdzds=dzdz' (i.e. , g J =5,, ) and dp(z)= (5.2)

It is obvious that the space H~/V(1)II U(1) is noncompact
because of the infiniteness of V . This agrees with our re-
mark in I. Furthermore, the existence of symplectic
structure on complex plane is well known and the Pois-
son bracket of two functions g, , Qz defined on C' is

a&,ag, a~,ag,
a a * a.*a.

When we introduce the usual canonical position and
momentum coordinates

1 . , 1
z = (q+ip ) and z' = (q —ip )

&zx &zx
(5.4)

into Eq. (5.3), it will take on the standard form of Eq.
(2.25).

Q) Phase space distribution The p-hase-spa. ce represen-

where U(1)C3IU(1) (with generators a a and I) is the maxi-
mal stability subgroup of ~0&. Since H4/U(1)U(1) is
isomorphic to the one-dimensional complex plane C', the
structure of the QPS is rather trivial and the metric and
measure are, respectively,
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E(z,z")=exp(zz*) . (5.6)

By using Eqs. (2.15), it can easily be verified that Eq. (5.6)
provides the mathematical structure of H~/U(1)U(1),
i.e., Eq. (5.2). Based on the general theory given in Sec.
II, the phase-space representation of the wave function
IV&E V is

(5.7)

tation of the quantum harmonic oscillator can be realized
by the well-known Glauber coherent states Iz &.

' The
set [ Iz & ] is isornorphic to H4/U(1)U(1) and can be con-
structed by Q(z) acting on IO&:

Iz & =II(Z)IO& =exp(za —z*a )I0 &

= e
-"'"exp(za') lo &—:e

(5.5)

The normalization constant of IIz & is the Bergmann ker-
nel K(z,z"):

where

Sj(q,p)=(zIHIz & . (5.15)

For instance, consider the forced harmonic oscillator sys-
tem of Eq. (I-14). The classical analogy of the Hamiltoni-
an is

O(q, p) =—(p +q')+ &2 Re[)(,(t)q] —v'21m[A(t)p]
2

(5.16)

=z(t)+2' . (5.17)

If the initial state is IO& or a coherent state Iz(0) &, then
we can show that the exact quantum solution of Eq. (I-
14) is

(5.18)

and the solution of Eq. (5.14) with O(q, p) given by Eq.
(5.16) is

q(t)+ip(t)= q(0)+ip(0) —i&2f A'(r)e. ' 'dr e
0

or

p(z) = If (z) I'){'(z,z') (5.8)

where f (z) EL (C). On the other hand, with the aid of
Wick's theorem, ' it is always possible to express an ob-
servable operator A in terms of the normal product form:

3 = A (a,a) = g A„"((a")'(a)' . (5.9)
k, l

Then the phase-space representation of A is just

m(z, z*)= (ZI AIz &
= y A„",(z") (z)' .

k, l

(5.10)

When 3 is restricted to the generator of H4, we have

a'=(zIa Iz & =z",a= &zIaIz & =z,
a'a= &zIa'aIz &

= IzI', l= &zIIIz & =1 .
(5.11)

[q p]=ih Iq p I
. (5.13)

(3) Classical analogy Accordin. g to the general discus-
sion of Sec. III, the classical analogy of the system is
governed by the Hamilton equations:

Hence the corresponding algebraic structure of H4 in the
phase-space represented is given by the Poisson brackets:

i@[a,a ] =1, ih'Ia a, a] = —a, ih'[a a, a j =a

This shows that the algebraic structure of the H4 genera-
tors is preserved when the commutators of operators are
replaced by Poisson brackets in the phase-space represen-
tation. Using Eq. (5.4), we immediately obtained the
Dirac quantization condition

where z(t) is given by Eq. (5.17). The phase factor tp(t)
in Eq. (5.18) is a quantum effect determined by z (t):

y(t)= ~a)t —f—Re[A(r)z(r)]dr . (5.19)

This shows that the classical analogy does indeed provide
an exact quantum solution if the Hamiltonian is a linear
function of the generators of Q.

B. Spin systems [SU(2)]

In this subsection, we will construct the phase-space
structure of the spin system and its phase-space distribu-
tion and classical analogy.

(l) QPS structure Since th.e dynamical group of spin
system is SU(2) and its Hilbert space is V '+':

I jm & I,
where m = —j, —j+1, . . . , j, and spin j is integer or
half-integer, the fixed state of Eq. (I-15) is

Ij—j & which
is the lowest weight state of V +'. Thus the elementary
excitation operator of the spin system is J+. The explicit
form of

I jm & is
—1/2

2j
Ijm &=

(j+m)! 1 +m (5.20)

(gJ+ rl*J )~exp(gJ+ —rt*J )—(5.21)

It is obvious that any state

, f jIm &E V '+' can be generated by a
polynomial of J+ acting on Ij —j &. This again shows
that the number of QDDF equals the number of elemen-
tary excitation operators. The QPS can then be obtained
by mapping the subspace/i: [J+,J ] to the coset space
SU(2)/U(1):

dq BO(q,p)
dt Bp

dp dC(q p)
dt Bq

(5.14)

where g = (0/2 )e '~, 0 ~ 0 ~ m, 0 q&
~ 2m, i.e., the coset

space SU(2)/U(1) (the QPS) is isomorphic to a two-
dimensional sphere S . The differential structure on 5
can be evaluated from the coherent states of SU(2)/U(1)
via Eqs. (2.30) and (2.17). The coherent states of
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SU(2)/U(1) in V J+' are well known:

Ij Q& —=exp(r)J+ —il'J )Ij —j &

=(1+zz') Jexp(zJ+ )Ij—j & =(1+zz*) il
I jz &

~+=&jnlJ+IJn&

(q —ip)(4jiri —p —
q )'

1+zz '
2W

~ =&jnlJ ljn&

and

(5.22)
2jz 1

(q + ip)(4jiri p— q—)'
1+zz* 24

(5.32)

8
z =tan —e

2
(5.23) co= & jnl Jo I jn &

=j.zz' —1

1+zz 2iri
(p +q ) —jA' .

