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We show that some hard optimization problems studied by Monte Carlo methods, such as simu-

lated annealing, have features that can be estimated by a statistical analysis of the data, well before

being actually observed. This applies, for instance, to the estimation of the ground-state energy of
the problem. We start by showing that the density of states and the distribution of extremes of ener-

gy seen in a given time interval in the Monte Carlo dynamics of combinatorial optimization prob-
lems are strongly related to each other through the first-passage-time distribution of the stochastic
dynamics of the system. We then introduce a scaling ansatz for this last quantity, which allows an

estimate of the ground-state energy. Finally, we demonstrate the method on a "traveling-salesman"

problem with known ground-state energy and apply it to the simulated annealing of a graph-

bipartitioning problem.

I. INTRODUCTION AND DISCUSSION

Many problems arising in statistical mechanics such as
finding the ground state of a spin glass' are hard com-
binatorial problems. As such, they can be studied by
simulated annealing, a technique introduced in recent
years ' in which the optimization is considered as a
statistical-mechanical problem in its own right. In the
annealing approach, the cost function of the problem at
hand is viewed as the energy of a stochastic dynamical
system, which relaxes according to some Monte Carlo
scheme. By lowering the temperature, one confines the
system to states of progressively lower energy, eventually
obtaining a near-optimal solution.

The basic analogy between combinatorial problems
studied by Monte Carlo methods and physics has already
been investigated, with respect to the statistical proper-
ties of the local minima. In particular, the possibility
that these minima might be clustered according to some
ultrarnetric measure, similar to what happens for the
Sherrington-Kirkpatrick (SK) model of spin glasses,
has attracted some attention.

The dynamics of physical random systems and of corn-
binatorial problems has important common features as
well: In both cases, the configuration spaces have very
many local energy minima, and the systems perform ran-
dom walks with Arrhenius-type transition rates. It is
hopeful that a theoretical description of the relaxation of
combinatorial optimization problems will make it possi-
ble to improve existing simulated annealing methods, as

well as yield useful insights on complicated physical mod-
els that are too hard to simulate. Also, the study of the
dynamics of simulated annealing can help in the design
and control of Monte Carlo experiments on highly frus-
trated physical systems at low temperatures.

In an attempt to define a possible theoretical approach,
some questions naturally arise: Why should a characteri-
zation of the dynamics of a combinatorial problem be
possible at all, how should it be attempted, and how gen-
eral can it be? In the rest of this paper, we give a tenta-
tive answer to the first two questions.

Some qualitative insight can be gained indirectly if we
consider why simulated annealing works at all. If the
correlation between the energy of configurations that are
close to each other in the topology of the move class is to-
tally absent or varies erratically in phase space, it will
fail. Consider, for example, searching a configuration
space where the energy is mostly constant, except for
some deep minima with very small attraction basins; this
is the classic "golf hole" problem. No useful information
can be collected by sampling energies in a neighborhood
of most points. Therefore, annealing and random search
will be identical on this problem, and both give poor re-
sults. The opposite case would be an energy function
shaped as a surface of revolution with one global
minimum. Here, the structure of the energy function can
be completely determined by looking at a small neighbor-
hood, and a gradient descent algorithm will quickly pro-
vide the answer. Simulated annealing with a judicious
choice of the move class is empirically known to work
rather well on a large class of hard combinatorial prob-
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lems, providing fast and accurate answers. The phase

space of these problems must then be somehow inter-

mediate between the two examples given above, i.e., it
must have some degree of structure, and this structure
should reveal itself in the properties of the dynamics. We
therefore think that the answer to our first question
should be affirmative for a rather large set of problems.

In order to proceed further, we state and discuss the
assumptions on which our approach is based, find some
of their implications for a measurable quantity in Monte
Carlo experiments, and check the results on two different
combinatorial problems: an instance of the traveling
salesman problem (TSP), for which the ground state is
known (for any problem size) and a graph partitioning
problem.