K (z,z" ) = (1+zz '
) i . (5.24)

By Eq. (2.30), the generalized Bergmann kernel on S is The corresponding algebraic structure of SU(2) in the
phase-space representation is determined by Poisson
brackets:

Thus its metric g; and measure dp are ifiIQ, ~+I = —2/0, iTi'iIgo, g~j =+~+ . (5.33)

g; =5; 2) a d d = (2j + 1) dzdz',
(5.25)(1+zz') ir (1+zz') Since g~ =

&j Ql (J +iJy )/A'I jn & =(g +if' )/A,
$0=Q, /irt, we have

respectively. The Poisson bracket can be expressed as
follows: +1 )

=ejk5k' (5.34)

(1+zz') ~6i~Sz ~ai~~z

2jg a a'
By introducing the canonical coordinates

1 (q+ip)= z =sin( 8/2) e
V'4jir &I+zz'

we have

(5.26)

(5.27)

5(qp)=&jnIA(J;)Ijn& . (5.35a)

These are just the well-known Poisson bracket of angular
momentum. The dynamical properties of the system in
the phase-space representation are formally represented
by Eq. (2.46).

(3) Classical analogy The. classical analogy of an ob-
servable A (J; ) is given by the following equation:

(Bi Gi)=
aqap apaq

(5.28)

where p +q & 4jA. This shows that the phase space of a
spin system is compact.

(2) Phase space repres-entation. Using the overcomplete
relation of the coherent states

IjQ & (or IIjz & ):

I Ijn&dp&jnl=I (5.29a)

or

J,ljlz &di H&jzll=i (5.29b)

the phase-space representation of the spin system is easily
realized. Explicitly, the phase-space representation of the
wave function

I
4 & E V + ' is

oo 2Jf (z) =
& Iil

IjQ &
= g f„

n=0
j+m (5.30)

m(z, z') =
&jn I A (J; ) Ijn & . (5.31)

When A is J+,J or Jo, the results are

where f(z)EL (S ). The phase-space representation of
an operator A = A (J, ) is

Comparing Eq. (5.27) and Eq. (2.21), we conclude that
y=2j. Thus the classical limit is j~ 00 and the classical
Hamiltonian function is

5,(q,p)= A (&jnlJ, I
jn&)= A (g+,~,~0) . (5.35b)

as A~O, j~ao . (5.36)

For example, let us consider the two-level Lipkin mod-
1.53

H= J E+0(J+J +J J+ )+—(J++J ) . (5 37)
2 + + 2

This Hamiltonian does not have dynamical symmetry.
However, as we have pointed out in I, the energy conser-
vation of the system restores the dynamical symmetry of
the one-degree-of-freedom system. Thus this system is
still integrable as in the classical theory. The phase-space
representation of the Hamiltonian is

If one keeps jiri finite, then j~~ implies A'~0. This is
the common understanding of the classical limit. Its time
evolution is determined by dynamical equation of Eq.
(3.2"'). The solutions may be obtained by solving
Hamilton's equation with the Hamiltonian

O(q, p)&j QIHljn&

=H(3+(q, p), / (q,p), /0(q, p))

sx + 1 — . ( Wx —Vy)(2)fi x)+( IVY& ej)A- —
O(q p)= 2J

ex +( Wx —Vy)(2jiTi —x)—ejiTi (Pi~0,j~~ )
(5.38)
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where

x =
—,'(p'+q'), y =

—,'(p' —q') . (5.39)

So=—g( 2 2 i i )
]

(5.42)

It is manifestly clear from Eq. (5.38) that the diff'erence
between the "classical" limit and the mean-field dynamics
is the quantum correlations. Usually, the solutions of the
"classical" limit and mean-field dynamics qualitatively
behave in a similar manner. However, quite often the
"classical" limit is not available. For instance, if j =

—,',
the "classical" limit clearly breaks down and yet the
mean-field theory still provides the same qualitative be-
havior as the exact quantum solutions. This can be
verified from Eq. (5.38). In the exact quantuin solution,
when j=

—,', the contribution of the IV term is IVvfi l2
while the contribution from the V term is zero. Likewise,
the same results are obtained by substituting j =

—,
' into

the mean-field equation of Eq. (5.38). Solving the mean-
field dynamics and requantizing it, the exact quantum
solution can be recovered in this case. This indicates that
the mean-field dynamics is at least qualitatively close to
the quantal solution.

S+ —Q a2 ai S =(S+ )

I}=I~n)~jm) j . (5.43)

No dynamical symmetry exists for the entire Hamiltoni-
an of Eq. (5.40). However, the interacting term of Eq.
(5.40) can be separated into two parts:

fi(b +b—)(S++S )= A(bS—+b S )

This is also a schematic nuclear model if one integrates
away the field part (which, of course, is a truly difficult
task in practice) and keeps the matter interaction up to
two-body interaction terms. In such a scheme, the Ham-
iltonian is reduced to the Lipkin model of Eq. (5.37).

The dynamical group of Eq. (5.40) is SU(2)I8IH~ with
the Hilbert space I) = V 8 V ~+':

C. Two-level atomic system interacting
with an external quantum Aeld

The above two examples are standard textbook exam-
ples, based on which the basic assumptions and con-
clusions of our theory are tested. However, both systems,
having only one degree of freedom, are integrable if the
system is autonomous. In order to apply the theory to
the nonintegrable case, we now consider some examples.
One such example, the two spin coupled system, has al-
ready been studied in a previous paper' and the result is
consistent with our present formulation. We will not re-
peat the discussion here. Another example is the spin-
harmonic coupled system which simulates, for instance,
the two-level atomic system interacting with an external
quantum field. The Hamiltonian of this system is

H=coofiSO+Acob b+ A(b +b—)(S++S )

=Ho+H) (5.40)

H = g eqaq, aq, + g aii, (bi, bi, +—,')
gss

+ g a(k)aq „,aq, (bi, +b „),
k;q;s

(5.41)

where e is the one-body energy of electrons with wave
nuinber q, spin s (+ or —) with the corresponding
creation (annihilation) operator a, (a, ). The coupling
constant a(k) is the strength of the electron-field interac-
tion. When we restrict ourselves to the problem of two
electronic states (q = 1 and 2), the Hamiltonian can be re-
duced to the form of Eq. (5.40), in which

where S; are the spin operators and b, b the creation and
annihilation operators of the external field. This system
can be regarded as a simplified model of the matter-field
interaction (e.g. , electron-radiation field interacting or
electron-phonon interacting) in which the general form of
Hamiltonian is

+ R(b S+—+bS )

=H»+H)~ . (5.44)

Both parts (H» and H, 2) have dynamical symmetry
SU(1,1)SH~0 DU(1), where

U'(1): So+b b,
U(1): S bb . —

(5.45a)

(5.45b)

Normally, by neglecting the H&&, that is, making the ro-
tational wave approximation (RWA), the remaining
Harniltonian H'=HO+K» is integrable. Such a Hamil-
tonian is widely used in quantum optics. However, the
RWA is valid only for very small values of a. By increas-
ing the value of a, our purpose here is to study the effect
of H, 2 on mean-field dynamics.

Since the quantum phase space of this system is C' S,
the classical analogy is given by a two-degree-of-freedom
Hamiltonian system with the following Hamiltonian
function:

e(q p) = (p i+q'i)+ —(p2+q2 —22&)

+ —q, q2(4jiii p2
—

q 2 )
—'

2 2
(5.46)

where j =X/2, which is twice the total number of atoms.
From the concept of dynamical symmetry and its break-
ing, the system possesses a dynamical phase transition:
when a =0, the system has dynamical symmetry
SU(1,1)SH~ DU(1)I3 U(1). When a increases, the
dynamical symmetry is broken such that the system be-
comes nonintegrable and eventually chaos will occur.
The numerical calculations are shown in Figs. 3—5.

In Fig. 3, we present the Poincare surfaces of a section
of the mean-field dynamics for the RWA Hamiltonian.
The result shows that the trajectories are periodic, con-
sistent with the prediction of integrability. In Fig. 4, we
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set coo=co, which is the resonance case. It is commonly
assumed that in the resonance case H, 2 can be neglect-
ed. However, the mean-field calculation shows that the
RWA is only valid for very small a. In general, H&2 is
very important since it breaks the integrability of the

RWA system, especially when cx is sufficiently large.
Indeed, in that case, the dynamical structure of the RWA
system is completely broken and the dynamics becomes
globally chaotic. In Fig. 5, we have considered the
nonresonance case: coo@co. In this case the mean-field
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dynamical calculations show that there are essentially no
difterences between the resonance and the nonresonance
cases.

It is also worth noting that for this example, the
mean-field calculations and the classical limit are the
same. This is because the dynamical group is a direct

product of two subgroups and the Hamiltonian is a linear
function of the generators of these two subgroups (but
not those of the total dynamical group). Thus the Hamil-
tonian functions in Eqs. (3.2") and (3.2'") are the same
and the quantum correlation terms vanish. In order to
search for the eft'ect of quantum correlation in classical
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dynamics and to explore the behavior of the intrinsic
quantum properties for chaos, we will consider below a
system with much richer structure.

D. SU(3) model

As we have discussed in I, compared to the SU(2), the
SU(3) case (its generators are denoted by E, , i,"j =0, 1,2
[cf. Eq. (I-20)]) has a richer Hilbert space structure. For
example, unlike the SU(2) case, the QDDF now depends

explicitly on the irrep space. For the fully symmetric ir-

rep, the number of the QDDF is two. Otherwise, it is
three. Therefore the QPS which depends sensitively on
the structure of Hilbert space has different properties. In
this subsection, we will discuss these properties.