The stochastic dynamics of the system can be described
by the distribution of the waiting time for reaching a tar-
get energy from any given starting energy. The average
waiting time of this distribution should, for an NP hard
problem, diverge very fast with the size of the problem, at
least for some (low) range of the initial and final ener-
gies. ' Otherwise, the average waiting time for reaching
the ground state or global minimum of the problem
would, in the average, remain reasonably small, which
counters our intuition about the nature of hard combina-
torial problems. We take, therefore, the point of view
that the distribution has no average. As we only consider
finite combinatorial problems, this description can only
be valid over a finite (but, hopefully, very large) span of
time. A further idealization is to consider the first-
passage problem as infinitely divisible, which amounts to
treating the energy as a continuous variable. This
description will fail on some (hopefully, negligibly small)
energy scale. Finally, we assume that the stochastic
properties of the random walk are sca1e invariant, which
means that the waiting-time distribution for one set of
starting and target points is the same as for any other set,
except for a scaling factor, which depends on the position
of the intervals with respect to the ground state of the
problem. As a plausibility argument in support of our as-
sumption, we remark that scaling relations of this type
have been previously derived for a class of random walks
on trees, and that it has been argued that random walks
on trees provide a good coarse-grained description of
thermal relaxation in phase spaces with many nested
minima. Nevertheless, the validity of the assumptions
rests on the agreement between the predicted behavior
and what is actually observed in Monte Carlo experi-
ments.

The waiting-time distribution, introduced above, is not
a readily available quantity. We show, however, that it is
related to a simple and natural measure of how far the
annealing has progressed, namely, the least energy seen in
the simulation during the time interval (O, t). This sto-
chastic variable, which is easily monitored during a nu-
merical experiment, was first introduced by Jakobsen and
co-workers, ' '" who argued that its average value is a
good measure of performance for optimization algo-
rithms, and dubbed it best-so-far energy (Essi:).

The main observation of this paper is that the BSF dis-
tribution has, for a nonempty class of problems, quite

specific scaling properties, provided that the appropriate
zero of the energy axis is known, i.e., provided that the
ground-state energy E is correctly guessed. This makes
it possible to estimate the ground-state energy long before
it is reached in a simulation, on the basis of run-time in-
formation collected during the run.

where we have used the fact that Wz E (t) =0 for E &Ep.
Q

The ab initio calculation of the waiting-time probabili-
ty Wz E (t) requires the solution of the full dynamical

problem itself. However, some of the properties of 8 fol-
low from simple probabilistic reasoning and hold for any
dynamics. These properties are given below:

W~E (0)=1,

WEE (~)=0, (4)

lim Ws z (t)=0 for t&0,

lim Wz z ( t) = 1 for t X~,
E, E

lim Wz+ (t)=1 for tWao .

Here E is the ground state, and we have explicitly as-
sumed that there is zero probability of reaching it in finite
time. For a finite system, this cannot be strictly true. In

II. MATHEMATICAL FORMALISM

Consider a numerical simulation of a combinatorial-
problem run with just one copy of the system. The dy-
namics is assumed to be given by the Metropolis algo-
rithm, with a temperature that might depend on the time,
thus including the important case of simulated annealing.
The BSF distribution of the problem is defined by
F(t, e)=Prob(E&sz &E at time t). It can be einpirically
sampled by running the dynamics with n identical copies
of the system.

In this section, it is shown that F(t,E) can be expressed
in terms of the density of states of the combinatorial
problem at hand (a "static" quantity) and the previously
mentioned density of first-passage times through a given
energy (a "dynamic" quantity).

Let RE E (t) be the probability density for the first-

passage time through E, with the starting point at
Ep &E, and F(t,ElEp) and Ess„distribution conditional
to the starting point being E0. Clearly, one has

tF(r EIEp) =I Rg g (y)dy = 1 —Wg E (r),
0

where Wz@ (t) is, by definition, the probability of wait-

ing at least time t before hitting the energy E, averaged
over all the possible initial configurations with energy E0.

The Essz distribution is obtained by averaging Eq. (1)
over the distribution of initial energies. Usually, the ini-
tial state is chosen at random, in which case, this distri-
bution is the normalized density of states of the problem
2)(Ep). Thus

F(t,E)=1—f Ws s (t)2)(Ep)dEp,
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practice, the characteristic time scale, on which 8'z, E
approaches zero, will diverge very quickly with the size
of the system, unless the problem is trivial. Mathemati-
cally, the assumption can be satisfied by taking the limit
of an infinite system.

We now suggest that, for su%ciently low E and E0,
Wz@ (t) depends on a combination of its three argu-

p

ments, as given in the following scaling ansatz:
1/a

W (t)= W— (&)
t E —E0 0

F(t,E)=1—f W r
00

E0 —E XKED)dE0 . (9)

The function W is expected to have an inverted sigmoid
shape. We choose the scale of time t0, such that the tran-
sition between the region where 8'is close to one and the
region where it is close to zero occurs when the argument
of 8'is unity.