(1) QPS structure A.ny irrep of SU(3) can be denoted
by its highest weight A =p,f &

+p2f 2, where f, and f2

are the highest weights of the two fundamental represen-
tations of SU(3): (1,0) and (0, 1). The lowest weight state
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nance, coo=0. 5 and m=0. 6. (a) a=0. 1; (b) a=0.3, (c) a=0.4, and (d) a=1.0, with J=jA'=1. The results do not deviate much from
the resonance case of Fig. 4.
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is ~0& = ~A, —A &. Thus the diagonal generators E,, act-
ing on ~0& must be invariant and all the lowering genera-
tors E; (i (j) acting on ~0& are zero. For the fully sym-
metric irrep, only two raising generators F,o, i =1,2 for
pz=O (or Ez„ i =0, 1 for (M, =0) are the elementary exci-
tation operators:

1=2 if p, =0
E,, ~O&W~ 0& (or 0) for i )j and

j =0 if pz=O .
5.47

g rl;, E, —H. c.~exp g ri, E„—H. c. (5.48)

However, for the nonfully symmetric irrep, all three rais-
ing generators E, (i )j) are the elementary excitation
operators. This shows again that the number of such
operators is identical to the number of QDDF. The QPS
of fully symmetric and nonsymmetric irrep spaces of
SU(3) can be obtained by the exponential mapping of the
subspace// of y: IEO( g E,o E20) (only Iu2=0 is con-

sidered here although the same conclusion is reached for
the p( =0 case) and I E,, i Wj ), respectively:

we have

BQ(B
I~( 82I = X

~6&~62

Bp;Bq;
(5.55)

where p, +q&+pz+q, «2p&.
(2) Phase spa-ce representation I.n the same manner as

the SU(2) case, the phase-space representation of the
SU(3) system is easily realized by using the overcomplete
relation of the coherent states ~AQ & (or ~~Az & ):

AO p AQ =I (S.S6a)

or

jllA &di H(Az (5.56b)

The formal expressions of the phase-space representation
of wave functions and operators are given by Eqs. (2.33)
and (2.36). For simplicity, we only present the phase-
space representation of the generator of SU(3) in its fully
symmetric irrep ((u2=0 case). The results are

where for the fully symmetric irrep j =0. Then the cor-
responding geometrical spaces on the right-hand side of
Eq. (5.48) are the coset spaces SU(3)/U(2) and
SU(3)/U(1)I3WU(1). The differential geometrical structures
of SU(3)/U(2) or SU(3)/U(1)U(l) can simply be comput-
ed from the respective coherent states

~AQ&—=exp g ri; E;( —H. c. ~A, —A&

=E '/ (z,z*}exp g z, E;, ~A, —A&

N~=-,'P( (
—(p(+q(+pz+q2)],

m(1: p I +q(» L22 (p2+'q2 }

@(o=—(q( 'p( )(2p( p ( q ( p2

C~o=-,'(q~ —
(p2 }(2l (

—p( —q( —
p2 —

q2 }'"
L»=-,'(qi+ p()(qz —

~P~ },

The corresponding algebraic structure of SU(3) in the
phase-space representation is determined by Poisson
brackets:

!@„('-k(I
= ((&,k {'-;( &—((@k( } . — (5.58)

=K '/2(z, z')~~Az & . (5.49) (3) Classical analogy. The classical analogy of an ob-
servable A (E) is given by the following equation:

According to Eq. (2.30), the generalized Bergmann ker-
nels on SU(3}/U(2) or SU(3)/U(1)U(l) is K(q, p) = ( AQ

~
A (E)~AQ & (5.59)

I(. (z,z*)=(AZ~~AZ & (5.50)

K(z, z*)=(l+z z) ' (5.51)

where

and the metric g; and measure dp are determined by
Eqs. (2. 17) and (2.20), respectively. For instance, consid-
er the fully symmetric irrep ((L(z=O) case. The explicit
form of the generalized Bergmann kernel is

while its time evolution is determined by Hamilton's
dynamical equations of Eq. (3.2") with O(q, p) as the
Hamiltonian.

In order to use the above results to explicitly illustrate
the relationship between nonintegrability and dynamical
symmetry breaking in its classical analogy, we shall study
the three-level Lipkin model, ' where each level has
JV-fold degeneracy. The model Hamiltonian is taken to
be

and

tang
z, =—z,o=q, o (i =1,2)

q ( qloq 10+ 920920 }

(5.52)

(5.53)

2 2
H= gEE„+~ gV, (E, )+—,

' g W(E, , )
1=0

where

(5.60)

By transforming Eq. (5.52) into the canonical coordinates
(and letting h = 1):

i,j =0, 1,3 . (5.61}

(2 )1/2 q' ' (1+ ~)1/2 (5.54)

Unlike Refs. 56 and 57, we have added here the self-
interaction terms (E(, ) in Eq. (5.60). Thus the system
now has the fo11owing explicit dynamical symmetries.
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When V = W =0, it is SU(3) DSU(2)U(1)
DU(1)U(1). If V= IV))s, , it approaches the dynami-
cal symmetry SU(3)DSO(3)DSO(2). Therefore the sys-
tem can undergo a transition from integrable to nonin-
tegrable and back to integrable by the variation of the pa-
rameters V and O'. Also we have generalized the Lipkin
model to the case ~here the particle number is variable.

In order to find its quantum phase space, let us first as-
sume that the total particle number N ~ JV. Thus we will
find that the quantum phase space of Eq. (5.60) is
U(3)/U(2) for both fermions and bosons. This is because
each level has A'-fold degeneracy and therefore the fixed
states have the same form for fermions and bosons:

N for i =j=0
&(&; )= ——(s, +c, c='

0 otherwise . (5.63)

Now, let us set eo =0 and

(5.64)

where ~0) denotes the bar vacuum. The phase-space rep-
resentation of the generators is given by Eq. (5.57) and
the quantum correlations of the quadratic function of the
generators are

10&= g a('), lO&
k=1

(5.62)
in Eq. (5.60}. Thus in the classical analogy of Eq. (3.2")
the Hamiltonian function is

O(~S»}=
2

(Pi+a'i)+
2 42+eh

+—(1—1/»[(P i+I 2
}'—(9 i+92 }'+(~1—p i )(92 —P2)+49192m ls 2+2N(~1+~2 —~ i

—P2) l

+ (1—I/N)[(pi+pz) +(q, +qz) +(q, +qz)(pi+pz) —2N(q, +q +2p +ipse)+2N ] .W
(5.65)

By taking the limiting case of N ( =y)~ ao, Eq. (5.65) is
reduced to the same result as given in Ref. 57 with
8'=0. This is not a surprising result since the "classical
limit" is obtained for 1V~ Oo.

In order to regard the Lipkin model as a "schematic"
shell model, the shell degeneracy should be finite, then
the "classical limit" cannot exist. Yet, viewed as a "real-
istic" shell model, the classical analogy we present in this
paper can still exhibit the inherent dynamical behavior of
this model. To illustrate this, let us consider the case
where the model has only one fermion and each of the
three levels can accommodate only one particle (Pauli
principle), i.e., N =JV= I. The exact quantum calcula-
tion of the matrix elements for the operators E; are
are

&, ilE,lj jI)=2 . 1 i =i'=j =j'
0 otherwise, (5.66}

i.e., the V term in Eq. (5.60} has zero contribution to the
dynamics and the 8' term is equivalent to a constant. In
this case, Eq. (5.60) is integrable for any values of V and
R. In the classical analogy theory, when X =1, accord-
ing to Eq. (5.65), one immediately obtains the same result
as Eq. (5.66), i.e. , the V term in Eq. (5.60) has zero contri-
bution to the dynamics and the 8'term is equivalent to a
constant. Also, Eq. (5.65} becomes integrable for any V
and 8' values for this case. In fact, one can easily prove
that in this case, the wave packets of Eq. (5.60) will fol-
low the mean-field trajectory of Eq. (5.65). From this dis-
cussion, it appears that not much significance can be at-
tached when one compares the classical phenomena with
quantum calculations.

Now let us consider the system with JV~ X ) 1. In this

case, Eq. (5.60) is nonintegrable and the classical analogy
can describe its chaotic behavior. The numerical calcula-
tions presented in Figs. 6 and 7 are the Poincare sections
with JV'=10. From Eq. (5.65), we see that the quantum
correlation is not negligible and the classica1 limit calcu-
lation is still not valid.

Figure 6 corresponds to the V=8' case, where Eq.
(5.65}can be rewritten as

e, e2
O(p, q)= (p, +q, )+ (pz+q', )

+ —(1—I /N)[(p i +pz —N)2

~0(S e)=pi(» —
S i

—
Vi

—S»' —~2}'" (5.68)

is a constant of motion which can be verified by a direct

+(Pl I i +~2'V2 )

Although Fig. 6 seems to suggest that Eq. (5.67)
represents an integrable system, the precise determina-
tion of its integrability is by no means obvious in classical
mechanics. However, from the dynamical symmetry
point of view, it is very easy to find the existence of the
second constant of motion (besides the energy). Since the
first two terms in Eq. (5.60) are functions of the Cartan
subgroup generators of SU(3), and the interaction term
has SO(3) symmetry, then the operator Lo (the z com-
ponent of the angular momentum) is a constant of motion
in the spherical basis. In other words, the system has
partial dynamical symmetry of SU(3) DSO(2). Therefore,
together with energy conservation, such a two-degree-of-
freedorn system is integrable. Explicitly, the classical
analogy of Lo:
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FIG. 6. (a), (b), (c), and (d) are the Poincare sections of trajec-
tories for the three-level Lipkin model in the p2-q& plane with

pI =0 and qI &0 for V = 8'=0.015, 0.15, 1.5, and 15.0. It is
shown that the system is integrable in this case. The constant of
motion is found by using the concept of dynamical symmetry.
In all the calculations, we have set N =4, and
Eo=g&(q, p) —WN'/2. The phase space has been scaled to two
units in the calculations.

calculation via Poisson bracket of Eq. (5.55). If VA W,
the SO(2) symmetry is also broken and the system be-
comes nonintegrable and can be chaotic in a certain ener-

gy and parameter ( V) regions as shown in Fig. 7 (with
W=O). In Fig. 7, we consider the case of N=1 —10.
The dynamical effect of quantum correlation is exhibited
for the first time. For N =1, the system is integrable as
we have predicted and the mean-field trajectories are
periodic [see Fig. 7(a)]. In this case, the mean-field solu-
tion is the exact quantum solution and the wave packets
evolve in time along the mean-field trajectories. When¹2,the system is nonintegrable [see Figs. 7(b)—7(f)].
From Figs. 7(b)—7(f), we see that by changing N, the to-
pology of the phase portraits is altered. This alteration is
only due to the effect of quantum correlations [see the
quantum correlation factor (1—1/N) in Eq. (5.65)].
Again, these properties cannot be explored in classical
limit calculations. A study of the generic behavior of
quantum correlation affecting chaos will be published
elsewhere.

The above results also indicate that the concepts of
nonintegrability and dynamical symmetry breaking and
their relationship are very useful in predicting the dy-
namics of the quantum system and its classical analogy.
It also provides a useful way to find the constants of
motion in classical mechanics via the concept of dynami-
cal symmetry. The classical analogy provides an explicit
way to explore the dynamical effect of quantum correla-
tion in topological structure of chaotic motion.