We then split the above integral into separate integrals
over these two regions:

1/a
tz

F(t,E)=1—f W ~ — 2)(E+y)dy
0

'1/a'

(10)
E~ 3'

l)(E+y)dy .

The simplest approximation, and perhaps the on1y possi-

where 8'is any monotonically decreasing function, with
values between 1 and 0, 0 & a & 1, and the constant t0 is

introduced in order to make the argument of W dimen-
sionless. Note that W fulfills all the requirements on the
waiting-time distribution stated in Eqs. (3)-(7).

Our formula is supported by the following heuristic
considerations:

(1) Changing the distance between the initial and final

states amounts to a rescaling of time. This happens also
in a quite familiar example, i.e., for the first-passage time
through the absorbing boundary at E of a simple one-
dimensional diffusion process starting at E0. In this case

Wzz (t) just depends on (E0 E)l&—t. Here the ex-

ponent a is one half.
(2} While the medium is spatially homogeneous in the

diffusion example, we have in the combinatorial problem,
a privileged origin on the energy axis, namely, the
ground-state energy. The factor E —E removes the
translational invariance and describes a behavior that be-
comes slower and slower as the ground state is ap-
proached. Finally, the idea of a scaling exponent less
then one is based on the intuitive idea that the random
exploration of the complicated phase space of a combina-
torial problem can be coarse grained into a random walk
on a tree. The distributions for the tree models' are
so-called stable distributions and have a long-time tail of
the form t ', with 0 (a & l. ' '~

For notational convenience, we now let r=t/ta, and
choose the origin of the energy axis as E~ until further
notice. We then find the EBs„distribution as

' 1/a

((E E)"—}(I+r )"=const . (13)

The constant on the right-hand side of Eq. (13}is formal-
ly the nth moment of the normalized density of states.
However, since the scaling ansatz used to derive Eq. (13)
can, in general, only be expected to apply to the low-
energy part of the spectrum, while the right-hand side of
the same equation involves the high-energy part of the
spectrum as well, especially for high and positive values
of n, the formal identity cannot be trusted.

III. METHODS OF DATA ANALYSIS

Equation (13) is assumed to be strictly valid for aver-
ages performed over an infinite ensemble. Computational
limits introduce therefore various possible sources of
discrepancies between the data and the predictions of the
theory, and different data can give slightly different
answers. In this section, we therefore describe the
methods we used to analyze the data presented in the fol-
lowing two sections.

In order to check our ansatz, we have with all our data
plotted 1n((E E)") versus—lnt for a time span of typi-
cally more than six orders of magnitude. In these plots,
the data fall very well on straight lines for both the TSP
and the graph-partitioning-problem run with constant
temperature, except for a well-defined bend at short times
(typically, two orders of magnitude), probably due to the
fact that the appropriate time variable is 1+(t/t0) rath-
er then t . In the case of simulated annealing on the
graph-partitioning problem, the fit is somehow less satis-
factory, and also less sensitive to the value of E~.

Since scaling is a property of the distribution, rather
than of a single moment, we combine the information
from several moments in order to assess the quality of the
fits. Given a guessed value of the ground-state energy E',
the nth moment on the left-hand side of Eq. (13) can be
calculated for any value of n for which the average is ex-
pected to exist.

The value of a can then be extracted by a least-squares
fit in the In((E E~ )") versus lnt pl—ot.

Let the experimentally determined and E~-dependent
value of a be denoted by a„(E') It follows from .Eq. (13)
that, for the true ground state, n/a„(Es) should be in-
dependent of n, i.e., one should have

ble one at this level of description, is to neglect the first
integral altogether and put 8 =1 in the second one.
(This seems to be especially appropriate if the exponent a
becomes small, in which case, the transition from the
small argument to the large argument region takes place
quite abruptly. ) One then finds that

F(t,E)=f 2)(y)dy . (11)

The nth moment of the E&s„distribution should now
fulfill the relation

(E")(I+r )"=f y "$(y)dy, (12)
0

or, reintroducing the dependence on the ground-state en-

ergy
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n la„(E) = 1/a, (E ) .