Furthermore, when 2A) N &A' the fixed state which
is a key to determining the quantum phase space is not
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FIG. 7. The Poincare sections of trajectories for the three-
level Lipkin model in the p&-q~ plane with pl =0 and qI )0 for
V=0.8 and W=O. The system is chaotic. The mean-field dy-
namics show that when N is small, the quantum correlation is
very strong and suppresses chaos. With increasing N, the quan-
turn correlation is reduced and the topological structure of the
chaotic motion in the mean-field dynamics is altered. (a) N =1;
(b) N=2; (c) N=4; (d) N=5; (e) N=8; and (f) N=10. The
phase space has been scaled to two units in the calculations.

Eq. (5.62) but

k=] t=]
(5.69)

Correspondingly, the elementary excitation operators are
F.„-, i &j and the quantum phase space for such a case is
given by the coset space U(3)/U(1)I3IU(1)131 U(1) which is
a six-dimensional manifold and the QDDF is 3. This is of
course totally different from the N ~A' case. This con-
clusion can also be directly obtained from the irrep space
of U(3). For the 2~V) N & JV case, the irrep space is the
nondegenerate irrep space: (A, N —JV, O). As we have
discussed in example 3 of I, there are three NFD opera-
tors in the CSCO of U(3). Hence the number of the
QDDF is 3. However, in the N ~ Jl/' case, the irrep space
corresponds to the degenerate irrep of U(3): (N, O, O) and
there are only two NDF operators for this irrep. Thus
the number of the QDDF is 2 and the geometrical space
must be a four-dimensional manifold, i.e., the coset space
U(3)/U(2)SU(1). When 3JV~N~2JV the structure of
quantum phase space is the same as N ~ JK

From our procedure of constructing quantum phase
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space, it is clear that the change of the quantum phase
space as a function of X is the geometrical manifestation
of the Pauli principle. In fact, this manifestation has al-
ready been revealed in a dynamical truncated shell mod-
el and its experimental evidence has also been extensive-
ly discussed.

differential structure of H can be calculated from the
coherent states of SU(1,1)/U(1) via Eqs. (2.17). The
coherent states of SU(1,1)/U(1) are'

l
k Q )—:exp(2)K —g"K ) l

kO)

=(1—zz*)"exp(zK+ )lkO) —= (1—zz*)"llkz ) (5.72)

and
E. Atomic hydrogen system [SU(1,1)]

z =tanh(8/2)e (5.73)
Atomic hydrogen is not only the first realistic quantum

example to be analytically solved by algebraic methods
but also is a quantum system which possesses one of the
richest dynamical group structures. For the radial
motion of the hydrogen atom, the dynamical group is
SU(1,1). ' In the presence of a magnetic field or a linearly
polarized electromagnetic external field, the dynamical

group is SO(2,2}. 2 A larger dynamical group of the hy-

drogen atom is SO(4,2). In this paper, we shall only
concentrate on the radial motion without the presence of
external fields.

For the radial motion of the hydrogen atom, the Ham-
iltonian has SU(1,1) dynamical group with generators

Thus the so-called generalized Bergmann kernel is

K(z,z*}=(1—zz*) (5.74)

The metric g, and the measure dp of SU(1,1)/U(1) are

2k —1 dzdz"

(1—zz')
2k

g, =6, and dp=
V V(1 e)2

(5.75)

(1 —zz" )' ~8&~82
[Bi 82!= 2,

.
k

~51~Lt2

Bz Bz
(5.76}

respectively. The Poisson bracket of the functions $„52
defined on SU(1,1)/U(1) can be expressed as follows:

(I-32) The canonical coordinates are (h =1)Ki =
—,'(rp —r), K2=r p i, K—3= ,'(rp +r),—

which satisfy the commutation relations 1 . z(q+ip)= = sinh(8/2)e
&4k (1—zz')'" (5.77)

[K),K2]= —iK3, [K2,K3]=tKt, [K3)K, ]=tK2 .
By using Eq. (5.77), Eq. (5.76) becomes the standard form
of Eq. (2.25).

(2) Phase-space representation. Since the overcomplete
relation of the coherent states lkQ) is

f, lk Q)dp(k Ql=I f llkz)dpH(kzll=I

(I-33)

(5.78)

the phase-space representation of wave function l%') of
Eq. (5.70) is

' ]/2

f(z)=(qllkz)= g f„ n!I (2k
(5.79)

where f (z) EL (H ). The phase-space representation of
any operator A = A (K, ) is

K(zz')=(kQlA(K, )lkQ) . (5.80)

The Hilbert space corresponds to its positive discrete ir-
rep D+(k) with k )0. In this case, the discussion is
similar to the discussion of the SU(2) except for its non-
compactness. The basis vectors of D+(k) are lkn ),
which are eigenstates of K3. K3lkn ) =(n +k)lkn ),
n =0, 1,2, . . . . The label k is determined by the SU(1,1)
Casimir operator: K =K3 —K, —K„and K lkn )
=k (k —1)lkn ). In the following, we will construct the
QPS structure of the hydrogen atom's radial motion, its
phase-space representation as well as classical analogy.

(i) Phase space struc-ture First of a.ll, the Hamiltonian
of Eq. (I-31) in the Hilbert space of D+(k) has a ground
state kO) which is the lowest bound state of D+(k).
Since

)
I"(2k)

n!I (2k +n)

' 1/2

(K, )"lkO) (5.70)
~hen the operators A are generators of SU(1,1), their
classical analogies are

any state l%) = g '
o f„lkn ) [ED+(k)] can be gen-

erated by a polynomial of K+ acting on
l
kO), where

K+ =K, +iK2. Thus the elementary excitation operator
of the SU(l, l) is only the raising operator K+. The QPS
is obtained via the general procedure of mapping the sub-
space p: [K+,K I of SU(1, 1) onto the coset space
SU(1,1)/U(1):

e, =(kQIK lkQ&

2kz* =
—,'(q —ip)(4k +p +q )'~

1 —zz

e =(kQlK lkQ)

2kz =
—,'(q+ip)(4k+p +q )'

1 —zz*

(5.80a)

(5.80b)

(A)K+ —2}*K ) ~exp(2)K+ —rt*K ) (5.71)

where 2) =(8/2)e '+, —ao 8 ~ ~, 0~ tp & 2m. This
means that SU(1,1)/U(1) is isomorphic to a two-
dimensional hyperboloid H . ' Therefore the QPS of ra-
dial motion of the hydrogen atom is H . Similarly, the

2+ 2

~,=«QIK, lkQ) =k "„=k+'
1 —zz

(5.80c)

The corresponding algebraic structure of SU(1,1) in the
phase-space representation is



42 INTEGRABILITY AND. . . . II. . . . 7147

i [R,Q+ } =2R3, i jR3,R+J =+9+ . (5.81) quantum problem is determined by Eq. (3.2) with the
Hamiltonian

Similar to the angular momentum,
—= (, kQ~K, +iKz~kQ) =R,+iRz, we have

@(q,p) =H(R+(q, p), R (q,p), Q3(q, p) ) . (5.83)

(~1&~2) ~3& !~2&~3( ~l& )~3&~1) +2 ' (5.82)

Thus the dynamical properties of the system in the
phase-space representation may formally be described by
the equations of Eq. (2.46).

(3) Classical analogy T. he classical analogy of the

H =(K3+K, —2)/2(K3 —Ki ) .

Using Eqs. (5.77) and (5.80), we have

(5.84)

Here we only consider the case of "classical" limit in or-
der to compare it with its classical version. The Hamil-
tonian of hydrogen atom in terms of SU(1,1) generators
(in atomic units) can be rewritten as

2+ 2, k+ P q ~(4k+p~+q~)~/~
2 2

2+ 2

O(q p }= k + + +(4k +p'+ q')'" 2—
2 2

2+ 2= k+ P q ++(4k+p~+q~)
2 2

2r(p, q) (5.85}

where r(p, q) is the classical analogy of the radial position
operator:

.(p, q)=(kn~r~kn)
2+ 2:k + P q +(4k +p2+q2)1/

2 2

Then the equations of motion are

dg p
dt r(p q)

I: —,
' —O(q p})

(5.86)

+, , „,t-,'+O(q p»}1
2r(p, q)(4k+p +q )'

(5.87a)

[-,' —Z(q p}]
r(p, q)

4k +p +2q
2r(p q)(4k+ + )'

(5.87b}

The time evolution of r(p, q) can be obtained from Eq.
(5.87):

dr(p, q)
dt

(4k +p2+q2)1/2
2r(p, q)

2 E— k'
r(p, q) 2r'(p, q)

1/2

(5.88)

VI. SUMMARY AND CONCLUSIONS

The following points summarize our work in this pa-
per.

where E =O(q, p) is the energy and k =I the angular
momentum. It is obvious that Eq. (5.88) is the exact clas-
sical equation of radial motion. The above discussion
demonstrates the statement made in Sec. III that the
"classical" limiting case of classical analogy is identical
to its classical version if the latter exists. The above
derivation shows explicitly the difference from
Ehrenfest's theorem.

(i) The explicit structures of the quantum phase space
are explored. The quantum phase space is an inherent

geometry for an arbitrary quantum system and possesses
naturally the symplectic and complex structures. Such a
quantum phase space is controlled by the number of
quantum dynamical degrees of freedom given in paper I
and includes various inherent properties of the quantum
theory, such as Pauli principle, quantum internal degrees
of freedom, and quantum-statistical properties of micro-
scopic particles. We have provided a general procedure
of constructing this quantum phase space from the
QDDF, and have calculated explicitly its canonical coor-
dinates for all semisimple dynamical Lie groups with Car-
tan decomposition.

(ii) Based on the constructed 0/%, one can define the
associated coherent states which provide a natural bridge
to link the physical Hilbert space and the quantum phase
space. Then the explicit phase-space representation of
the quantum system can be obtained by closely following
the procedure of Klauder's continuous representation
theory. '

(iii) The algebraic structure of the phase-space repre-
sentation of observables has been studied. It was found
that the algebraic structure of operators is preserved in
the phase space if the operators are the generators of the
dynamical group Q. This property results in an explicit
realization of classical limit of quantum systems.

(iv) A classical analogy of quantum mechanics was
developed for an arbitrary quantum system which is in-
dependent of the existence of the classical counterpart.
The results show that the c1assica1 limit of the quantum
system can be explicitly obtained if it exists. Further-
more, the classical analogy contains the first-order quan-
tum correlation and can describe the semiquantal dynam-
ics. It is shown in this paper that the theorem about the
relationship of dynamical symmetry and integrability '
is also valid in classical mechanics.