The best constant through the data n la„(Es)is the arith-
metic mean of the points. A relevant measure of the er-
ror is then the variance of the data points divided by the
mean. We call this quantity Q(E ). Ideally, Q should
vanish for perfect data, if E is chosen correctly. In prac-
tice, we estimate the ground-state energy as the E value
that minimizes Q. In the procedure, we have used the
first four positive and first four negative moments.
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IV. NUMERICAL RESULTS FOR A TSP PROBLEM
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FIG. 1. Plot of 1n((E Es)") vs lnt time for a TSP—with 33
cities on a regular square lattice with lattice unit 1. The ensem-
ble used has 100 elements, and the simulation was performed at
a constant temperature T=O.S. The least energy seen in the
whole ensemble is about 36, which is quite far from the ground-
state energy E& =32+&2. The data show that after a rather
short initial transient, the asymptotic scaling form, implied by
Eq. (&3), is well satisfied for all time scales of interest.

As a check, we apply the formalism to a combinatorial
problem with known ground-state energy. In this exam-
ple, the temperature is kept fixed during each run in or-
der to remove the additional complication introduced by
the time dependence of the temperature in the annealing
schedule. Also, walks at different temperatures probe
different parts of the phase space. It is interesting to see
explicitly whether they have similar statistical properties,
as is assumed in our scaling ansatz, and to check how the
predicted ground-state energy varies with the tempera-
ture.

Consider an i Xj planar square grid, with unit distance
between neighbor points. Place a city on each grid point.
A configuration or "tour" is a permutation of the m =ij
cities, and its cost or energy function is simply given by
the total Euclidean length of the tour, as found by sum-
ming the distance from one city to the next along the

10 t rue ground
state energy
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FIG. 2. Plot of figure of merit Q(Esl as a function of Es for
the TSP system with 33 cities. The actual ground state is
E~=32+&2, while the predicted ground-state energy is the
minimum of Q. The curves are all calculated for an ensemble of
100 elements, with a constant-temperature simulation. The cor-
responding temperatures are T =0.6, (curve a), 0.8 (curve b), 1

(curve c), 1.2 (curve d), and 1.4 (curve e). The least energy seen
in the ensemble is for curves a -c, very close to the energy value
at which the curve stops. For the other two curves (d and e),
least energy seen was in excess of 40. All of the simulations last-
ed 400000 ensemble updates, except for case e, which lasted
twice as long. Note that the minima are quite sharp, since the
vertical scale is logarithmic. The worst deviation between the
predicted and the actual ground state is 10%%uo. Also noteworthy
is that the quality of the minimum is not monotonously im-

proved as the temperature is lowered. This might be because of
the fact that when the temperature is much lower then T=1,
which is the distance between the cities, then the system is prac-
tically quenched, at least on the time scales which are realistic
in a simulation.

tour. It is easy to see that the lowest~ossible energy is

Es =m, if m is even, or Es =m —1+&2, if m is odd.
As a move class, we choose the Lin two bond algo-

rithm, ' in which two randomly chosen bonds are re-
moved and replaced by two others in any attempted
move. The moves are accepted or rejected according to
the usual Metropolis algorithm.

We analyzed a small problem with 23 cities, in order to
assess the importance of finite-size effects, and a larger
problem with 33 cities. In the former case, a sizeable
part of the ensemble accumulated very close to the
ground state of the system, while, in the latter case, the
simulation never came close to the ground state. Never-
theless, the scaling form assumed in Eq. (13) is very well
fulfilled in both cases. In Fig. 1 we show the natural log-
arithm of the first four positive and first four negative
moments of the EBs& distribution, as a function of lnt, for
the 33-city problem. As anticipated, the curves are per-
fectly straight lines after a short transient. Very similar
curves are obtained for the 23-city case. In both cases,
the ensembles contained 100 systems.
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FIG. 3. The TSP ground-state estimates (squares), obtained

from the minimum of Q{Eg), plotted as a function of the dura-
tion of the simulation, t. The ensemble size was 100, and the

temperature T=1.4. The estimate converges to the actual
ground state of the system, which is indicated by the horizontal
line at Eg =32+&2. The estimate is already quite good at an

early stage in the simulation. However, for very short times, the
algorithm fails to produce a minimum in Q. This happens for
t =6022 (not shown in the plot). The circles show the least en-

ergy actually seen in the ensemble during the time t.