(v) From the classical analogy theory, a general algo-
rithm for seeking the quantum manifestation of chaos
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was constructed. This is consistent with Berry's
definition of the quantum manifestation of chaos, i.e., the
study of semiclassical, but nonclassical, behavior charac
teristic of systems whose classical motion exhibits chaos
It provided, for the first time, a general procedure to ex-
plicitly examine the dynamical effect of quantum correla-
tion on classical chaos.

In Sec. V, many quantum-mechanical examples were
discussed in order to verify the theoretical underpinnings
given in paper I and this paper. The first two examples:
the driven radiation field (testing exact quantum solution
via classical analogy) and the two-level Lipkin model
(testing the difference between the mean-field dynamics
and "classical" limit) are integrable systems. The next
two examples: the two-level atomic system interacting
with an external field and the three-level Lipkin model
are nonintegrable systems and were used to test the
effects of inherent quantum structures and quantum
correlation on systems whose mean-field motion is
periodic or chaotic. The last is the hydrogen atom which
was to explicitly test the agreement of the "classical" lim-
it with classical mechanics. It shows clearly as a limiting
case that the classical analogy of a quantum system in-
cludes the classical mechanics. These analytical as well
as numerical calculations illustrate the utility and appli-
cability of the theory.

It is also worth pointing out that before numerical
computations were implemented, the concepts of dynami-
cal symmetry and dynamical symmetry breaking could be
employed to analyze the integrability and nonintegrabili-
ty of quantum systems. All the results we have presented
showed that by using such concepts the general behavior
of integrability and nonintegrability can be determined a
priori.

Two open questions remain. One is how to provide a
general systematic procedure to construct explicit canoni-
cal coordinates (i.e., their Poisson brackets satisfy

I q;,p~ I
=

5;~ ) of quantum phase space when the system
possesses a nonsemisimple dynamical Lie group, although
we know what the quantum phase space is in such cases
and in fact some special cases have been constructed. ' '

Another is, what are the generic dynamical behaviors of
quantum correlation in classical chaos. We have exam-
ined the quantum correlation effects in classical chaos
when the quantum phase space is compact. However,
when the QPS is noncompact, we suspect that the
dynamical behaviors of quantum correlations may very
well be different. Research is now underway to address
these questions.

importance of dynamical symmetry breaking and the ir-
regular spectr um.

APPENDIX: DIMENSION THEOREM

IHk, E„,E, , k =1, . . . , 1;v; ER+ ) (A 1)

where R+ ——
I v„ i =1, . . . , n —1/2I is the set of positive

roots. For any state l%) Eij~, we have

I+'1=F(E, )IA, —A& (A2)

where F(E„) is a polynomial of E„with v; satisfying
I I

the following condition:

A —v, ER . (A3)

Let the number of v, which satisfies Eq. (A3) be M~, then
it is obvious that

n —l

2
(A4)

On the other hand, from Eq. (A2), the configuration
space corresponding to I)„ is an M„-dimensional mani-
fold. ' Therefore the number M~ of NFD operators in
CSCO is identical to the number of positive roots
I v; I ER+, which satisfy the condition A —v; ER.

Explicitly, for nondegenerate irrep space 1)~, one has

n —1
(v, A)%0 for all v, GR+, i =1, . . . ,

2
(A5)

i.e.,

n —I
A —v, ER for all v; ER+, i =1, . . . ,

2

This shows that the number of NFD operators is

(A6)

Theorem. For an irrep of Lie group 0, the number M~
of the NFD operators in CSCO which specify the basis of
its carrier space I)~ is identical to the number of positive
roots Iv; l ER+ of its Lie algebra p, which satisfy the
condition A —v; E.R. Here A is the highest weight and R
is root space of g.

Proof. For an N-dimensional configuration space, the
number of quantum number, i.e., the number of the NFD
operators (for definition see paper I) in CSCO which
specify the basis of its Hilbert space, is N [an explicit ex-
ample is (I-2) in I]. ' ' ' Consider an n-dimensional, 1-

rank Lie group Q. Its generators in the Cartan basis are
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v;A=O . (A8)

In other words, there exist one or several positive roots v,
which satisfy the following equation:

n —I
A —v, &R, i=1, . . . , m (

2
(A9)

For the degenerate irrep the highest weight A is singular,
i.e., for some v, (i = 1, . . . , m (n —1/2)
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Correspondingly, the number of NFD operators in CSCO
1s

n —I n —I
M = —I (

2 2
(A10)

These results are independent of which subgroup chain of
Eq. (1-5) one is referring to and only depend on the struc-
tures of 0 and 1)~.

Furthermore, from the definition of Eq. (2.9), it can
directly be shown that the number of elementary excita-
tion operators is the same as the number of NFD opera-
tors in CSCO (as well as the number of QDDF). The
reason is that if A —v, ER, then one has

(A 1 1)

According to the definition of Eq. (2.9), E„(A—v, E R ) is
1

the elementary excitation operator. Thus, it is obvious
that for the nondegenerate irrep space, all the n —I/2
generators I E, ] satisfy Eq. (2.9) and are the elementary

t

excitation operators; for degenerate irreps, they are I E„]
I

with A —v, ER. Some detailed examples are presented in
Sec. V.

A similar theorem (about the dimensionality of phase
space of the Lie group) is recently provided by Faddeev,
who obtained a similar result for the U(r) group via the
Gelf'and pattern.
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