V. NUMERICAL RESULTS FOR GRAPH
BIPARTITIONING

In this section, we apply our scaling technique to a
different combinatorial problem. We consider the parti-
tioning of the nodes of a random graph into two equal-

While we used the true ground-state energy values to
obtain the plots of Fig. 1, we now estimate the ground-
state energy following the technique described in Sec. III.
We therefore extract the scaling parameter a„(Eg)for
each n in a range of guessed values of E in the vicinity of
the true ground state, and calculate the figure of merit

Q(Eg) as a function of the guessed ground-state energy

Eg. The estimated ground-state energy is then found as
the one minimizing Q.

Figure 2 shows how the method works for different
simulation temperatures. It is seen that the outcome of
the estimation has only a weak temperature dependence.
In Fig. 3 we analyze the dependence of the estimate on
the simulation length. We see that the estimate has a
damped oscillatory behavior, and that it clearly con-
verges to the correct value as the run time is increased.
It is also interesting that rather good estimates can be ob-
tained early in the simulation. In the same plot, we also
show the very least energy actually seen in the simulation
for the whole ensemble. This quantity is consistently
much higher then the estimated ground-state energy,
showing that the prediction of the ground state works
long before the ground state is approached.
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FIG. 4. Plot of In({E Eg)") vs lnt time for a —graph-
bipartitioning problem. The data stem from a simulated-
annealing run. The graph had 400 nodes and a connection
probability of 0.007. The curves flatten in the last part of the
simulation, showing that there is no further progress in the op-
timization. Apart from this final regime, the scaling assumption
seems to be satisfied over almost four time decades.

size subsets. The cost function, or energy of the problem,
is the number of cut edges. Our choice was motivated by
the fact that this is a standard NP-complete problem with
important industrial applications. '

We consider a variety of graphs, differing in the con-
nectivity and the number of vertices. In all of the cases,
we could make an estimate of the ground state according
to our method. Here we report a detailed analysis for
two instances: one graph, henceforth called A, has 500
vertices and edges that were generated independently
with probability 0.004. The second graph, henceforth
called B, has 400 vertices and connection probability
0.007 ~

For graph A we performed both a constant-
temperature and a simulated-annealing simulation, while
for graph B we only considered the simulated-annealing
behavior.

We choose the constant thermodynamic speed anneal-
ing schedule described in Refs. 17 and 18. This schedule
requires that the annealing be performed with an ensem-
ble of copies of the system, each copy running indepen-
dently of the others but sharing a common temperature.
The temperature schedule is calculated adaptively, on the
basis of run-time information extracted from various en-
semble averages. ' In our runs, we had to compromise
between ensemble size and length of the simulation.
After trying ensemble sizes of 200 and 100, and checking
that the results were not affected, we did all the simula-
tions with the smaller ensemble size. The quality of the
scaling plots was as good as for the TSP for the constant
temperature run, while it was of varying quality for the
various annealing runs.

In Fig. 4 we show one scaling plot for graph 8 (simu-
lated annealing). We used a ground-state energy of 50 in
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this plot, corresponding to our best estimate. The curves
flatten in the last part of the simulation, showing that
there is no further progress in the optimization. Figure 5
shows how the predicted ground-state energy (squares)
depends on the length of the run. As in Fig. 3, we also
show the very lowest energy seen in the ensetnble (cir-
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FIG. 6. Ground-state estimate {squares) and the least energy
seen over the ensemble (circles) as a function of time. Three
points are negative, which should be interpreted as a zero-
energy guess. The open circles and squares are from a simula-
tion where the temperature has been kept constant at T =0.35.
The closed symbols refer to a simulated-annealing run. On the
time scale of the simulation, the annealing can find lower-energy
states than the constant-temperature run, but performs less well

in terms of the ground-state energy prediction.

t im e ( N o. ensemble updates }

FIG. 5. Corresponds to Fig. 3, but for the graph-partitioning
problem described in Fig. 4. The ground-state estimates
(squares) and the actually seen least energy are seen to converge
nicely toward each other.

cles). The two data sets are seen to converge toward each
other, suggesting that the ground state for this problem
should be close to 50. An analytical estimate for the
ground-state energy of random graph-partitioning prob-
lems, based on statistical considerations only, predicts a
value of 27, based on the connectivity and the size of the
graph. As in the TSP, the estimate changes slowly with
time.

Figure 6 is analogous to Fig. 5, but shows the data for
graph A. Both constant-temperature (open circles and
squares) and simulated-annealing data (closed circles and
squares) are shown. As one would expect, simulated an-
nealing performs best in terms of the least energy seen.
However, the constant-temperature run seems to be
better in terms of the ground-state prediction, because
the data seem to converge nicely to data for the least en-
ergy seen, while the simulated-annealing prediction for
this instance is not as yet converging. As already men-
tioned, this might be due to the fact that the scaling
property is better fulfilled for the constant temperature
simulations. This particular graph was actually the least
convincing from this point of view among the cases we
considered.

From Fig. 6 we would expect the ground-state energy
to be close to 20, which is much lower than in graph B,
due to the fact that the connectivity is much less.

VI. SUMMARY AND CONCLUSIONS

In this paper we attempt a description of the dynamics
of stochastic relaxation processes in systems with many
local energy minima, such as hard combinatorial prob-
lems and frustrated physical systems.

We describe the dynamics in terms of the distribution
of a stochastic quantity, the E»„.The E»„is the lowest
energy seen in the simulation in the time span (O, t), and
one samples its distribution by running the Monte Carlo
simulation with many identical copies of the system,
rather than with a single one. This distribution relaxes
toward a 5 function at the ground-state energy of the sys-
tern, as the time goes to infinity. In practice, the ground-
state energy is never sampled, except for very small sys-
tems, and the relaxation of the distribution toward its
theoretical equilibrium limit is very slow, reflecting the
fact that the system is trapped in local energy minima.

We argue that, for a nonempty class of problems, the
distributions of EBsF —Eg, where Eg is the ground-state
energy of the system, behaves asymptotically as a power
law with a small exponent a. By checking how well the
relation is satisfied for different E values, it is possible to
attempt an estimate of the ground-state energy of the sys-
tem. We note that the actually observed scaling ex-
ponents have always been much smaller than unity, in
agreement with the hypothesis.

For a quantitative discussion, we introduce a figure of
merit Q which, for noiseless data, is zero if the scaling re-
lation is perfectly satisfied. We then analyze Q as a func-
tion of a putative ground-state energy, and show that Q is
small and has a very sharp minimum in two difterent
combinatorial problems, i.e., the previously mentioned
TSP and the annealing of a graph-partitioning problem.
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For the test problem, the minimum coincides very well
with the actual ground-state energy. We conjecture that
the minimum of Q could, in general, be taken as a good
estimate of the ground-state energy, or at least for the
least energy that would be seen in an actual simulation if
run for an infinitely long time.

In our first example, the temperature was always kept
constant. In the second example, we tried both a con-
stant temperature and an adaptiUe annealing schedule for
the temperature decrease. In this schedule, the tempera-
ture turns out to have itself an algebraic dependence on
time, and the relaxation of the EzsF distribution is still
quite well described by an exponent, although the quality
of the fits in some examples is less satisfactory than in the
constant-temperature case.

In both our examples, the theoretical scaling predic-
tions are found to be rather well fulfilled. In the TSP, the
predicted ground-state energy is surprisingly precise. In
the other example, we do not have an independent way of
checking the correctness of the ground-state estimate, be-
cause small examples, where the ground state can actual-
ly be found, tend to have trivial behavior. Nevertheless,
we can observe that the predicted ground-state energy
and the observed Ezs„converge toward each other as the
running time is increased. We also note that the predict-
ed ground-state energy increases with the connectivity of
the graph.

In conclusion we have shown that, in some instances of
hard combinatorial problems, it is possible to describe the

slow relaxation dynamics by analyzing the statistics of an
ensemble of systems. We believe that, neglecting finite-
size effects that will never appear in problems of realistic
size, the algebraic decay of the EBs„distribution should
be a common feature of very many different problems,
where the dynamics is dominated by local energy mini-
ma.

Our method has some possible practical implications:
Since the form of the energy landscape depends on the
chosen move class, it is possible to rate different move
classes according to how fast a decay (how large an a)
they produce. Finally, the predicted value of the
ground-state energy can be used for estimating the mar-
ginal benefit gained by continuing the optimization.
Since the scaling law gives the time needed to approach
the goal, one has, in fact, an adaptive stopping criterion.
Previous criteria do not take into account the features of
the specific instance of the problem being annealed.
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